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Reducing carbon emissions in
the architectural design process
via transformer with cross-
attention mechanism

HuaDong Li*, Xia Yang and Hai Luo Zhu

School of Architecture and Civil Engineering, Xihua University, Chengdu, Sichuan, China
Introduction: The construction industry is one of the world’s largest carbon emitters,

accounting for around 40% of total emissions. Therefore, reducing carbon emissions

from the construction sector is critical to global climate change mitigation. However,

traditional architectural design methods have some limitations, such as difficulty in

considering complex interaction relationships and a large amount of architectural

data, somachine learning can assist architectural design in improving design efficiency

and reducing carbon emissions.

Methods: This study aims to reduce carbon emissions in the architectural design

by using a Transformer with a cross-attention mechanism model. We aim to use

machine learning methods to generate optimized building designs that reduce

carbon emissions during their use and construction. We train the model on the

building design dataset and its associated carbon emissions dataset and use a

cross-attention mechanism to let the model focus on different aspects of the

building design to achieve the desired outcome. We also use predictive

modelling to predict energy consumption and carbon emissions to help

architects make more sustainable decisions.

Results and discussion: Experimental results demonstrate that our model can

generate optimized building designs to reduce carbon emissions during their use

and construction. Our model can also predict a building’s energy consumption

and carbon emissions, helping architects make more sustainable decisions.

Using Transformers with cross-attention mechanism models to reduce carbon

emissions in the building design process can contribute to climate change

mitigation. This approach could help architects better account for carbon
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emissions and energy consumption and produce more sustainable building

designs. In addition, the method can also guide future building design and

decision-making by predicting building energy consumption and carbon

emissions.
KEYWORDS

cross-attention mechanism, transformer, architectural design, carbon emissions,
energy consumption (EC)
1 Introduction

Today’s global climate change issue is becoming increasingly

prominent, and the construction industry has become one of the

world’s largest carbon-emitting industries, accounting for about

40% of total emissions (Li, 2021). To mitigate climate change, we

need to take steps to reduce carbon emissions from the construction

industry. However, traditional architectural design methods have

some limitations, and it isn’t easy to consider complex interaction

relationships and large amounts of architectural data (Häkkinen

et al., 2015). Therefore, using machine learning to assist building

design can improve design efficiency and reduce carbon emissions.

The following are some commonly used learning models:
1. Multiple linear regression model
A multiple linear regression model (Wang et al., 2021) is a basic

linear regression model used to establish a linear relationship

between the independent and dependent variables. It can describe

the relationship between two or more independent variables and

one dependent variable, and it is very intuitive and easy to

understand in terms of explanation. However, it assumes no

interactions between independent variables and does not handle

nonlinear relationships well.
2. Support vector machine model
The support vector machine model (Son et al., 2015) is a binary

classification model that separates data of different categories based

on maximizing the interval. It can handle high-dimensional data

and nonlinear relationships and works very well for small sample

data sets. However, it could be more efficient for large-scale data

processing and requires multiple pieces of training when dealing

with multi-classification problems.
3. Decision tree model
The decision tree model (Ustinovichius et al., 2018) is a

classification model based on a tree structure, which can divide

data into categories according to different characteristics. It is easy

to interpret, can handle nonlinear relationships, and has a strong

ability to deal with missing data and outliers. However, it is prone to

overfitting and requires processing such as pruning.
02
4. Neural network model
The neural network model (Pino-Mejıás et al., 2017) is a model

that learns by simulating the connection relationship between

neurons in the human brain. It can handle nonlinear

relationships and has good results on large-scale datasets.

However, it requires a lot of data and time to train, and the

problem of over fitting needs to be dealt with.
5. Random forest model
The random forest model (Fang et al., 2021) is an ensemble

learning model that builds multiple decision trees for classification

or regression. It can handle high-dimensional data and nonlinear

relationships and can deal with multi-classification problems and

missing data. However, it works less well with unbalanced datasets

and requires more computing resources.

Here are a few inspiring studies in this area:
1. From time-series to 2d images for building occupancy

prediction using deep transfer learning (Sayed et al., 2023):

This study proposed a novel approach to building

occupancy prediction, which converts time-series data

into 2D images and applies deep transfer learning to

improve prediction accuracy. The authors demonstrated

that their method outperformed traditional machine

learning approaches in terms of prediction accuracy.

2. MGCAF, a novel multigraph cross-attention fusion

method for traffic speed prediction (Ma et al., 2022):

This study proposed a new method for traffic speed

prediction that combines multiple graphs and utilizes a

cross-attention mechanism to capture complex

relationships between different traffic features. The

authors showed that their method achieved better

prediction accuracy than other state-of-the-art models.

3. An innovative deep anomaly detection of building energy

consumption using energy time-series images (Copiaco et al.,

2023): This study proposed a new approach to anomaly

detection in building energy consumption by converting

energy time-series data into images and applying deep

learning techniques. The authors demonstrated that their

method achieved higher anomaly detection accuracy than

traditional anomaly detection methods.
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4. Fast-FNet, Accelerating Transformer Encoder Models via

Efficient Fourier Layers (Sevim et al., 2022): This study

proposed a method to improve the computational

efficiency of Transformer Encoder models by

introducing efficient Fourier Layers. The authors

demonstrated that their method significantly reduced

computation time while maintaining high accuracy in

various natural language processing tasks.

5. AI-big data analytics for building automation and

management systems: a survey, actual challenges and

future perspectives (Himeur et al., 2023): This study

provided a comprehensive survey of AI-big data

analytics in building automation and management

systems. The authors discussed the current challenges

and future perspectives of applying AI and big data

analytics to improve building energy efficiency, occupant

comfort, and safety.

6. Food recognition via an efficient neural network with

transformer grouping (Sheng et al., 2022): This study

proposed a new approach to food recognition using an

efficient neural network with transformer grouping. The

authors demonstrated that their method achieved higher

accuracy than other state-of-the-art methods in

recognizing different types of food.

7. Face-mask-aware facial expression recognition based on

face parsing and vision transformer (Yang et al., 2022):

This study proposed a new approach to facial expression

recognition that takes into account the presence of face

masks. The authors utilized face parsing and vision

transformer to improve facial expression recognition

accuracy in the presence of face masks.

8. Hong et al. (2020a) proposed a hyperspectral image

classification method based on Graph Convolutional

Networks (GCN). GCNs can fully utilize the spatial

structural information in hyperspectral images and

handle the correlation between different bands. The

authors demonstrated the effectiveness of GCN in

hyperspectral image classification through experiments

on multiple datasets.

9. Wu et al. (2021) proposed a multimodal remote sensing

data classification method based on Convolutional Neural

Networks (CNNs). This method combines multiple

modalities of remote sensing data, such as hyperspectral

images and LiDAR data, and uses CNNs for classification.

The authors demonstrated the effectiveness and

robustness of this method through experiments on

multiple datasets.

10. Hong et al. (2020b) proposed a multimodal deep learning

method for remote sensing image classification. They used

a model with multiple downsampling and upsampling

branches to extract features at different resolutions and

fused these features for classification. The authors

demonstrated the superiority of this method over single-

modal classification methods through experiments on

multiple datasets.
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11. Roy et al. (2023) proposed a remote sensing image

classification method based on a multimodal fusion

transformer. This method inputs multiple modalities of

remote sensing data into a transformer model for feature

extraction and fusion and uses fully connected layers for

classification. The authors demonstrated the effectiveness

and robustness of this method through experiments on

multiple datasets.
Overall, these studies demonstrate the potential of machine

learning techniques, such as deep learning and Transformer models,

in various applications, including building occupancy prediction, traffic

speed prediction, building energy consumption anomaly detection, and

facial expression recognition. Our proposed method builds upon these

studies by applying a Transformer model with a cross-attention

mechanism to reduce carbon emissions in the building design

process, which has not been explored in the literature.

Traditional architectural design methods have limitations, such

as the difficulty in considering complex interaction relationships

and large amounts of architectural data, which restrict the ability of

architects to consider carbon emissions and energy efficiency during

the design process. Hence, there is a need for a more efficient and

accurate approach to assist architectural design and help architects

better consider carbon emissions and energy efficiency, thereby

reducing carbon emissions in the construction industry. Machine

learning technology can help address this issue. By training machine

learning models, we can enable computers to learn the relationship

between architectural design and carbon emissions automatically,

generating more environmentally friendly and sustainable

architectural design solutions. This will assist architects in better

considering carbon emissions and energy efficiency and generating

more environmentally friendly and sustainable architectural

design solutions.

Based on the above motivation, we propose a method to reduce

carbon emissions in the construction industry using a Transformer

model with cross-attention mechanism. Compared with these

conventional models, our proposed method uses a Transformer

with a cross-attention mechanism model to reduce carbon

emissions during the architectural design. First, an architectural

design dataset and associated carbon emissions must be prepared.

We then feed these datasets into a Transformer with a cross-attention

mechanism model for training. During training, the model learns

how to convert images and other data inputs of building designs into

outputs for specific parameters such as energy efficiency or carbon

emissions. Using the cross-focus mechanism, the model can focus on

different aspects of the building design to achieve the desired

outcome. Additionally, predictive modelling is used to predict

energy consumption and carbon emissions to help architects make

more sustainable decisions.
• Our proposed method uses a Transformer with a cross-

attention mechanism model to reduce carbon emissions in

the building design process. This can help architects better

consider factors such as carbon emissions and energy

consumption and generate more sustainable building
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designs. This helps reduce the carbon footprint of the building

and increases the energy efficiency of the building, thereby

contributing to climate change mitigation.

• Our method uses machine learning algorithms to assist

architectural design, which can improve design efficiency and

reduce error rates. Traditional architectural design methods are

time- and labor-intensive, while our proposed method can

generate optimal architectural designs in a shorter period,

saving time and cost.

• We use predictive modelling to predict energy consumption and

carbon emissions to help architects make more sustainable

decisions. Furthermore, our method uses a Transformer with a

cross-attention mechanism model, which can focus on different

aspects of architectural design to achieve the desired results. This

enhances the interpretability of architectural design and enables

architects better to understand the process and outcome of

architectural design.

• Our proposed method provides a more comprehensive approach

to architectural design that considers both environmental and

economic factors. By reducing carbon emissions and increasing

energy efficiency, our method not only helps mitigate climate

change but also reduces operational costs for building owners

and tenants.

• Our method can be applied to a wide range of building types,

including residential, commercial, and industrial buildings. This

means that our method has the potential to have a significant

impact on reducing carbon emissions across the building sector

and can help achieve global greenhouse gas reduction goals.
2 Related work

2.1 Architectural design optimization

Based on the prediction of building energy consumption

and carbon emissions, optimizing building design is one of the

important methods to reduce further building energy consumption

and carbon emissions (Chhachhiya et al., 2019). The optimization

of architectural design can use various methods, such as genetic

algorithm, particle swarm algorithm, and simulated annealing

algorithm, to generate the optimal architectural design. These

algorithms can generate an optimal building design based on the

building design parameters, such as building materials, wall

thickness, window size.

In addition, the optimization of building design can also use

machine learning algorithms, such as decision trees (Yu et al., 2010),

random forests (Ahmad et al., 2017), or neural networks (Patil et al.,

2020), to predict buildings’ energy consumption and carbon

emissions. Architects can generate optimal building designs that

reduce carbon emissions and energy consumption through

these algorithms.

Optimization of building design can help architects take

measures to reduce energy consumption and carbon emissions

during the design phase. By optimizing building design, the level

of building energy consumption and carbon emissions can be

reduced, and the energy efficiency and sustainability of buildings
Frontiers in Ecology and Evolution 04
can be improved. Architects can combine the prediction results of

building energy consumption and carbon emissions and

comprehensively use various optimization methods to formulate

more sustainable solutions for architectural design.
2.2 Building carbon emission forecast

Predicting energy consumption and carbon emissions is very

important when architects design buildings. Machine learning

algorithms have become a commonly used method, among which

the neural network based LSTMmodel is representative. The LSTM

model (Chen et al., 2021) can predict future energy consumption

and carbon emission levels based on buildings’ historical energy

consumption and carbon emission data. The model calculates the

predicted value for the next time step during the prediction process

based on the historical data and the current state. Prediction results

can help architects take steps to reduce energy consumption and

carbon emissions during the design phase.

Predicting building energy consumption and carbon emissions

is important to sustainable building design (Huang et al., 2022). By

predicting a building’s energy consumption and carbon emissions,

architects can take steps to reduce energy consumption and carbon

emissions during the design phase. In addition, evaluating building

energy efficiency is also one of the important indicators for

evaluating building sustainability. Evaluating the energy efficiency

of buildings can be achieved using methods such as energy

simulation, data collection, and data analysis to understand the

energy consumption level and energy use efficiency of buildings

and take measures to reduce energy consumption and carbon

emissions (Hu and Man, 2023). Using these approaches in

combination, architects can develop more sustainable solutions

for building design.
2.3 Transformer model

Transformer is a deep learning model based on a self-attention

mechanism, which has achieved excellent performance in many

natural language processing tasks (Patterson et al., 2021). But due to

its parallelization capabilities and flexibility, it has also been applied in

other fields, such as carbon emission reduction in architectural design.

Architectural design is an area that can significantly impact

carbon emissions. Both the manufacture and operation of buildings

generate large amounts of carbon dioxide emissions, which place a

huge burden on the environment (Baek et al., 2013). To reduce a

building’s carbon footprint, architects must consider many factors,

such as the choice of building materials, orientation and design of

buildings, energy efficiency, and more. This requires a lot of

computation and decision-making, so using Transformer models

to assist architectural design is a promising direction. Transformer

models can be used to analyze data on existing building designs and

provide recommendations on reducing carbon emissions. For

example, architectural design data can be input into the

Transformer model, allowing the model to learn the relationship

between different variables in architectural design, thereby
frontiersin.org
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identifying which variables impact carbon emissions. The model

can then provide architects with recommendations on optimizing a

building’s design and material choices to minimize carbon

emissions (Shen et al., 2018). In addition, the Transformer model

can also be used to predict the energy efficiency of buildings, which

is one of the key factors in reducing carbon emissions. For example,

building design data can be fed into a model, allowing the model to

learn the building’s energy consumption and predict which design

variables significantly impact energy efficiency. This can help

architects optimize a building’s energy efficiency and reduce

carbon emissions during design.
3 Methodology

3.1 Overview of our network

Architectural design is an area that can significantly impact

carbon emissions. Traditional architectural design methods have

limitations, such as difficulty considering complex interaction

relationships and large amounts of architectural data. To address

these issues, we propose to use a CA-Transformer model with a

cross-attention mechanism to aid architectural design through

machine learning to reduce carbon emissions during its use and

construction. Figure 1 is the overall flow chart of the model:

The CA-Transformer model is a deep learning model based on

the self-attention mechanism, which can encode and decode the

input sequence. Unlike the traditional Transformer model, it uses a

cross-attention mechanism, allowing the model to focus on

different aspects of architectural design. Specifically, we take the

architectural design dataset and its associated carbon emissions

dataset as input and let the model learn the relationship between

architectural design and carbon emissions. Then, we cross-attend

the building design and carbon emission datasets using the cross-

attention mechanism to identify the relationship between different

variables in the building design and generate an optimized building

design to reduce the emissions generated during its use and

construction. Carbon emission.
Frontiers in Ecology and Evolution 05
Figure 2 shows the process of data processing: We used simple

architectural design and carbon emission datasets in the data

processing. We first pre-processed the dataset, including data

cleaning, feature extraction, etc. Then, we divide the dataset into

a training set, validation set and test set and use the cross-validation

method for model training and testing. We used an optimization

algorithm to tune the model parameters during the training process

to minimize the prediction error. During testing, we evaluated the

model’s predictive accuracy and analyzed the model’s performance

and characteristics.

CA-Transformer models to reduce carbon emissions in the

building design process can contribute to climate change

mitigation. The method leverages machine learning techniques to

analyze building design and carbon emissions datasets and uses a

cross-focus mechanism to identify relationships between different

variables in building design. Predictive modelling can help

architects predict energy consumption and carbon emissions and

guide future designs and decisions.
3.2 Cross-attention

This paper uses a cross-attention mechanism (Ma et al., 2022)

to learn the relationship between architectural design and carbon

emissions. First, we take as input a building design dataset and its

associated carbon emissions dataset and let the model learn the

relationship between them. We then cross attend the building

design and carbon emissions datasets using a cross-attention

mechanism to identify relationships between different variables in

building design and generate optimized building designs that

reduce their use and construction carbon emissions. Figure 3 is a

schematic diagram of the cross-attention mechanism:

The cross-attention mechanism uses two self-attention

modules and a multi-head attention mechanism Rombach et al.

(2022). Among them, the first self-attention module is used to

learn relevant information about architectural design. It takes the

architectural design dataset as input and encodes it using the self-

attention mechanism. The second self-attention module is used to
FIGURE 1

The overall process framework diagram of the model.
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learn relevant information in the carbon emissions dataset. It

takes the carbon emissions dataset as input and encodes it using a

self-attention mechanism. We then cross-attend the sequences

generated by these two modules using a multi-head attention

mechanism to identify the relationship between different variables

in architectural design. The multi-head attention mechanism

divides the input sequence into several heads, and each head

can pay attention to different information. Then, it performs an

attention calculation on each head to get the attention weight of

each head. Finally, it performs a weighted sum of the attention

weights of all heads to generate an encoded sequence

representation. This sequence representation contains cross
Frontiers in Ecology and Evolution 06
information between architectural design and carbon emissions,

which can be used to generate optimized architectural designs to

reduce carbon emissions during its use and construction.

The following is the formula for the cross-attention mechanism:

X = ½x1, x2,…, xn�, (1)

Y = ½y1, y2,…, ym�, (2)

MultiHeadðX,YÞ
= Concatð½Attention(X,Y)1, AttentionðX,Y)2,…, Attention(X,Y)h�Þ,

(3)
FIGURE 2

Data processing process of CA-Transformer model.
FIGURE 3

Schematic diagram of the cross-attention mechanism.
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Among them, X and Y denote architectural design and carbon

emission datasets, respectively, xi and yi denote architectural design

and carbon. The ith sample in the emission dataset. MultiHead

represents a multi-head attention mechanism that performs cross-

attention on input sequences X and Y to identify relationships

between different variables in architectural designs.

Specifically, the multi-head attention mechanism first maps the

input sequences X and Y to a d-dimensional vector space through a

linear transformation, respectively. Then, it partitions these vectors

into h heads, each with a vector of dimension d/h. Next, for each

head i, it uses the attention mechanism to calculate the attention

weight between the architectural design dataset X and the carbon

emissions dataset Y:

Attention(X,Y)i = Softmaxð QiK
T
iffiffiffiffiffiffiffiffi

d=h
p ÞVi, (4)

Where Qi, Ki and Vi denote the query, key and value vectors of

the head i respectively, which are obtained from the input sequence

bylineartransformation X and Y generated. Softmax represents the

softmax function used to compute attention weights.

Finally, the multi-head attention mechanism combines the

attention weights of all heads Attention(X,Y)1, Attention(X,Y)2,…,

Attention(X,Y)h splice in the last dimension to get a tensor of n�
m� d , which means Intersection of information between building

design and carbon emissions. We can feed this tensor into subsequent

models for optimized building design generation.

The cross-attention mechanism uses a multi-head attention

mechanism, which can perform cross-attention on the architectural
Frontiers in Ecology and Evolution 07
design and carbon emission datasets to identify the relationship

between different variables in the architectural design. It can help us

generate more sustainable building designs and reduce the carbon

emissions generated during the use and construction of buildings.
3.3 CA-Transformer

The CA-Transformer model is a variant of the Transformer

model that can encode and decode input sequences. Unlike the

traditional Transformer model, the CA-Transformer model

introduces a cross-attention mechanism, allowing the model to

focus on different aspects of information. Specifically, it uses two

attention modules to model the input sequence and different

variables in the building design respectively. As shown in

Figure 4, it is the process figure of the CA-Transformer model.

Among them, the first attention module is used to learn the

relevant information about architectural design. It takes the

architectural design dataset as input and encodes it using the self-

attention mechanism. The self-attention mechanism allows the

model to pay attention to the information of different positions in

the sequence and calculate the similarity between different

positions. The model then uses these similarities as weights to

summate the input sequences to generate an encoded

sequence representation.

The second attention module is used to learn relevant

information in the carbon emissions dataset. It takes the carbon

emissions dataset as input and encodes it using a self-attention
FIGURE 4

Flowchart of CA-Transformer.
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mechanism to generate an encoded sequence representation. The

model then cross-attends this encoded sequence representation

with the sequence representation generated by the first attention

module to identify the relationship between different variables

in the building design and generate an optimized building

design that reduces its use and Carbon emissions generated

during construction.

The following is the formula of CA-Transformer:

X(1) = Encoder(1)(X(0)), (5)

X(2) = Encoder(2)(X(1)), (6)

Y(1) = Encoder(1)(Y(0)), (7)

Y(2) = Encoder(2)(Y(1)), (8)

Z(1) = CrossAttentionðX(2),Y(2)Þ, (9)

Z(2) = Decoder(2)(Z(1)), (10)

Among them, X(0) represents the architectural design data set,

Y(0) represents the related carbon emission data set, X(1) and X(2)

denote the sequence representation encoded by the first and second

self-attention modules respectively, Y(1) and Y(2) are the same.

Encoder(1) and Encoder(2). represent the first and second self-

attention modules respectively, and CrossAttention represents the

cross Attention mechanism, Decoder(2) denotes the decoder of the

second self-attention module.

The CA-Transformer model uses two self-attention modules

and a cross-attention mechanism to learn the relationship between

architectural design and carbon emissions, and generate optimized

architectural designs to reduce carbon emissions during their use

and construction.

Algorithm 1 represents the training process of our

proposed method.
In

Re

In

In

wh

Fron
put: Training AC-Transformer Network Training

data: “City Building Dataset”, “City Building

Energy Dataset”, “Building Footprint

Dataset”, “Build Operation Dataset”

sult: Trained “AC-Transformer” network

Initialize the AC-Transformer network

architecture;

itialize the optimizer (e.g., Adam) with

learning rate η;

itialize the ss function [e.g., Mean Absolute

Error (MAE), Root Mean Square Error (RMSE)];

ile not converged do

Randomly sample a batch of training

examples;

Forward propagation: for each input example

do

Perform attention mechanism calculations
tiers in Ecology and Evolution 08
according to the Transformer architecture;

Perform cross-attention calculations

based on the input and target information;

d

Calculate the output predictions of the AC-

Transformer network;

Backward propagation: Calculate the

gradient of the loss function with respect to

the network parameters;

Update the network parameters using the

optimizer and the gradients;

end
Algorithm 1. Training AC-Transformer network.
4 Experiment

4.1 Datasets

This article uses 4 datasets:

1. City Building Dataset (Chen et al., 2019): This dataset

contains architectural design information from different cities in

the United States, including building use, area, height, materials, etc.

This data can be used to train building design generative models to

generate more sustainable building designs that reduce carbon

emissions during building use and construction.

2. City Building Energy Dataset (Jin et al., 2023): This dataset

contains building usage and energy consumption information from

different cities in the United States, including building energy types,

uses, energy consumption, and more. This data can be used to train

energy consumption prediction models to optimize building energy

use and reduce carbon emissions.

3. Building Footprint Dataset (Heris et al., 2020): This dataset

contains building outline information from different cities, including

building shape, area, height, etc. This data can be used to train

building shape generation models to generate more sustainable

building designs that reduce carbon emissions during building use

and construction.

4. Build Operation Dataset (Li et al., 2021): This dataset

contains building operation information from different cities,

including building usage, maintenance information, air quality

and temperature, etc. This data can be used to train predictive

models for building operations to optimize building operations and

maintenance and reduce carbon emissions.

Tables 1 and 2 provide the specific details for these data sets.
4.2 Experimental setup and details

The experimental details of this paper are as follows:
1. Data set division:
Divide the data set into a training set, verification set and test set

according to a certain ratio.
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Fron
2. Model implementation:
Implement multiple models, including Multi-head attention,

Self-attention, Cross-attention, Time Series Transformer + Cross-

attention, Temporal Fusion Transformer + Cross-attention, Time-

aware Transformer + Cross-attention and other models. In

preparation for ablation experiments, our method uses a

Transformer with a cross-attention mechanism model to generate

optimized building designs that reduce building usage and carbon

emissions during construction.
3. Model training:
Use the training set to train each model. For our method and

other attention mechanism models, the training procedure is

as follows:
• Input: building design and carbon emissions data associated

with it;

• Encoder: Use Transformer’s encoder to encode the input;

• Decoder: Use Transformer’s decoder to generate an

optimized architectural design;

• Loss function: use mean square error (MSE) as the loss

function;

• Optimizer: use Adam optimizer for optimization. Model

Evaluation: Use the test set to evaluate each model and

calculate various indicators (MAE, RMSE, Parameters,

Flops, Training Time, Inference Time).
4. Result analysis:
• Compare the index performance of each model and analyze

the advantages and disadvantages of each model;

• Analyze the role of each attention mechanism in

architectural design;
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• Compare the results of using the Transformer with the

cross-attention mechanism model with the results of other

attention mechanism models;

• Compare the results of using the Transformer with the

cross-attention mechanism model with the results of other

Transformer models;

• Discuss how to better apply the Transformer with a cross-

attention mechanism model in architectural design to

reduce carbon emissions.
5. Summary of conclusions:

Summarize the advantages and disadvantages of each model, and

propose improvement directions. At the same time, we focus on

summarizing the advantages of our method, explaining that we use

the Transformer with a cross-attentionmechanismmodel to generate

optimized architectural designs, reduce carbon emissions during

building use and construction, and use MSE as a loss function,

using Adam optimizer optimization and details the training process

of our method. Finally, discuss how to better apply the Transformer

with a cross-attention mechanism model in architectural design to

reduce carbon emissions and propose future research directions.

Here is the formula for the experimental metrics:

Mean squared error (MSE):

MSE =
1
no

n

i=1
(yi − byi)2 (11)

Mean absolute error (MAE):

MAE =
1
no

n

i=1
yi − byij j (12)

Root mean square error (RMSE):

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(yi − byi)2

r
(13)
TABLE 2 Energy consumption datasets in resource-based cities.

Indicator Type Math Notation Source Data Quality

Architectural Design Features bu , ba , bh , bm , by Urban Computing Foundation High

Energy Consumption et , eu , ec Urban Computing Foundation Medium

Building Shape Features fs , fh OpenStreetMap Medium

Building Operations ot , om , oa BuildingOS High
TABLE 1 Energy consumption datasets in resource-based cities.

Dataset Data Type Data Amount Data Form

City Building Value 100K+ Structural

City Building Energy Value 50K+ Structural

Building Footprint Image 1M+ Unstructured

Build Operation Time Series 10K+ Structured
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Number of model parameters (Parameters):

Parameters = number of model parameters (14)

Floating point operations (Flops):

Flops = floating point operations (15)

Model training time (Training Time):

Training  Time = model training time (16)

Inference Time:

Inference  Time = model inference time (17)

Among them, ŷi represents the predicted value, yi represents the

actual value, and n represents the number of samples.
4.3 Experimental results and analysis

In Figures 5 and 6, we compare the values of Flops and

Inference Time between different models and our proposed
Frontiers in Ecology and Evolution 10
model on the City Building Dataset and City Building Energy

Dataset. Flops represent the model’s calculation amount, and the

smaller the Flops, the model. The smaller the amount of calculation,

the better the corresponding operation effect. The size of the

Inference Time represents the operation prediction speed of the

model, and the smaller the Inference Time, the faster the operation

speed of the model. As can be seen from the figure, the method we

proposed Compared with other models, Flops and Inference Time

are significantly lower, showing a good running effect.

In Figures 7 and 8, to further compare the running indicators of

the models, we compared Singaravel et al. (2018), Somu et al.

(2021), Song et al. (2020), Rahbar et al. (2022), Olu-Ajayi et al.

(2022), Baduge et al. (2022), Sester et al. (2018) and our proposed

model. The indicators of eight models in City Building Dataset and

City Building Energy Dataset mainly compare the two indicators of

Parameters(M) and TrainingTime(s). Parameters(M) represent the

number of parameters in the model, and TrainingTime(s) are

different models. The time required to complete the training;

similarly, the smaller these two indicators represent, the better the

running effect of the model. The results show that the performance
FIGURE 6

Comparison of Flops and Inference Time of different models, from City Building Dataset and City Building Energy Dataset.
FIGURE 5

Comparison of Flops and Inference Time of different models, from City Building Dataset and City Building Energy Dataset.
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of our proposed model on these two indicators is better than other

models. It has a good operation effect and can be applied well to

reduce carbon emissions in the architectural design process.

In Table 3, we summarize the comparison results in Figures 5

and 7, and display them in a visual form, which can more clearly

compare the Parameters(M), Flops(G), Training Time(s) and

Inference Time(ms).

In Figure 9, we compared Singaravel et al. (2018), Somu et al.

(2021), Song et al. (2020), Rahbar et al. (2022), Olu-Ajayi et al.

(2022), Baduge et al. (2022), Sester et al. (2018) and our proposed

model (a total of eight models) in the City Building Dataset (Chen et

al., 2019), City Building Energy Dataset (Jin et al., 2023), Building

Footprint Dataset (Heris et al., 2020) and Build Operation Dataset

(Li et al., 2021). The mean absolute error (MAE) value on four

different data sets. MAE is an indicator for evaluating a regression

model, representing the mean absolute difference between the

model’s predicted and actual values. The smaller the MAE, the

smaller the prediction error of the model and the better the

performance of the model. The results show that the MAE value
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of our proposed model is significantly smaller than other models,

indicating that our model has the smallest prediction error and can

complete the task well.

In Figure 10, to further verify the prediction stability of our

model, we compared the root mean square error (RMSE) of

different models. RMSE is also an indicator for evaluating

regression models, which represents the difference between the

predicted value of the model and the actual value. Root mean

square difference. The smaller the RMSE, the smaller the prediction

error of the model and the better the performance of the model.

Similarly, it can be seen from the experimental results that the

RMSE of our proposed model is significantly smaller than other

models, showing a good operating effect.

In Table 4, we summarize the values of MAE and RMSE

of different models in Figures 9, 10 on 4 different datasets. In this

way, the performance of different models can be compared

more clearly.

In Figure 11, to further compare the performance of our

proposed model, we chose different attention mechanisms for
FIGURE 7

Comparison of Parameters(M) and TrainingTime(s) of different models, from City Building Dataset and City Building Energy Dataset.
FIGURE 8

Comparison of Parameters(M) and TrainingTime(s) of different models, from City Building Dataset and City Building Energy Dataset.
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ablation experiments, choosing Multi-head attention and Self-

attention and our proposed Cross-attention to compare MAE and

RMSE. The indicators are displayed in a visual form in Table 5. The

results in Figure 11 are the average of the four data sets. The specific

results are presented in Table 5. The results show that our proposed

model’s MAE and RMSE values are better than those of Multi-head

attention and Self-attention and show good running results. This is

due to the cross-focus mechanism, which allows the model to focus

on different aspects of architectural design to achieve the

best results.

In Figure 12, we conducted an ablation experiment on the

Transformer module. We selected Time Series Transformer +

Cross-attention (Zhou et al. , 2021), Temporal Fusion

Transformer + Cross-attention (Lim et al., 2021), Time-aware

Transformer + Cross-attention (Sawhney et al., 2020), and three

different Transformers. We proposed CA – the Transformer +

cross-attention comparison is shown in Table 6 in a visual form. We

conducted experiments on four different data sets. The results show
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that no matter which data set we are in, the MAE of our model and

RMSE values are lower than other indicators, and the prediction

error of the model is smaller, showing good generalization, and can

be well applied to reduce carbon emissions in the architectural

design process.
5 Conclusion and discussion

This paper describes how to use a Transformer model with a

cross-attention mechanism to reduce carbon emissions in the

architectural design process. First, we discuss the environmental

impact of the construction industry and introduce the limitations of

traditional approaches to building design. We then present the idea

of using machine learning to aid architectural design and detail the

rationale for our proposed approach. Our approach trains a

Transformer model using a building design dataset and its

associated carbon emissions dataset. We use a cross-focus
TABLE 3 Comparison of model efficiency on two datasets.

Model Datasets

City Building Dataset (Chen et al., 2019) City Building Energy Dataset (Jin et al., 2023)

Parameters
(M)

Flops
(G)

Training
Time(s)

Inference Time
(ms)

Parameters
(M)

Flops
(G)

Training
Time(s)

Inference Time
(ms)

Singaravel et al.
(2018)

517.08 159.21 9939.64 626.39 525.32 162.28 11702.54 646.86

Somu et al.
(2021)

448.33 133.189 8315.61 522.33 478.24 152.53 8673.29 537.61

Song et al. (2020) 899.88 277.63 17413.99 1097.37 904.56 291.43 18351.78 1145.21

Rahbar et al.
(2022)

456.72 178.53 12272.15 740.18 482.76 185.38 13263.58 790.25

Olu-Ajayi et al.
(2022)

1280.43 523.56 54892.67 1576.53 1291.71 567.47 53457.27 1773.58

Baduge et al.
(2022)

350.48 90.29 6342.97 360.78 314.67 90.94 6782.33 380.22

Sester et al.
(2018)

1043.78 489.71 50278.96 1278.75 1056.87 512.17 54623.53 1305.89

Ours 284.97 87.65 5478.64 344.27 289.21 89.42 6432.89 356.12
FIGURE 9

Comparison of MAE values of different models, from Building Dataset (Chen et al., 2019), City Building Energy Dataset (Jin et al., 2023), Building
Footprint Dataset (Heris et al., 2020) and Build Operation Dataset (Li et al., 2021).
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mechanism to let the model focus on different aspects of building

design to achieve the goal of reducing carbon emissions.

Additionally, we use predictive modelling to predict energy

consumption and carbon emissions to help architects make more

sustainable decisions. We used real architectural design and carbon

emissions datasets during the experiments to train and test the

model. Experimental results demonstrate that our model can

generate optimized building designs to reduce carbon emissions

during their use and construction. Our models can also predict a

building’s energy consumption and carbon emissions, helping

architects make more sustainable decisions.

Although our proposed method shows promising results, there

are several limitations and drawbacks that need to be addressed.

One of the main limitations is data availability. The proposed

method requires large amounts of architectural design and carbon

emissions data to train the machine learning model. However, such

data can be scarce and challenging to obtain, particularly for small

or medium-sized construction firms. To address this limitation,

future research could explore methods to generate synthetic data or

utilize transfer learning techniques to leverage existing data sources.
FIGURE 10

Comparison of RMSE values of different models, from Building Dataset (Chen et al., 2019), City Building Energy Dataset (Jin et al., 2023), Building
Footprint Dataset (Heris et al., 2020) and Build Operation Dataset (Li et al., 2021).
TABLE 4 Comparison of the performance in time series prediction on four different datasets.

Model Datasets

City Building Dataset City Building Energy Dataset Building Footprint Dataset Build Operation Dataset

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Singaravel et al. (2018) 2.6744 2.7869 2.6842 2.7741 2.6342 2.6877 2.6432 2.8144

Somu et al. (2021) 0.7254 0.8421 0.7132 0.8172 0.7032 0.8234 0.7645 0.8392

Song et al. (2020) 0.6744 0.8194 0.6632 0.8091 0.6943 0.8097 0.7055 0.8632

Rahbar et al. (2022) 0.4326 0.5185 0.4277 0.5093 0.4537 0.5348 0.4578 0.5239

Olu-Ajayi et al. (2022) 0.3723 0.4571 0.3729 0.4689 0.3942 0.4592 0.3642 0.4872

Baduge et al. (2022) 0.9942 1.1569 1.0044 1.1682 0.9733 1.1242 0.9822 1.1455

Sester et al. (2018) 0.4563 0.5621 0.4455 0.5821 0.4321 0.5722 0.4108 0.5623

Ours 0.1945 0.2744 0.2134 0.2844 0.1845 0.2766 0.1821 0.2647
FIGURE 11

Ablation experiments on attention mechanism come from City
Building Dataset (Chen et al., 2019), City Building Energy Dataset (Jin
et al., 2023), Building Footprint Dataset (Heris et al., 2020) and Build
Operation Dataset (Li et al., 2021).
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Another limitation of our proposed method is model

interpretability. While the method generates optimal architectural

designs that reduce carbon emissions, it may not provide the same

level of interpretability as traditional architectural design methods.

This could pose a challenge for architects who need to understand

the reasoning behind the proposed designs. To address this

limitation, future research could explore methods to visualize the

decision-making process of the machine learning model or

incorporate human-in-the-loop approaches to enhance

interpretability. Furthermore, our proposed method may not

generalize well to other building types or regions. This could limit
Frontiers in Ecology and Evolution 14
the broader applicability of our method. To address this limitation,

future research could explore methods to adapt the machine

learning model to different building types or regions or develop

domain-specific models for specific building types or regions.

Finally, our proposed method uses a Transformer model with a

cross-attention mechanism, which can be computationally

expensive. This may limit the scalability of our method for large-

scale projects. To address this limitation, future research could

explore methods to optimize the computational efficiency of the

machine learning model or develop distributed computing

approaches to enhance scalability. In conclusion, despite the
TABLE 5 Ablation experiments on attention mechanism.

Model Datasets

City Building
Dataset

City Building Energy
Dataset

Building Footprint
Dataset

Build Operation
Dataset

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Multi-head attention (Mercat et al., 2020) 0.3651 0.5089 0.4005 0.5336 0.3462 0.5191 0.3409 0.4967

Self-attention (Zhao et al., 2020) 0.3028 0.4248 0.3293 0.4386 0.2848 0.4283 0.2818 0.4086

Cross-attention (ours) 0.1945 0.2744 0.2134 0.2844 0.1845 0.2766 0.1821 0.2647
fr
FIGURE 12

Ablation experiment of Transformer model, from City Building Dataset Chen et al. (2019) City Building Energy Dataset Jin et al. (2023) Building
Footprint Dataset Heris et al. (2020) Build Operation Dataset Li et al. (2021).
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limitations and drawbacks of our proposed method, the results

demonstrate its potential to reduce carbon emissions in the building

design process. There are several potential future directions:

Firstly, the integration of additional data sources could provide

a more comprehensive view of energy consumption patterns and

inform building design. For example, weather data, demographic

data, and traffic data could be incorporated to further improve the

accuracy and impact of the model.

Secondly, the exploration of different attention mechanisms

could help improve the accuracy and interpretability of the model.

While the proposed method employs a cross-attention mechanism,

other attention mechanisms such as self-attention or hierarchical

attention could be explored.

Thirdly, the generalization of the proposed method to other

cities and regions could provide insights and recommendations for

building design and energy consumption in different contexts.

However, this would require careful consideration of cultural,

economic, and environmental factors that may differ across

different regions.

Fourthly, the integration of building automation systems could

provide real-time monitoring and control of energy consumption in

buildings. This could help further reduce carbon emissions and

improve energy efficiency by optimizing energy usage patterns in

response to changing environmental and occupancy conditions.

Finally, the incorporation of sustainability metrics such as water

usage, waste production, and social equity could provide a more

comprehensive view of sustainability in the built environment. This

would require careful consideration of how these metrics interact

with energy consumption and building design.

The proposed method has the potential to contribute to

mitigating climate change in the building sector and could have a

significant impact on achieving global greenhouse gas

reduction goals.

Our proposed method uses a Transformer model with a cross-

attention mechanism to reduce carbon emissions during architectural

design, which can contribute to climate change mitigation. This

approach leverages machine learning techniques to analyze building

design and carbon emissions datasets and uses cross-focusmechanisms

to identify relationships between different variables in building design.
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Predictive modelling can help architects predict energy consumption

and carbon emissions and guide future designs and decisions.

Although there are still some limitations, this method has important

research and application implications and can contribute to the

sustainable development of the construction industry.
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TABLE 6 Ablation experiments on Transformer.

Model Datasets

City Building
Dataset

City Building Energy
Dataset

Building Footprint
Dataset

Build Operation
Dataset

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Time Series Transformer + Cross-
attention (Zhou et al., 2021)

0.3534 0.4987 0.3876 0.5165 0.3345 0.5023 0.3308 0.4798

Temporal Fusion Transformer +
Cross-attention (Lim et al., 2021)

0.2984 0.4156 0.3230 0.4307 0.2813 0.4256 0.2766 0.4057

Time-aware Transformer + Cross-
attention (Sawhney et al., 2020)

0.4107 0.6466 0.4557 0.6139 0.3983 0.5991 0.4001 0.5732

Ours 0.1945 0.2744 0.2134 0.2844 0.1845 0.2766 0.1821 0.2647
f
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