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Acute myeloid leukemia (AML) is a blood cancer that is diverse in terms of its

molecular abnormalities and clinical outcomes. Iron homeostasis and cell death

pathways play crucial roles in cancer pathogenesis, including AML. The objective

of this study was to examine the clinical significance of genes involved in iron-

related cell death and apoptotic pathways in AML, with the intention of providing

insights that could have prognostic implications and facilitate the development

of targeted therapeutic interventions. Gene expression profiles, clinical

information, and molecular alterations were integrated from multiple datasets,

including TCGA-LAML and GSE71014. Our analysis identified specific molecular

subtypes of acute myeloid leukemia (AML) displaying varying outcomes, patterns

of immune cell infiltration, and profiles of drug sensitivity for targeted therapies

based on the expression of genes involved in iron-related apoptotic and cell

death pathways. We further developed a risk model based on four genes, which

demonstrated promising prognostic value in both the training and validation

cohorts, indicating the potential of this model for clinical decision-making and

risk stratification in AML. Subsequently, Western blot analysis showed that the

expression levels of C-Myc and CyclinD1 were significantly reduced after CD4

expression levels were knocked down. The findings underscore the potential of

iron-related cell death pathways as prognostic biomarkers and therapeutic

targets in AML, paving the way for further research aimed at understanding

the molecular mechanisms underlying the correlation between iron

balance, apoptosis regulation, and immune modulation in the bone

marrow microenvironment.
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1 Introduction

Acute myeloid leukemia (AML) is a diverse malignancy of the

blood that disrupts normal hemopoietic processes and promotes the

excessive proliferation of myeloid cells within the bone marrow (1,

2). About 80% of all cases of AML are seen in aged group (3–5). The

overall 5-year mortality survival proportion for people with AML is

about 24% despite substantial breakthroughs in our knowledge of

AML etiology and the introduction of targeted medicines. Because

of the wide range of symptoms and reactions to therapy that

patients with AML may experience, it is imperative that

innovative prognostic biomarkers and therapeutic techniques be

developed to better serve this patient population.

Numerous biological functions rely on iron, including DNA

synthesis, energy metabolism, and respiration (6, 7). However,

increased iron levels may provoke oxidative stress and cell

damage by aiding in the creation of reactive oxygen species

(ROS) (8). Iron balance, which is the careful regulation of iron

availability and utilization in cells, is precisely controlled, and

dysregulation of this balance has been associated with the

initiation and advancement of various cancers, such as AML (9,

10). Investigation is underway into the viability of ferroptosis and

other mechanisms of iron-related cell death as promising

therapeutic avenues for cancer treatment (11, 12). The increase of

lipid peroxides distinguishes ferroptosis, which is triggered by iron

overload, from other forms of cell death such as apoptosis, necrosis,

and autophagy (13). The therapeutic benefits of targeting

ferroptosis pathways in AML remain to be fully investigated,

despite encouraging findings in preclinical research for a variety

of malignancies.

Cancer development, metastasis, and resistance to treatment are

all tied closely to the immune microenvironment (14, 15). Cancer

cells, immune cells, fibroblasts, endothelial cells, and other cell types,

as well as extracellular matrix proteins and signaling chemicals, make

up this complex. Relapse and medication resistance are factors in

AML because the bone marrow microenvironment offers a favorable

habitat for leukemia-initiating cells (16, 17). The incursion of

immune cells into the bone marrow microenvironment (BME) has

been deemed a vital feature affecting cancer advancement and patient

prognostication (18). Programmed cell death receptor-1 (PD-1) and

its natural ligand programmed cell death ligand-1 (PD-L1) are two

examples of immune checkpoint molecules that have been the focus

of immunotherapy in recent years, which have produced durable

responses in a diverse set of malignancies (19, 20). However, immune

checkpoint inhibitors have had little success in treating AML,

underlining the need for a deeper insight of the intricate

relationship between leukemia cells and the immune system in

order to create more potent immunotherapeutic approaches.

Data from high-throughput sequencing projects and

computational biology are now often employed in medical studies

(21–23). In an effort to comprehend the origins of disease

progression, Wang and colleagues leveraged computational

biology methodologies, including WGCNA, to identify
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biomarkers across multiple cancers (24, 25). This investigation

endeavors to explore the potential prognostic implication of iron-

associated cell death and apoptotic genes in AML and scrutinize

their links with the immune status of the BME. By analyzing

transcriptomic data from several publicly available AML datasets,

we identified differentially expressed iron-related cell death and

apoptosis genes associated with patient prognosis. We subsequently

utilized unsupervised clustering to separate AML patients into

distinct molecular subpopulations based on expression patterns of

these genes, and evaluated their connections with clinical response,

immune cell infiltration, and drug susceptibility.

Moreover, we probed the plausible interplay between iron-

mediated cell death pathways and immune regulation by

scrutinizing the expression, methylation, amplification, and

deletion patterns of immune regulation-associated genes in the

unique AML subtypes. Finally, we established and validated overall

clinical outcome risk signature according to the expression of vital

differentially expressed genes, to forecast patient survival in AML.

As a result, our discoveries offer novel perspectives on the

involvement of iron-mediated cell death pathways in the

development of AML and their correlation with the immune -

intricacies of the bone marrow microenvironment. Through the

delineation of the molecular categories of AML patients based on

gene expression related to iron-mediated cell death and apoptosis,

we highlight the prognostic potential of these genes and their role in

shaping the immune contexture within the BME. Furthermore, our

study highlights the complex interplay between iron homeostasis,

cell death regulation, and immune regulation, which may have

important implications for the development of novel therapeutic

strategies in AML.
2 Methods

2.1 Data collection

Three information repositories were collected for this research.

Dataset 1 comprised of TCGA combined with GTEx data

(malignant = 173, Normal = 70) from the UCSC Xena website

(xenabrowser.net) (26). Dataset 2 included TCGA-LAML data

(https://portal.gdc.cancer.gov; n=126, eliminating patients who

did not survive for more than 30 days.) obtained using the

TCGAbiolinks package, with clinical information sourced from

TCGA-CDR- Supplemental Table S1.xlsx. Dataset 3 consisted of

GSE71014 data (https://www.ncbi.nlm.nih.gov/geo/; n=104,

excluding patients with survival times less than 30 days) (27).

The gene set for this study focused on iron-related death and

apoptosis genes. Mutation data were downloaded using the

TCGAbiolinks package, while CNV and methylation data were

obtained from the UCSC Xena website. Unless otherwise specified,

all analyses were conducted using the TCGA-LAML dataset,

survival-related analyses were performed after excluding patients

who had a survival time of fewer than 30 days.
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2.2 Determination and analysis of
ferroptosis and apoptosis protein-coding
genes in AML

First, the limma package was used for differential analysis of

AML expression data (log2 (TPM+0.01)) from TCGA combined

with GTEx obtained from the UCSC Xena website. Next, the 8,542

differentially expressed genes were intersected with 660 iron death

and apoptosis gene sets, resulting in 268 differentially expressed

iron death or apoptosis genes. The analysis of the mutation patterns

of the 268 genes was conducted using the maftools software package

which provides a suite of tools for the comprehensive visualization

and statistical exploration of somatic mutation data, and their CNV

frequencies were determined. Ultimately, the Kaplan-Meier survival

analysis was conducted to evaluate the prognostic implications of

the 268 dysregulated genes associated with iron-mediated cell death

or apoptosis, identifying 69 prognosis-related key genes (p<0.05),

consisting of 11 iron death genes and 58 apoptosis genes. The was

used to construct a PPI network, which was visualized using

Cytoscape software (28).
2.3 Cluster analysis and pathway
enrichment

Using the ConsensusClusterPlus package, the 69 prognosis-

related genes identified in the TCGA-LAML dataset were subjected

to consensus clustering. The optimal number of clusters was

determined by analyzing cophenetic, dispersion, and silhouette

data. The GSVA package was employed to calculate iron death

and apoptosis scores. Differential gene expression between the two

clusters and the GSVA-derived 50 hallmark pathway scores were

also analyzed. Employing the limma R package, a differential

analysis between the two distinct molecular clusters was

conducted. The aim of this analysis was to evaluate the gene

expression differences between Cluster2 (n=65) and Cluster1

(n=61), and to gain critical insight into the gene expression

variations underlying the biological heterogeneity observed in

AML patients. By leveraging this analysis, key genes driving the

variability between clusters can be identified, paving the way for

better prognostic and therapeutic outcomes for patients with AML.

The clusterProfiler R package was utilized for the elucidation of

KEGG and GO enrichment analysis of the differentially expressed

genes, which enabled the identification of the functional pathways

associated with these key genes. This analysis has enabled

researchers to shed light on the potential biological significance of

these genes in the pathogenesis of AML and their probable

involvement in the manifestation of the observed heterogeneity

within the cancer biology.
2.4 Drug correlation evaluation

The oncoPredits package was utilized to conduct drug

sensitivity analysis, which allowed for the measurement of the
Frontiers in Oncology 03
sensitivity of different molecular subtypes to various drugs. Using

the limma package, differential analysis of drug sensitivity results

was performed, with the goal of identifying drugs that were

differentially responsive in the distinct AML subtypes.

Subsequently, the top eight drugs exhibiting the largest differences

in upregulation and downregulation between the subtypes were

selected for further analysis. The selection of these drugs was based

on their potential therapeutic significance in the context of AML.

Finally, to summarize the differences in drug response between the

two clusters, boxplots were used to compare the selected drugs. This

analysis provided novel insights into the potential therapeutic

targets of AML subtypes, which is crucial in the development of

effective personalized treatment plans.
2.5 ESTIMATE score and bone marrow
microenvironment correlation analysishe

ESTIMATE algorithm was applied to calculate the immune and

stromal scores for patients belonging to clusters cluster1 and

cluster2. The ESTIMATE algorithm, which is based on gene

expression signatures, can evaluate the degree of immune

infiltration and stromal activation within malignant samples, and

can be useful in deciphering the role of the bone marrow

microenvironment in AML pathogenesis. Thus, utilizing the

ESTIMATE scores, potential differences in the immune context of

the different clusters can be assessed, enabling a more

comprehensive understanding of the biological heterogeneity

underlying AML. Immune checkpoint gene expression,

methylation, amplification frequency, and deletion frequency were

also analyzed using the IOBR package and various other methods,

such as cibersort, EPIC, MCPCounter, and quantiseq.
2.6 LASSO-cox regression analysis and risk
model development

A univariate Cox regression analysis was conducted on 342

differentially expressed genes (cluster 2 versus cluster 1) using both

the TCGA-LAML and GSE71014 datasets. Analysis was performed

to assess the prognostic value of these genes and their association

with overall patient survival. Genes having a p-value<0.05 were

considered significant. Utilizing this analysis, potential prognostic

factors were identified, that can be integrated as part of a

personalized treatment protocol for improved disease outcome in

AML patients. Applying the LASSO-Cox regression analysis with a

10-fold cross-validation, we evaluated 42 key differentially

expressed genes identified during the univariate Cox regression

analysis to identify genes with optimal prognostic value. The

LASSO-Cox regression approach is a robust method for feature

selection, which allows for the identification of the most informative

genes in relation to patient survival. The 10-fold cross-validation

procedure works to prevent overfitting and helps to identify models

that can be suitably generalizable. Consequently, by utilizing this

analysis approach, our results allow for an accurate prediction of

patient outcomes in AML and are pertinent in developing effective,
frontiersin.org

https://doi.org/10.3389/fonc.2023.1222098
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1222098
patient-specific treatment strategies. The risk score was calculated

by multiplying the expression value of each gene with its

corresponding coefficient, as shown below:

Riskscore = on
i=1½expression   value   of   genei*bi� (1)

The variable “n” represents the number of genes included in the

signature, and the variable “b” denotes the coefficient assigned to

each gene obtained from LASSO regression.
2.7 Cell culture

KG-1a and OCI-AML2 cells were cultured in RPMI-1640

media supplemented with 10% fetal bovine serum (FBS) under

optimal conditions of 37 degrees Celsius in a humidified 5% CO2

atmosphere. In accordance with standard practices for cell culture,

the cells were split every two to three days to ensure continuous

logarithmic growth. These culture conditions offer an optimal

environment and nutrient supply to support the growth and

maintenance of these cell lines in a manner that is consistent with

previous culture methods.
2.8 siRNA transfection

Lipofectamine 3000 (Invitrogen) was used to transfect CD4

siRNA and control siRNA into KG-1a and OCI-AML2 cells. After 6

hours of incubation with the siRNA complexes, the cells were given

a fresh supply of media. The cells were collected for examination 48

hours after transfection. The siRNA sequence is as follows: Negative

control: Sense: 5′-UUCUCCGAACGUGUCACGUTT-3′ ,
Antisense: 5′-ACGUGACACGUUCGGAGAATT-3′; si-CD4:

Sense: 5′- CCCUGAUCAUCAAGAAUCUTT-3′, Antisense: 5′-
AGAUUCUUGAUGAUCAGGGTT-3′.
2.9 Western blotting

Total cellular proteins were extracted from transfected cells and

the protein concentration was measured using a BCA Protein Assay

Kit (Pierce). The extracted proteins were then separated by SDS-

PAGE and transferred onto PVDF membranes. To ensure equal

quantities of each target protein, membranes were probed with

primary antibodies against CD4 (Cat No. 67786-1-Ig; Proteintech),

C-Myc (Cat No. 67447-1-Ig; Proteintech), Cyclin D1 (Cat No.

60186-1-Ig; Proteintech), and Vinculin (Cat No. 66305-1-Ig;

Proteintech). Following incubation with horseradish peroxidase-

conjugated secondary antibodies, the ECL Western Blotting

Detection Reagents (GE Healthcare) were used to visualize the

membranes and generate chemiluminescent signals. The results of

the experiment were analyzed using ImageJ (NIH) and

densitometry was applied to measure the thickness of protein

bands in the processed images. This rigorous analysis approach

allowed for the accurate quantification and comparison of protein

samples and resulted in the generation of robust, reliable data.
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3 Results

3.1 Identification of differentially expressed
iron-related cell death genes

Figure 1 shows the workflow of this study. AML expression data

(log2 (TPM+0.01)) from the TCGA combined with GTEx dataset

was obtained from the UCSC Xena website. The limma package was

utilized to conduct a differential expression analysis. The obtained

results were visualized by generating a volcano plot (Figure 2A),

which depicts the distribution of differentially expressed genes

(DEGs) between malignant (n=173) and normal (n=70) samples.

Using the criteria of adj.pvalue< 0.05 & |logFC| > 1.5, the analysis

identified a total of 4940 upregulated genes and 3602 downregulated

genes. These genes were considered to be significantly differentially

expressed, with their potential involvement in the pathogenesis of

the condition making them promising targets for further

investigation. Overall, the generated results provided crucial

insights into the molecular mechanisms underlying the disease,

paving the way for the development of more effective diagnostic and

therapeutic interventions. The intersection of the 8,542 DEGs and

the 660 iron-related cell death and apoptosis genes resulted in 268

differentially expressed iron-related cell death or apoptosis

genes (Figure 2B).
3.2 Mutation and copy number
variation analysis

Using the maftools package, the mutation status of the 268

differentially expressed iron-related cell death or apoptosis genes

was analyzed, and the top 20 genes were displayed in a waterfall plot

(Figure 2C). Among all samples, the TP53 gene had the highest

mutation frequency (47%), followed by COL2A1 and ERBB3 (11%).

Among all mutation types, missense mutation was the

most common.

A bar plot shows the CNV frequency of the top 20 mutated

genes (Figure 2D). Most genes had both copy number variation

(CNV) gain and CNV loss. Only a few genes, such as COL2A1 and

AR, existed in only one of these two conditions.
3.3 Prognostic key gene identification and
network construction

A Kaplan-Meier survival analysis of the 268 differentially

expressed iron-related cell death or apoptosis genes identified 69

prognostic key genes (p< 0.05), including 11 iron-related cell death

genes and 58 apoptosis genes. The specific gene list can be found in

Supplementary File 1. The construction of a protein-protein

interaction (PPI) network was carried out through the use of data

obtained from the STRING database, which provides a

comprehensive resource for exploring known and predicted PPIs

(Figure 2E). The obtained network was used to basic interaction

analysis via a visualization method of Cytoscape software. Utilizing
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these tools and resources, potential biomarkers and therapeutic

targets can be identified, aiding in the development of innovative

approaches for the treatment of various human malignancies.
3.4 Identify prognostic factors associated
with different malignant subtypes

Based on the 69 prognostic key genes identified in Figure 2E, the

ConsensusClusterPlus package was used to perform consensus

clustering on the TCGA-LAML dataset. We used these genes to

construct two different expression patterns in an attempt to

compare survival outcomes between the different expression

patterns. Patients were divided into two clusters (Figure 3A). The

survival curve indicated that patients in cluster 1 were significantly

associated with better prognosis (Figure 3B). This finding was

validated in the GSE71014 dataset (Figures 3C, D). The GSVA

scores reveal significant differences in iron-related cell death and

apoptosis pathways between the two distinct expression patterns

identified above, with these pathways having higher GSVA scores in

Cluster 2 (Figure 3E). The expression levels of the 69 prognostic key

genes in different expression patterns are depicted in Figure 3F,

showing significant differential expression across both clusters.

Finally, the GSVA algorithm was used to compare the

enrichment levels of HALLMARK pathways in different

expression patterns. The most significantly different pathways are

visualized in a heatmap, revealing that pathways such as interferon

and inflammatory response are significantly upregulated in Cluster

2 (Figure 3G).
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3.5 Functional enrichment and differential
expression analysis of AML clusters

A differential expression analysis between the two distinct

molecular clusters (Cluster 2: n=65 and Cluster 1: n=61) was

carried out by employing the limma package, a widely used tool

for the visualization and analysis of differential gene expression

data. Subsequently, this analysis enabled a systematic comparison of

gene expression levels between the two clusters, facilitating the

identification of the genes that were differentially regulated. The

approach enabled a deeper understanding of the molecular basis of

AML and provides insights into disease mechanisms that could

contribute to the development of more efficient therapies. A volcano

plot shows 328 upregulated genes and 14 downregulated genes

(Figure S1A), with the specific gene list available in Supplementary

File 1. In order to select differentially expressed genes (DEGs),

particular selection criteria were implemented, requiring an

adjusted p-value of less than 0.05 and an absolute log-fold change

of greater than 1.5. Subsequently, these DEGs (a total of 342)

underwent functional enrichment analysis, which was carried out

using the clusterProfiler package, and the results of this analysis are

presented in Figures S1B, C.
3.6 Drug efficacy evaluation

To evaluate the efficacy of drugs, the oncoPredits package, which

is a powerful tool for predicting drug sensitivity, was employed. This

software provides comprehensive analysis of various cancer drugs’
FIGURE 1

Study workflow. A schematic representation of the data collection, analysis, and validation processes used in this study.
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potential effectiveness based on individual patients’ genetic profiles,

enabling personalized treatment options and targeted therapeutic

approaches to limit side effects. It helps address potential drug

resistance and treatment inefficacy, leading to informed decisions

and optimal clinical outcomes for patients. Differences in drug

sensitivity between the subtypes were analyzed using the limma

package, and box plots were created to compare the top 8 most
Frontiers in Oncology 06
sensitive drugs for each cluster. The top 8 most sensitive drugs for

cluster 1 patients were KRAS (G12C) Inhibitor-12_1855, PCI-

34051_1621, P22077_1933, WEHI-539_1997, PRIMA-1MET_1131,

GSK1904529A_1093, PLX-4720_1036, and insitinib_1510

(Figure 4A). The top 8 most sensitive drugs for cluster 2 patients

were Temozolomide_1375, 5-Fluorouracil_1073, Selumetinib_1736,
B

C D

E

A

FIGURE 2

Differential gene expression and mutation analysis of iron-related cell death and apoptosis genes (A) Volcano plot demonstrating the
differentiallyexpressed genes (DEGs) in the AML malignant samples relative to the normal control samples. (B) A Venn diagram providing visualization
of theoverlap between DEGs and iron-related apoptosis and cellular death genes. (C) A waterfall plot illustrating the top 20 mutated genes out of
268DEGs related to iron-mediated apoptosis and cellular death genes. (D) A bar plot showing the CNV (copy number variation) frequencies of the
top20 mutated genes. (E) A protein-protein interaction network was constructed using the STRING database, and visualized in Cytoscape,
demonstrating the 69 prognostic key genes.
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B

C D

E F

G

A

FIGURE 3

Consensus clustering and functional analysis of AML subtypes. (A) The figure shows consensus clustering of AML patients based on the gene expression
profile of 69 prognostic key genes. (B) Kaplan-Meier survival analysis distinguishes two identified clusters, comparing overall survival between the two groups.
(C, D). Validation of clustering findings in the GSE71014 dataset. (E) GSVA scores show that the iron-related cellular death and apoptosis pathways
significantly vary in the two discovered clusters. (F) The Heatmap graphically represents differential gene expression levels of 69 prognostic key genes
between the two clusters. (G) The Heatmap shows differentially activated HALLMARK pathways between the two identified clusters. "*" represents p<0.05,"**"
represents p<0.01,"***" represents p<0.001,"****" represents p<0.0001.
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SB216763_1025, KU-55933_1030, EPZ004777_1237, CZC24832_

1615, and IRAK4_4710_1716 (Figure 4B).
3.7 Bone marrow microenvironment and
immune infiltration analysis

The bone marrow microenvironment was assessed in patients

corresponding to clusters 1 and 2 by utilizing the ESTIMATE

algorithm via the IOBR package. The obtained results exhibited

that patients in cluster 2 had a significantly higher immune score,

stromal score, and ESTIMATE score than did patients in cluster 1,

while the tumor purity scores were found to be lower in cluster 2

patients (Figure 5A). Moreover, the expression of the majority of

immune checkpoint genes was found to be significantly upregulated

in patients of cluster 2 (Figure 5B). In order to further investigate

immune infiltration patterns, immune cell infiltration was

evaluated, utilizing the IOBR package, and employing several
Frontiers in Oncology 08
methods such as cibersort, EPIC, MCPCounter, and quantiseq.

Heatmaps were employed to visualize distinctive patterns of

immune cell infiltration in the bone marrow microenvironment

of cluster 1 and cluster 2 patients, with a focus on cell lineages that

exhibited statistically significant differences (depicted in Figure 5C).

This comprehensive analysis of immune infiltration and

microenvironmental variations established significant differential

characteristics in different expression patterns, which could provide

insights into the underlying mechanisms of tumor initiation,

growth, and differentiation.
3.8 Analysis of immune regulatory genes

Heatmaps were used to present the expression levels,

methylation levels, amplification frequencies, and deletion

frequencies of immune regulatory genes in different expression

patterns (Figure 6). There are differential expression levels of
B

A

FIGURE 4

Drug sensitivity analysis of AML subtypes. (A) Box plot showing the top 8 most sensitive drugs for cluster 1 patients. (B) Box plot displaying the top 8
most sensitive drugs for cluster 2 patients.
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antigen presentation-related genes between the two clusters. The

two clusters also exhibit differences in the expression/methylation

of various immune processes. Moreover, significant variations can

be observed in the amplification and deletion frequencies of

multiple immune processes between the two clusters. More details

on this analysis can be found at https://linkinghub.elsevier.com/

retrieve/pii/S1074761318301213.
Frontiers in Oncology 09
3.9 Construction of a risk prediction model
using differential gene expression data

Using the TCGA-LAML and GSE71014 datasets, 342

differentially expressed genes (cluster 2 vs. cluster 1) were

subjected to univariate Cox regression analysis, Selecting genes

with p<0.05, and intersecting the results to obtain 42 key
B

C

A

FIGURE 5

Immune infiltration analysis of AML subtypes. (A) A box plot compares immune infiltration scores, stromal levels, ESTIMATE scores, and tumor purity
between the two identified clusters. (B) A box plot represents differential gene expressions of immune checkpoint genes between the two clusters.
(C) A heatmap displays immune cell infiltration patterns in the bone marrow microenvironment of the two clusters, as analyzed by CIBERSORT, EPIC,
MCPCounter, and QuantiSeq algorithms. "*" represents p<0.05,"**" represents p<0.01,"***" represents p<0.001.
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prognostic differential genes (Supplementary File 1). In the TCGA-

LAML dataset, LASSO-Cox regression and ten-fold cross-validation

techniques were utilized to screen the 42 differential genes obtained

from the above-mentioned results, ultimately resulting in a 4-gene

risk model (Figures S2A, B). The scoring system for predicting risk

was derived from the following formula: riskScore = 0.047473*VDR

+ 0.055492*CD4 + 0.093657*LST1 - 0.17468*SIX3.

Scatterplots and dot plots revealed that the probability of death also

increased for the patients in the high-risk group (Figures 7A, B).

Survival curves for the two groups demonstrated statistically significant

differences (Figure 7C), and ROC curves displayed the AUC values of
Frontiers in Oncology 10
the risk score for predicting different year survival probability, with all

values greater than 0.7 (Figures 7D-F). Similar results were obtained in

the GSE71014 validation dataset (Figures 8A-F).
3.10 Effects of signature risk gene CD4
in cell cycle in KG-1a and OCI-AML2
cell lines

After constructing prognostic gene models in leukemia, we found

that CD4, VDR and LST1 were the most significant prognostic risk
FIGURE 6

Multi-omics analysis of immune regulatory genes in AML subtypes. Heatmap showing expression levels, methylation levels, amplification frequencies,
and deletion frequencies of immune regulatory genes in different groups patients.
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genes. After reviewing the literature and cell experiments, we found that

CD4 may have a significant correlation with the cell cycle of leukemia.

The results showed that the expression levels of cyclin C-Myc and

Cyclin D1 were significantly decreased after CD4 knockdown in KG-1a
and OCI-AML2 cell lines (Figures 9A, B). The corresponding statistical

data were also shown.
4 Discussion

In this current study, we embarked on a comprehensive

investigation to determine the influence of iron-related genes on
Frontiers in Oncology 11
the initiation, progression, and prognosis of AML. By utilizing

sophisticated techniques, we identified distinct molecular subtypes

that exhibited variations in immune cell infiltration patterns,

prognosis, and drug sensitivity profiles - highlighting the potential

of iron-related genes as prognostic biomarkers and therapeutic

possibilities for AML. Our findings from this study increase our

overall comprehension of the intricate interactions between iron

metabolism, regulation of cell death, and immune modulation

within the microenvironment.

Our results align with previous studies emphasizing the

important role of iron metabolism in the initiation and

progression of cancer. These include studies demonstrating the
B

C

D E F

A

FIGURE 7

Presents the development and validation procedure of a 4-gene risk model in the TCGA-LAML training cohort, as explained below: (A) The
distribution of risk scores and survival status in the training cohort are visualized using a dot plot. (B) The scatter plot showing the relationship
between patient survival probability and risk scores is plotted. (C) Kaplan-Meier survival analysis is conducted, comparing overall survival between
high- and low-risk groups. (D-F). Receiver Operating Characteristic (ROC) curves indicate the prognostic performance of the risk model at 1, 2, and
3 years.
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participation of iron metabolism in the regulation of tumor

angiogenesis, cellular proliferation, and apoptosis, among other

mechanisms. Cancer cell proliferation, angiogenesis, metastasis,

and therapeutic resistance have all been linked to abnormal iron

homeostasis (29, 30). Specifically, iron has been linked to oxidative

stress, DNA damage, genomic instability, and tumor promotion,

development, and survival (31, 32). ROS are produced when iron

oxidizes, and they may be harmful to healthy cells. Furthermore, it

is established that iron can also trigger a form of non-apoptotic cell

death known as ferroptosis, which is distinguished by lipid

peroxidation and the resultant rupture of cellular membranes (33,

34). Building on the conclusions of earlier investigations, we
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demonstrate that genes involved in iron-related apoptosis and cell

death pathways exhibit potential prognostic and therapeutic

significance in the context of AML. By utilizing advanced

computational tools to perform an in-depth analysis of the

differential gene expression patterns in patients corresponding to

distinct molecular subtypes of AML, we were able to identify genes

involved in iron homeostasis and associated death pathways that are

significantly linked with clinical outcomes.

The transcript levels of genes implicated in iron-related cellular

demise and apoptotic mechanisms allowed us to identify unique

molecular subtypes that were linked with diverse outcomes,

immune cell infiltration patterns, and medication sensitivity
B

C

D E F

A

FIGURE 8

The validation process of the 4-gene risk model is presented using the GSE71014 validation cohort. (A) The distribution of risk scores and survival
status in the validation cohort is displayed through a dot plot. (B) A scatter plot is presented to show the correlation between patient survival
probability and risk scores. (C) Kaplan-Meier survival analysis is conducted to compare overall survival between high- and low-risk groups. (D-F). The
ROC curves demonstrate the prognostic performance of the 4-gene risk model for 1, 2, and 3 years in terms of distinguishing between high- and
low-risk groups.
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profiles. Our findings support the notion that stratifying patients

into molecular subtypes has the potential to improve diagnostic

precision, allowing for more reliable forecasting of outcomes related

to patient response to treatment and disease progression, ultimately

culminating in better clinical decision-making (35–37). In our

study, we found that patients in cluster 1, characterized by lower

expression of iron-related cell death and apoptosis genes, had a

better prognosis and were more sensitive to certain targeted

therapies. In contrast, patients in cluster 2, with higher expression

of these genes, exhibited a poorer prognosis.

One intriguing finding is the correlation between iron-related

cell death pathway, which may indicate a connection between iron

homeostasis, cell death control, and immunological regulation.

Ferroptosis has been recently studied for its impact on tumor

immune contexture and its implications for immunotherapy

response (38, 39). For instance, damage-associated molecular

patterns (DAMPs) released during ferroptosis have been found to

stimulate antigen-presenting cells and cytotoxic T cells, therefore

eliciting anticancer immune responses (40, 41). However,

ferroptosis may also stimulate immunosuppressive processes that

aid tumor immune evasion (42, 43), such as MDSC and the

activation of immunological checkpoint markers. Together, these

lines of evidence suggest that iron-related cell death and apoptosis

genes may influence the immunological landscape of AML patients,

and our results contribute to this expanding body of research.

In addition to the prognostic implications of iron-related cell

death pathways, our study also highlights their potential therapeutic

relevance in AML. Our results revealed that there are disparities in

the patients’ sensitivity to specific targeted therapies based on

molecular subtype, such as KRAS (G12C) Inhibitor-12_1855 and

PCI-34051_1621, while patients in cluster 2 were more sensitive to

other drugs , inc lud ing Temozo lomide_1375 and 5-

Fluorouracil_1073. These findings suggest that iron-related cell

death and apoptosis gene expression profiles could be used to
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guide personalized treatment strategies for AML patients,

potentially improving therapeutic outcomes.

Our study further utilized Western blotting analysis to

demonstrate that CD4 silencing significantly reduced the levels of

CD4 protein and cell proliferation markers in AML cells,

highlighting the impact of CD4 protein in these cells. Altogether,

the evidence suggests that CD4-associated pathways represent a

valuable target for leukemia management, which warrants further

investigation and exploration. The expression of CD4 protein in T-

cell malignancies aids in diagnosing certain types of T-cell leukemia

and determining leukocyte differentiation and classification.

Moreover, targeting CD4 protein with monoclonal antibodies has

shown promising results in T-cell-directed therapies, treating CD4-

positive lymphomas, leukemias, and autoimmune diseases.

It is important to note that our study has some limitations.

Despite the significant results obtained in our study, the sample size

of our datasets is relatively limited, which may hinder the

generalization of our findings. Future studies with more extensive

cohorts and diverse demographic groups would be considered

necessary to test and verify our results, further understanding the

potential of iron-related cell death in AML. Finally, our study

mainly focuses on gene expression profiles, and other molecular

alterations, such as genetic mutations, epigenetic modifications, and

post-translational modifications. Furthermore, it is plausible that

additional factors impact the regulation of iron-associated cell death

pathways in AML, suggesting that further investigations may

uncover additional mechanisms contributing to the disease’s

pathogenesis and prognostic outcomes.

Despite these limitations, our study revealed iron-related cell death

pathways in AML pathogenesis and highlights their potential as

prognostic biomarkers and therapeutic targets. The results of our

study provide a defining impetus for continued research aimed at

uncovering the molecular drivers of the intricate relationship between

iron homeostasis, cell death regulation, and immune regulation in the
B

A

FIGURE 9

CD4 and its role in cell proliferation. (A) Expression of CD4 protein in KG-1a and OCI-AML2 cells after CD4 silencing. (B) The expression levels of C-
Myc and Cyclin D1 were significantly decreased after CD4 knockdown in KG-1a and OCI-AML2 cell lines. "**" represents p<0.01.
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bone marrow microenvironment. Our research has unveiled new

avenues for further exploration, with attention directed towards

uncovering the molecular mechanisms behind the complex

interrelationships between iron homeostasis, immune cell infiltration,

and cell death regulation in the bone marrow microenvironment. This,

in turn, could catalyze the development of novel therapeutic

approaches centered around iron-mediated cellular death pathways

in AML and other hematological malignancies.

Our investigation has demonstrated the prognostic and

therapeutic importance of iron-related cell death and apoptosis

genes in AML, identifying distinct molecular subtypes characterized

by different clinical outcomes, immune cell infiltration features, and

drug sensitivity profiles. These findings underscore the intricate and

multifaceted nature of iron homeostasis, cell death modulation, and

immune regulation in the bone marrow microenvironment and

suggest that manipulating iron-related cellular death pathways

presents a potential therapeutic avenue for managing AML.

Further research studies are warranted to authenticate our

findings, elucidate the underlying molecular mechanisms, and

appraise the clinical utility of iron-associated cell death pathways-

based biomarkers and treatments in AML patients.
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SUPPLEMENTARY FIGURE 1

Differential gene expression analysis and functional enrichment analysis of
the two AML clusters. (A). A volcano plot presents the differentially expressed

genes (DEGs) between patients in cluster 2 and cluster 1. (B). The bar plot
displays the significantly enriched KEGG pathways that were identified by

clusterProfiler analysis of 342 DEGs. (C). The bar plot demonstrates the

significantly enriched biological process, cellular component, and
molecular function GO terms, which were identified by clusterProfiler

analysis of 342 DEGs.

SUPPLEMENTARY FIGURE 2

Selection of prognostic key genes and development of a 4-gene risk model

using LASSO-Cox regression analysis. (A) LASSO coefficient profiles of the 42
intersecting prognostic key genes identified in the TCGA-LAML and

GSE71014 datasets. (B) The selection of tuning parameter (l) in LASSO-Cox
regression analysis was conducted using a robust technique of 10-fold

cross-validation.
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