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In this work, a multi-objective optimization design method is proposed based on principal component
analysis (PCA) and a neural network to obtain a mechanism’s optimal comprehensive performance. First, multi-
objective optimization mathematical modeling, including design parameters, objective functions, and constraint
functions, is established. Second, the sample data are obtained through the design of the experiment (DOE) and
are then standardized to eliminate the adverse effects of a non-uniform dimension of objective functions. Third,
the first k principal components are established for p performance indices (k < p) using the variance-based
PCA method, and then the factor analysis method is employed to define its physical meaning. Fourth, the overall
comprehensive performance evaluation index is established by objectively determining weight factors. Finally,
the computational cost of the modeling is improved by combining the neural network and a particle swarm
optimization (PSO) algorithm. Dimensional synthesis of a Sprint (3RPS) parallel manipulator (PM) is taken as
a case study to implement the proposed method, and the optimization results are verified by a comprehensive
performance comparison of robots before and after optimization.

Parallel manipulators (PMs) have become a research hotspot
because of their excellent dynamic performance, simple in-
verse kinematics, and high stiffness (Yang et al., 2022).
Sprint (3PRS) (Chen et al., 2014), Tricept (3UPS-UP) (Fa-
rooq et al., 2021), and delta (Wang et al., 2014) robots have
been successfully commercialized, and the 3RPS PM is used
as a parallel module in the five-axis machining center for
blade surface machining (Arabshahi and Novinzadeh, 2015).
Comprehensive performance of PMs is crucial for machining
precision. Therefore, multi-objective optimization is neces-
sary to achieve optimal comprehensive performance.

PMs have smaller workspaces compared with serial
robots. Therefore, maximizing the workspace volume, es-
pecially the regular workspace volume, is a major task of a
PM’s optimization design (Yang et al., 2019). However, poor

performance, e.g., kinematic, stiffness, and dynamic perfor-
mance, may be caused while the workspace volume is max-
imized (Shi et al., 2014). This problem can be fixed by con-
sidering other performance indices as constraint functions or
by carrying out a multi-objective optimization design.

Compared with kinematic analysis, dynamic analysis is
more complicated because the overall stiffness and mass ma-
trices are difficult to describe due to the multiple closed-loop
characteristics of PMs (Shi et al., 2014). Limited discrete-
node function values in the workspace are adopted to eval-
uate the objective performance (global performance index,
GPI) due to the difficulty in obtaining its analytical ex-
pressions in the workspace. It significantly increases the
performance index evaluation’s computational cost (Lian et
al., 2017). Therefore, effective multi-objective optimization
design is challenging.



Since multiple performance indices are often presented
as competitive coupling relations, this makes it difficult to
obtain an optimal solution with a definite physical mean-
ing. The comprehensive objective method is most commonly
used to fix this problem, and it defines the weighted sum
of objective functions as a comprehensive index (Wang and
Zhang, 2017; Zhang and Nelson, 2011). Xu et al. (2017)
optimized the hybrid mechanism’s comprehensive perfor-
mance through a comprehensive objective method wherein
the workspace volume and stiffness performance were con-
sidered as objective functions. Huang et al. (2018) adopted
this method to optimize reconfigurable a PM’s workspace
volume, global dexterity, and stiffness indices. Various com-
binations of weighting factors are provided to decision-
makers. However, the weight coefficients in this method are
often determined artificially, and the dimension and unit of
the objective function are inconsistent, which leads to the
limitation of the application of this method (Fan et al., 2022).

Yang et al. (2019) derived a globally optimal comprehen-
sive performance by proposing a multi-objective optimiza-
tion game algorithm. Globally optimal solutions are derived
based on their weight factors rather than an objective func-
tion weight sum. The method is simple but needs to manually
set the weight factors and calculate the objective function’s
values at each discrete node in advance. Discrete node den-
sity decides the precision. As the density of discrete nodes
increases, the calculation cost increases exponentially. For
instance, for a PM with 3 degrees of freedom (DOFs), a pop-
ulation n,, and generations ng, if the node density in the
workspace is increased to 2 times that of the original, the
computational cost will be npn g23 times that of the original
(Yang et al., 2019; Wu, 2017).

The Pareto front method has become a research hotspot of
multi-objective optimal design methods because it can ob-
tain multiple sets of non-dominated solutions (Altuzarra et
al., 2011; Ling et al., 2022). Cui et al. (2015) combined a
genetic algorithm (GA) and insight software to optimize the
kinematics and kinetic flexibility of the tunnel tube assem-
bly system’s 3-DOF PMs and obtained multiple sets of non-
dominated solutions. Qi et al. (2018), Sun and Lian (2018),
and Sun et al. (2019) defined the sum of minimum squares
(i.e., the cooperative balance point) from the non-dominated
solutions as the global optimal solution. However, the physi-
cal explanation for this method is not clearly defined.

Establishing workspaces’ analytic formulas is challeng-
ing, especially for regular workspaces, so the GPIs of-
ten obtained in terms of numerical methods include the
Monte Carlo method (Wang et al., 2015) and the discrete-
node method (Xu et al., 2018). High computational costs
greatly reduce the optimized design’s computational effi-
ciency. The response surface model (RSM), including a
back-propagation (BP) neural network (Zhang and Gao,
2008; Gao et al.,, 2010), multivariate regression (Yang et
al., 2022; Lian et al., 2019), and Gaussian regression (Vinh
et al., 2019), is often used to fix this problem, wherein the
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BP neural network has attracted extensive attention due to its
strong learning and nonlinear fitting capabilities. Therefore,
the BP neural network model is adopted to establish the RSM
of the GPIs and the design parameters in this work.

The main contribution of this work is to propose a multi-
objective optimization design method in terms of factor
analysis, BP neural network, principal component analysis
(PCA), and particle swarm optimization (PSO) algorithm
(Sun and Lian, 2018; Wang et al., 2017) to achieve the opti-
mal comprehensive performance of the mechanism. The pro-
posed method has a clear physical explanation and a low
computational expense.

The remainder of the work is arranged as follows. The
structure description of the 3RPS PM is presented in Sect. 2.
Objective functions of the 3RPS PM are presented in Sect. 3.
The multi-objective optimization design of the 3RPS PM is
introduced in Sect. 4, and the optimization results are dis-
cussed in detail. Finally, conclusions are drawn in Sect. 5.

The basic idea of the multi-objective optimization design for
the PMs proposed in this work is to first use PCA to construct
an overall comprehensive performance evaluation index with
objectively determined weight factors and clear physical sig-
nificance. Then a response surface model between objective
functions and design parameters is constructed based on a
neural network to solve the problem of the high computa-
tional cost of the objective functions in the workspace. Fig-
ure 1 shows the procedure of the proposed multi-objective
optimization design method of PMs based on a neural net-
work and PCA. The steps are described as follows.

Step 1. Establish the multi-objective optimization mathe-
matical model, including design parameters, objective func-



tions, and constraint functions, wherein the limitations of the
design parameters, actuation lengths, and joint angles should
be given.

Step 2. Obtain the sample data based on the design of
the experiment: Latin hypercube sampling (LHS) is recom-
mended in this work, and then it is necessary to standard-
ize the original sample data to eliminate adverse influences
caused by non-uniform dimensions of objective functions.
The Z-score method is adopted in this work.

Step 3. Establish the correlation matrix of multiple perfor-
mance indices and the first k& principal components accord-
ing to the cumulative contribution rate (the ratio of the sum
of the first k eigenvalues of the correlation matrix to the sum
of all the eigenvalues). The i principal components can be
established based on the corresponding eigenvectors of the
correlation matrix. Finally, the overall comprehensive perfor-
mance index is defined as the sum of the product of the first
k eigenvalues and the corresponding principal components.

Step 4. Establish the RSM between GPIs and design pa-
rameters based on the neural network to avoid the high com-
putational cost of the objective functions in the workspace.

Step 5. Combine the overall comprehensive performance
index and RSMs to carry out the optimization design of PMs
to achieve optimal design parameters with a clear physical
explanation.

Figure 2 shows a spatial 3RPS PM with 3 DOFs. Three iden-
tical branches connect the base and mobile platform at points
B; and A; with revolute joints and spherical joints, respec-
tively. An upper rod and a lower rod connected by a pris-
matic joint constitute limbs. Inputs to the mechanism refer to
the three prismatic joints. Coordinate frames B; {x;, yi, zi },
of{x,y,z}, and O{X,Y, Z} are attached to the limb, moving
platform, and base, respectively (see Fig. 2). Both AAj A> A3
and A By B, B3 are equilateral triangles with [0A 1| = [0A>| =
|oA3| =ry and |OB1| =|0B,| =|0 B3| =r;. Each of the
revolute joint axes is perpendicular to vector O B; and lies
on the X-Y plane. Geometric and physical parameters be-
fore optimization are given as moving platform height 4 =
0.05m, r; = 1.7m, elasticity modulus E =200 GPa, r;, =
0.8 m, shear modulus G = 77 GPa, and d; = 0.4 m (diame-
ter of the link). The 3RPS PM’s multi-objective optimization
aims to select appropriate r; and r, values to achieve maxi-
mal comprehensive performance.

The 3RPS PM is to be used as the parallel module of the
high-speed machining equipment, wherein dynamic perfor-
mance, motion or force transmission performance, and oper-
ation workspaces strongly influence the mechanism’s com-
prehensive performance. Therefore, the regular workspace

3RPS PM.

volume, kinematic performance, and natural frequency are
considered the three objective functions in this paper.

A PM’s workspace is smaller than those of serial mecha-
nisms. Thus, PM optimization should primarily maximize
workspace volume. A regular workspace volume (Yang et
al., 2019) is recommended as the workspace evaluation index
due to some performance indices being poor at the bound-
ary of the reachable workspace, and the reachable workspace
does not apply to trajectory planning (Babu et al., 2016). The
method proposed in Yang et al. (2019) is adopted to calcu-
late the regular workspace volume, the reachable workspace
is first classified into n layers with an equal interval height
of d;, and then the inscribed circle of the workspace bound-
ary in each layer is calculated. The 3RPS PM’s regular
workspace volume is expressed as follows:

m
1
Vo= 5 Ai+ A1) x dz. (1)

i=1

where A; = 2”'052 is the inscribed circle’s area in the ith
layer. p; is the radius. The minimum radius of inscribed cir-
cles is set to 50 mm in the work to guarantee the necessary
operation workspace of the 3RPS PM.

The kinematic condition number is often adopted as the kine-
matic index of PMs to measure their dexterity, manipula-
bility, and singularity. The main limitation of the condition
number index is the non-uniform dimension of the Jacobian



matrix for the PMs with mixed DOFs. Characteristic length is
often adopted to fix this problem. However, due to the subjec-
tivity of characteristic length selection and the fact that only
some elements of the Jacobian matrix are involved in char-
acteristic length calculation, the physical explanation for the
characteristic length is ambiguous (Zang et al., 2019; Wang
et al., 2019). The motion or force transmission index (Wu et
al., 2023; Liu et al., 2012) is recommended in this paper due
to its advantages of being frame-free and dimensionless.

The ith limb’s twist system is derived through screw the-
ory:

S,'l:[R,'ez OBi><R,-e2 ], S,’g:[o 0 0 li ],
Siz=[e1 OA;xer ], Su=[e2 O0A;xer |,
Si5s = [83 0OA; x e3 ],

@

where §;; is the jth twist of the ith limb, I; is the unit
vector along the vector B; A;. R; represents a rotation ma-
trix from limb coordinate frame {B;} to global coordinate
frame {O}. e; in Eq. (2) is presented in e] = [1 0 0 ]T,
ex=[0 1 0] andes=[0 0 1]".

The transmission wrench of the ith limb can be obtained
based on its reciprocal product with the twist (S;;) of the
passive joints being zero:

ST,'Z[I,' OB,'XI[ ] (3)
The ith limb’s input twist screw is
SA,-=[0 0 0 I ] “)

All of the inputs except the one in the ith limb are locked to
derive the instantaneous 1-DOF output twist screw S o;:

SoioU; =0, 5)

where Uj; is the mechanism’s constraint wrench system.
Accordingly, the ith limb’s transmission and input indices
are expressed as follows:
IS7i o Sail IS7i 0 Soil

= . mi= . ©)
" ISTi 0 Sailmax  1S7i © S0ilmax

Both of the output and input indices are considered to obtain
the local transmission index (LTI):

LTI = min{A;, n;}. @)

The global transmission index (GTI) is obtained to deter-
mine the global kinematic performance in a PM’s regular
workspace:

LTIdV, 1 Y
leuz—ZLTli, (8)
Jy.dv: N &

where N is the number of discrete grid nodes in the pre-
scribed workspace.

The natural frequency is the frequency at which a system
tends to oscillate in the absence of external forces or damp-
ing. The first natural frequency, i.e., the fundamental fre-
quency (Ganesh and Rao, 2020), is recommended in this pa-
per due to its comprehensive consideration of the stiffness,
mass, and damping of PMs.

The global independent generalized displacement coordi-
nates (IGDCs) (Yang et al., 2021) are recommended as the
elastodynamic modeling method of PMs in this paper due
to the Lagrangian multipliers and kinematic constraint equa-
tions not being required.

The ith link’s elastodynamic equation expressed in the
limb coordinate frames is given as follows considering that
the link is discretized into one element (the number of ele-
ments has little influence on the calculation accuracy of the
fundamental frequency; Yang et al., 2021):

MUii; + Klu; =L f;, )
where Luiz[l‘dgi, Lq)Bi, Ld,;, LgoAi] is the

ith link’s displacement column vector. “dg;(‘epg,) is
point B;’s linear displacement coordinate. d4;(“¢ ;)

is point A;’s angular displacement coordinate.
Le LT L, T LT LT 1T
fi=["fhi tmp P w1 and

Lfpi(Emp;) and L f 4;(Fmy;) are the forces (moments)
exerted on points B; and A;, respectively. K is the element
stiffness matrix. M, is the element mass matrix. L in the
upper-left corner indicates that the vector is expressed in the
local frame system.

Equation (9) can be further presented in the global coordi-
nate system:

M;U; +K;U; = F;, (10)

where M; = TiM.T;', K; = TiK.T;", and F; = T; f,. T; =
diag[Ri, Ri, Rj, Ry ]

With a rigid assumption of the moving platform, its elas-
todynamic equation in the global coordinate system is

M,U, = F,, (11)

where M, = TpLMpTIT). T, = diag [R, R ] and R is the ro-
tation matrix from frames {0} to {O}. LMp is the moving

T
platform’s mass matrix. Up = [dg, <PIT,] , dp, and @p, respec-
tively, denote point o’s linear and angular displacement coor-
T

T T
p,mp] , and
mp and f, are the moment and force, respectively, exerted
on the moving platform.

The moving platform and link B; A; are connected at point
A; through a spherical joint. The compatibility equation be-
tween point o’s displacement coordinates and point A;’s lin-
ear displacement coordinates of the ith link can be obtained

dinates in the global coordinate frame. Fp, = [



according to multipoint constraint (MPC) theory (Yang et
al., 2019).

dai=[E3 [Aiox] U, 12)

Revolute joints are used to connect the base to link B;A;
based on MPC theory. The boundary conditions in the local
coordinate frame are as follows:

Ligp =0
BT (i=1,273), (13)
(PBX,' = goBZi =

where Lgp,, and Lgp,, are point B;’s angular displacement
coordinates along the x; and z; axes, respectively.

Boundary conditions in Eq. (13) can be further expressed
based on Ganesh and Rao (2020).

dp, =034
Pp: = ngs Psy  (=12,3) (14)
¢p: =0

Accordingly, the global IGDC of the manipulator can be
extracted as follows.
U=[osy ou" ¢ 042" 983 0437 dpt 0,T ]T

s5)

Finally, the elastodynamic control equation of the 3RPS
PM is given by

MU +KU =W, (16)

3 3
where M= Y Ni'MiN; + N,"M,N,, K=Y N/TKiN;,
i=1 i=1
3
w=>" N;,TF; +NPTFP, U; = N;U, N; is the mapping ma-
i=1
trix from the generalized displacement coordinate U; to the

global IGDC U.

It can be seen that the Lagrangian multipliers or the si-
multaneous kinematic constraint equations are not required
in Eq. (16): all the kinematic constraints of the mechanism
were considered in the global IGDC and the mapping matrix
N;j, which is beneficial for solving dynamic equations.

The angular frequency in radian per second is derived by

det (K — w; M) = 0. (17

The fundamental frequency is

w1
T og

fi (18)

The PM’s global dynamic index is

fv f1dVy 1 &
GDI="—"F——— = — . 19
7,47 N;le (19)

The multi-objective optimization mathematical modeling of
the 3RPS PM (Babu et al., 2013) is

max {V,, GTI, GDI},
05<r <25 05<r <25,

20
r1+r=2.5, 0

Lin < Li < Lax, 60 < 0max, ¢i < @max,

where Lpyin = I m and Lyax =4 m. L; is link B; A;’s length.
@; and 6; represent angles among the moving platform, base,
and link, respectively, and Onax = @max = 50°.

The PCA recombines the m dependent original indices
into a new set of p (p < m) independent principal compo-
nents (F;) and determines an overall comprehensive index
with a deterministic weight factor based on the variance-
based method, which satisfies cov(F;, F;) = 0. The physical
meanings of the principal components are then explained by
using the factor analysis method.

Consider the non-uniform dimensions of objective func-
tions: it is necessary to convert original sample data X (X =
(X1, X2,..., Xpl, Xi = [ X1, X4y ..y Xm']T) to the standard-
ized X* before calculating the principal components. The Z-
score method is adopted here.

X =[xt X3 X: ], 1)

T
X%,...X4], and o) =

X.,_H.
* 2 J * __ *
where X, = =50, XF = [X{,

Vvar(X;), uj = E(X ).

Population characteristics are often represented by sample
data in terms of the LHS method (Lian et al., 2017). Table 1
shows 276 sets of sample data designed based on the LHS
method. Objective functions’ standardized sample data of the
3RPS PM are presented through Eq. (21) (see Table 2). The
correlation matrix R is established to reflect correlations of
objective functions:

riorie e Tip
R=] : , (22)

Fp1 Tp2 o Tpp

D (X =i )(Xpj— e )
where  rij =cov(X;, X;) == — G,j=

1,2,...,p).
The correlation matrix can be defined in Eq. (23) for stan-

dardized data X* as follows:
X*TX*

T Tao1

R

(23)

The correlation matrix of the objective functions obtained by
Eq. (23) is shown in Table 3. Dynamic performance and mo-
tion or force transmission performance are negatively corre-
lated with the workspace volume. Dynamic performance and



Objective functions’ raw sample data of the 3RPS PM.

Serial number Vg GTI GDI
(m?) (Hz)

1 0.2919 0.7201 12.4036

2 0.2904 0.7218 12.4732

276 0.0022 0.7796  11.9437

Objective functions’ standardized sample data of the 3RPS

PM.
Serial number Vg* GTI* GDI*
1 0.6371 —-2.1640 —1.7933
0.6267 —2.1299 —1.7695
276 —1.4320 —1.0224 —1.9506

kinematic performance present positive correlations, which
is consistent with the results in Chen and Yang (2021).

The first k principal components’ cumulative contribution
rate and the ith principal component are defined by

Fi = ayx{ +ayxy +...+apix;,
k
Ai
= (24)

P 3

A
1

S =

i=

where A; and a; = (ay;,ay;, ..., and api)T are the ith eigen-
value and eigenvector of the correlation matrix, respectively.
8 is the first k principal components’ cumulative contribution
rate.

The first two eigenvalues’ cumulative contribution rate is
92.65 %, which is greater than 85 % (Kuroda et al., 2011)
(see Table 4). Objection function information is included in
the first two principal components (see Eq. 25).

{ F1 = —0.3281V* + 0.6663GTI* 4+ 0.6697GDI*

25
F>, =0.9445V* + 0.2439GTI* + 0.2200GDI* >

The physical explanation of principal components is given
by introducing the factor analysis method. The factor-loading
matrix is first given by

A=[aiVrl, ... auvhm | (26)

The factor-loading matrix should be further simplified to ex-
plain principal components until each objective function has
a large loading in only one principal component. The max-
imum orthogonal rotation method of square differences is
usually adopted (Mardian et al., 1979):

m—1 m
B=AY ) 2 27)

i=1 j=i+1

Correlation matrix of objective functions.

Vg GTI GDI
Vi 1 —0.2091 —0.2262
GTI  —0.2091 1 0.7794
GDI  —0.2262 0.7794 1

Principal component cumulative contribution rate and cor-
relation matrix eigenvalues and eigenvectors.

Eigenvalue Eigenvector ~Cumulative
contribution
rate

1.8863 [—0.3281,0.6663,0.6697]T  62.88 %

0.8933 [0.9445,0.2439,0.2200]T  92.65%

0.2203 [—0.0168,0.7047, —0.7093]T 100 %

where €2 is the orthogonal matrix.

Repeat Eq. (28) until the allowable error is larger than the
change in B’s relative variances.

The kinematic performance and the dynamic performance
have larger factor loadings for the first principal component
(see Table 5). Therefore, the kinematic and dynamic perfor-
mance factor is named for the first principal component and
presents a PM’s dynamic performance and kinematic perfor-
mance. The workspace volume has a larger factor loading on
the second principal component; thus, the workspace factor
is named for the second principal component, which reflects
the mechanism’s workspace volume. So far, the physical ex-
planation of the principal components has been fully defined
through the factor analysis method.

Accordingly, the 3RPS PM’s overall comprehensive per-
formance evaluation index is

k
F = ZMFi =0.2250V, + 1.4747GTI* + 1.4597GDI*. (28)
i=1

Generally, the GPI is obtained by calculating the variance or
mean of the function value of nodes in the regular workspace.
Computational costs increase exponentially with increased
discrete points. The high computational intensity reduces the
optimization design efficiency. The RSM between design pa-
rameters and GPIs is established using the BP neural net-
work in this work to improve the computational intensity for
its powerful nonlinear fitting effect. The BP neural network’s
hidden layer sizes are set to 30. The recommended accep-
tance levels of RMSE and R? in Agarwal and Renaud (2004)
are below 0.2 and above 0.9, respectively. Table 6 shows
the optimal accuracy assessment for the BP-based mapping
model through five tests that verify the accuracy and effec-
tiveness of the BP-based RSM.

The population- and evolution-based PSO intelligence al-
gorithm determines their search directions based on their ve-



Factor-loading matrix after orthogonal transformation.

Ve GTI GDI Name
F;  —0.1161 0.9386 0.9351  Kinematic and dynamic performance factor
F 09932 —0.0982 —0.1211 Workspace factor

Accuracy assessment for the BP-based mapping model.

Vg GTI GDI

RMSE  0.0023
R? 0.9999

0.0010  0.0010
0.9996 1.000

Parameter setting of the PSO optimization algorithm.

Initial  Number of Maximum  Global  Personal
inertia particles iterations  learning  learning
weight factor factor
0.729 100 200 1.49 1.49

locities and replaces the GA’s mutation and crossover. The
PSO algorithm’s convergence efficiency was proven in Wang
et al. (2017). Thus, the PSO algorithm is used in this work.
Table 7 shows the PSO algorithm’s setting that is recom-
mended in Sun et al. (2018). The 59 iterations are performed
to converge the objective function to 3.5945, and the opti-
mal design parameters are r1 = 1.4340 and r, = 1.0660 (see
Fig. 3). The calculation time of the proposed algorithm is
192s on a computer 3.00 GHz CPU, while the PSO algo-
rithm is 6285s and 96.94 % of the computational cost is
saved. Optimized dynamic performance, kinematic perfor-
mance, and workspace volume increase by 44.57 %, 6.74 %,
and 283.69 %, respectively; after optimization, the overall
comprehensive index F increases by 118.92 % (see Table 8).
The multi-objective optimization design results verified the
effectiveness of the proposed method.

Dynamic performance, kinematic performance, and reg-
ular workspace have been enhanced as shown in Table 8.
The distributions of the performance indices are shown in
Figs. 4-5, the maximum radius of the workspace has been
increased from 0.096 to 0.156 m, the maximum LTI has been
increased from 0.95 to 0.99, and the maximum first natural
frequency has been increased from 28.42 to 66.57 Hz, which
is consistent with the results in Table 8. It is worth noting
that, since the mechanism has a relatively excellent kinematic
performance before optimization, the kinematic performance
has not been significantly improved after optimization.

The results of multi-objective optimization design signifi-
cantly affect the comprehensive performance of PMs. Ob-

3.6
358 °

356 | ..........

3.54 ¢
3.52¢
ko 35¢F

348
3.46
344+
3.42 geee

0 10 20 30 40 50 60
Iteration

Convergence of the overall comprehensive evaluation in-
dex using the PSO algorithm.

taining the mechanism’s optimal comprehensive perfor-
mance with clear physical significance is challenging be-
cause of weight factors’ subjectivity and multiple perfor-
mance indices’ non-uniform dimensions. Meanwhile, the
high computational costs of the GPI undermine PMs’ multi-
objective optimization design efficiency. In this paper, the
multi-objective optimization design method based on the
PCA, factor analysis, PSO algorithm, and neural network
was proposed to fix these problems, and the multi-objective
optimization of the 3RPS PM was taken as a case study to
implement the proposed method.

Considering the fundamental frequency, the motion or
force transmission performance, and the regular workspace
volume of the 3RPS PM to be objective functions, the
results of PCA and factor analysis showed that the first
principal component reflected the mechanism’s dynamic
and kinematic performances. The second one reflected the
mechanism’s regular workspace volume. The computational
cost of the proposed approach was reduced by 96.95 %
compared with the PSO algorithm. Meanwhile, the mech-
anism’s overall comprehensive performance increased by
118.92 %, and the dynamic performance, kinematic perfor-
mance, and workspace volume increased by 44.57 %, 6.74 %,
and 283.69 %, respectively.

Although neural networks have a strong fitting ability, they
have not revealed the inherent mechanism between the objec-
tive functions and the design parameters. In our future work,
we will study the analytical formula between the objective
function and the design parameters.
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Table 8. Comparison of performance indices before and after optimizing the 3RPS PM.

Design variables ~Comprehensive evaluation Vi GTI GDI
[r1, 2] index F (m3) (Hz)
(m)
Before optimization [1.7,0.8] 1.6419 0.0233 0.8120 16.1164
After optimization [1.4340, 1.0660] 3.5945 0.0894 0.8667 23.2990
LTI LTI
0.95
0.9 3.5 09
3 0.85
10.8 0.8
£ 257 0.75
0.7 N 0.7
29 0.65
0.6 s 0.6
0.55
05 1 05
02 4] 0.1 02 0.45
0 01 01 ©
y/m 02 02 x/m
(a) (b)

Figure 4. Distribution of the LTT in the regular workspace. (a) Before optimization. (b) After optimization.

f,/Hz
3.5+
25
3
=} 20
e
N
25
15
ol
. 0.1]
s [
-0.1  -0.1
y/m x/m
(a

(b)

Figure 5. Distribution of f in the regular workspace. (a) Before optimization. (b) After optimization.
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