Research Article

Ramsey chains in graphs

Gary Chartrand, Ritabrato Chatterjee, Ping Zhang*

Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008-5248, USA
(Received: 8 July 2023. Accepted: 4 September 2023. Published online: 6 September 2023.)
© 2023 the authors. This is an open-access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract

Let G be a graph with a red-blue coloring c of the edges of G. A Ramsey chain in G with respect to c is a sequence G_{1}, G_{2}, \ldots, G_{k} of pairwise edge-disjoint subgraphs of G such that each subgraph $G_{i}(1 \leq i \leq k)$ is monochromatic of size i and G_{i} is isomorphic to a subgraph of $G_{i+1}(1 \leq i \leq k-1)$. The Ramsey index $A R_{c}(G)$ of G with respect to c is the maximum length of a Ramsey chain in G with respect to c. The Ramsey index $A R(G)$ of G is the minimum value of $A R_{c}(G)$ among all red-blue colorings c of G. A Ramsey chain with respect to c is maximal if it cannot be extended to one of greater length. The lower Ramsey index $A R_{c}^{-}(G)$ of G with respect to c is the minimum length of a maximal Ramsey chain in G with respect to c. The lower Ramsey index $A R^{-}(G)$ of G is the minimum value of $A R_{c}^{-}(G)$ among all red-blue colorings c of G. Ramsey chains and maximal Ramsey chains are investigated for stars, matchings, and cycles. It is shown that (1) for every two integers p and q with $2 \leq p<q$, there exists a graph with a red-blue coloring possessing a maximal Ramsey chain of length p and a maximum Ramsey chain of length q and (2) for every positive integer k, there exists a graph with a red-blue coloring possessing at least k maximal Ramsey chains of distinct lengths with prescribed conditions. A conjecture and additional results are also presented.

Keywords: red-blue edge coloring; Ramsey chain; Ramsey index.
2020 Mathematics Subject Classification: 05C15, 05C35, 05C55, 05C70.

1. Introduction

In 1987 a conjecture was stated that has drawn the interest of many researchers. When the famous mathematician Paul Erdős first learned of it, he immediately doubted its truth. Soon afterward, Erdős offered a cash reward for a counterexample or a proof if it were true (as was common for Erdős). This conjecture appeared in a book [4, p.72] containing a list of graph theory problems that are associated with Erdős. Now, more than 35 years later, the conjecture has neither been proved nor disproved. Let us describe this conjecture.

If G is a nonempty graph of size m (without isolated vertices), then there is a unique positive integer k such that $\binom{k+1}{2} \leq m<\binom{k+2}{2}$. The graph G is said to have an ascending subgraph decomposition $\left\{G_{1}, G_{2}, \ldots, G_{k}\right\}$ into k (pairwise edge-disjoint) subgraphs of G if G_{i} is isomorphic to a proper subgraph of G_{i+1} for $i=1,2, \ldots, k-1$. The following conjecture was stated in [1].

The Ascending Subgraph Decomposition Conjecture. Every nonempty graph has an ascending subgraph decompo-

 sition.If this conjecture was shown to be false, then the question occurred of determining the maximum length ℓ of a sequence $G_{1}, G_{2}, \ldots, G_{\ell}$ of ℓ pairwise edge-disjoint subgraphs (without isolated vertices) of G such that
(1) G_{i} has size i for each $i \in[\ell]=\{1,2, \ldots, \ell\}$ and
(2) G_{i} is isomorphic to a subgraph of G_{i+1} for each $i \in[\ell-1]$.

A sequence with properties (1) and (2) is called an ascending subgraph sequence of the graph G and the maximum length of such a sequence is the ascending subgraph index of G, denoted by $A S(G)$. The following conjecture is therefore equivalent to the Ascending Subgraph Decomposition Conjecture.

The Ascending Subgraph Index Conjecture. Let G be a nonempty graph of size m. Then $A S(G)=k$ if and only if

$$
\binom{k+1}{2} \leq m<\binom{k+2}{2}
$$

[^0]While the truth of the Ascending Subgraph Decomposition Conjecture remains an open question, this conjecture has been verified for many classes of graphs, including all regular graphs [5].

We now turn briefly to a different topic. A well-known area within graph theory is Ramsey theory and a well-known concept in this theory is Ramsey numbers. Let G be a graph without isolated vertices and let each edge of G be assigned one of two given colors (a 2-edge coloring of G). Typically, these colors are chosen to be red or blue (or 1 or 2). In a red-blue coloring of a graph G, every edge of G is colored red or blue. For two graphs F and H (without isolated vertices), the Ramsey number $R(F, H)$ is the minimum positive integer n for which every red-blue coloring of the complete graph K_{n} of order n results in either a subgraph of K_{n} isomorphic to F all of whose edges are colored red (a red F) or a subgraph of K_{n} isomorphic to H all of whose edges are colored blue (a blue H). It is a consequence of a theorem of Ramsey [7] that the number $R(F, H)$ exists for every two graphs F and H. If $F \cong H$, then $R(F, H)=R(F, F)$ is the minimum positive integer n such that every red-blue coloring of K_{n} results in a monochromatic F. If F and H are both complete graphs, then $R(F, H)$ is called a classical Ramsey number. For example, it is well known that $R\left(K_{3}, K_{3}\right)=6, R\left(K_{4}, K_{4}\right)=18$, and $R\left(K_{5}, K_{5}\right)$ is unknown. Many variations of Ramsey numbers have been studied, such as considering classes of graphs different from complete graphs and allowing the edges of the graphs in question to be colored with more than two colors (see [6] for example).

In [2], a concept was introduced that involves both ascending subgraph decompositions and a Ramsey-type coloring problem. Let G be a graph (without isolated vertices) of size m with a red-blue edge coloring c. A Ramsey chain of G with respect to c is a sequence $G_{1}, G_{2}, \ldots, G_{\ell}$ of pairwise edge-disjoint subgraphs of G such that each subgraph $G_{i}(1 \leq i \leq \ell)$ is monochromatic of size i and G_{i} is isomorphic to a subgraph of G_{i+1} for $1 \leq i \leq \ell-1$. Each subgraph $G_{i}(1 \leq i \leq \ell)$ in a Ramsey chain is called a link of this chain. The maximum length of a Ramsey chain of G with respect to c is the (ascending) Ramsey index $A R_{c}(G)$ of G. The (ascending) Ramsey index $A R(G)$ of G is defined by

$$
A R(G)=\min \left\{A R_{c}(G): c \text { is a red-blue edge coloring of } G\right\}
$$

These concepts were introduced in [2,3], using somewhat different technology.

2. Ramsey chains in stars and matchings

Among the observations presented in [3] is the following.
Observation 2.1. If G is a graph of size m where $2 \leq m<\binom{k+2}{2}$ for a positive integer k, then $A R(G) \leq k$.
On the other hand, if G is a graph of size m such that $A R(G) \geq k$, then $m \geq\binom{ k+1}{2}$. The following result presents a class of graphs G for which $A R(G)=k$ in terms of the size of G.

Theorem 2.1. Let G be a graph of size $m \geq 2$ without isolated vertices such that for every two subgraphs F and H of G without isolated vertices, $|E(F)|<|E(H)|$ implies $F \subseteq H$. Then $A R(G)=k$ if and only if

$$
\binom{k+1}{2} \leq m<\binom{k+2}{2} .
$$

Proof. First, we verify the following claim.
Claim. Let G be a graph of size $m \geq 2$ without isolated vertices such that for every two subgraphs F and H of G without isolated vertices, $|E(F)|<|E(H)|$ implies $F \subseteq H$. If $m \geq\binom{ k+1}{2}$ for some positive integer k, then $A R(G) \geq k$.

We proceed by induction on k. The truth of the claim is immediate if $k=1$ or $k=2$. Assume for an integer $k \geq 2$ that a graph G^{\prime} without isolated vertices has $A R\left(G^{\prime}\right) \geq k$ if G^{\prime} has size $m^{\prime} \geq\binom{ k+1}{2}$ such that for every two subgraphs F^{\prime} and H^{\prime} of G^{\prime} without isolated vertices, $\left|E\left(F^{\prime}\right)\right|<\left|E\left(H^{\prime}\right)\right|$ implies $F^{\prime} \subseteq H^{\prime}$. Let G be a graph without isolated vertices having size $m \geq\binom{ k+2}{2}$ such that for every two subgraphs F and H of G without isolated vertices, $|E(F)|<|E(H)|$ implies $F \subseteq H$. We show that $A R(G) \geq k+1$. Let there be given a red-blue coloring c of G. Since $k \geq 2$, it follows that $\frac{1}{2}\binom{k+2}{2} \geq k+1$. Thus, G has a monochromatic subgraph G_{k+1} of size $k+1$. Let $G^{\prime}=G-E\left(G_{k+1}\right)$, where G^{\prime} has size $m^{\prime}=m-(k+1)$. Then the restriction c^{\prime} of c to G^{\prime} is a red-blue coloring of G^{\prime}. Since $m \geq\binom{ k+2}{2}$, it follows that

$$
m^{\prime}=m-(k+1) \geq\binom{ k+1}{2} .
$$

By the induction hypothesis, G^{\prime} has a Ramsey chain $\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ of length k with respect to c^{\prime}. Then ($G_{1}, G_{2}, \ldots, G_{k}, G_{k+1}$) is a Ramsey chain of length $k+1$ in G. Thus, the claim holds.

Now, let G be a graph of size $m \geq 2$ without isolated vertices such that for every two subgraphs F and H of G without isolated vertices, $|E(F)|<|E(H)|$ implies $F \subseteq H$. First, assume that

$$
\binom{k+1}{2} \leq m<\binom{k+2}{2}
$$

Since $m<\binom{k+2}{2}$, it follows by Observation 2.1 that $A R(G) \leq k$. Since $m \geq\binom{ k+1}{2}$, it follows by the claim that $A R(G) \geq k$. Therefore, $A R(G)=k$.

For the converse, assume that $A R(G)=k$. Since $A R(G)=k$, there is a Ramsey chain of length k for every red-blue coloring of G. Thus, $m \geq\binom{ k+1}{2}$. By the claim, if $m \geq\binom{ k+2}{2}$, then $A R(G) \geq k+1$. Since $A R(G)=k$, it follows that $m<\binom{k+2}{2}$. Consequently, $\binom{k+1}{2} \leq m<\binom{k+2}{2}$.

For example, the 5 -cycle C_{5} satisfies the hypothesis of Theorem 2.1 and so $A R\left(C_{5}\right)=2$. The 6 -cycle C_{6} does not satisfy the hypothesis of Theorem 2.1, however, since both P_{3} and $3 K_{2}$ are subgraphs of C_{6} but $P_{3} \nsubseteq 3 K_{2}$. In fact, there are only two classes of graphs of size 6 or more that satisfy the hypothesis of Theorem 2.1.

Proposition 2.1. Let G be a graph of size at least 6 without isolated vertices such that for every two subgraphs F and H of G without isolated vertices, $|E(F)|<|E(H)|$ implies $F \subseteq H$. Then G is either a star or a matching.

Proof. Assume, to the contrary, that G is neither a star nor a matching. Thus, G contains two adjacent edges and two nonadjacent edges. If G contains a vertex of degree at least 3 or a matching of size at least 3 , then G contains subgraphs F and H where F has a smaller size than H and F is not isomorphic to a subgraph of H. Therefore, we may assume that $\Delta(G)=2$ and $2 K_{2}$ is a maximum matching in G. The graph G contains no triangle since $2 K_{2} \nsubseteq K_{3}$. If G contains a k-cycle C_{k} where $k \geq 4$, then C_{k} is a component of G and so G contains a matching of size 3 , a contradiction. Hence, G is a linear forest with two components. Since the size of G is at least 6 , it follows that G contains a matching of size 3 , a contradiction.

As a consequence of Theorem 2.1 and Proposition 2.1, we have the following result.
Corollary 2.1. [3] Let $k \geq 2$ be an integer and let G be the star $K_{1, m}$ or the matching $m K_{2}$. Then $A R(G)=k$ if and only if

$$
\binom{k+1}{2} \leq m<\binom{k+2}{2}
$$

3. Ramsey chains in cycles

One question that arises is whether there is a familiar class of graphs different from stars and matchings such that every graph G of size m in this class has the property that $A R(G)=k$ if and only if $\binom{k+1}{2} \leq m<\binom{k+2}{2}$. While this question has not been answered, there is a class of graphs of small size for which this is the case, namely the cycles C_{m} of order and size m. Every proper subgraph of C_{m} is a linear forest (where each component is a path). In order to verify this, we first present some observations and preliminary results.

Observation 3.1. Let G be a graph of size $m \geq 2$.
(a) If $m=2$, then $A R(G)=1$ and if $m>2$, then $A R(G) \geq 2$.
(b) If $m=3,4,5$, then $A R(G)=2$.
(c) If $6 \leq m \leq 8$, then $A R(G) \in\{2,3\}$. Furthermore, if $m \geq 6$ and c is a 2-edge coloring of G such that (i) there is a monochromatic subgraph F of G where $F \in\left\{P_{4}, P_{3}+K_{2}\right\}$ and $(i i) G-E(F)$ has a monochromatic subgraph of size 2 , then $A R_{c}(G) \geq 3$.

If G is a graph of size 8 , then we only know that $A R(G)=2$ or $A R(G)=3$. The situation is clearer if G has size 9 .
Proposition 3.1. If G is a graph of size 9, then $A R(G)=3$.
Proof. Let G be a graph of size 9. By Observation 2.1, $A R(G) \leq 3$. It remains to show that $A R(G) \geq 3$. Let there be given a red-blue coloring c of G, where G_{r} is the red subgraph and G_{b} is the blue subgraph. Let m_{r} be the size of G_{r} and m_{b} the size of G_{b}. Thus, $m_{r}+m_{b}=9$. We may assume that $m_{r}>m_{b}$ and so $m_{r} \geq 5$. If G_{r} is a star or a matching of size $m_{r} \geq 5$, then G has a Ramsey chain of length 3 and so $A R_{c}(G) \geq 3$. If G_{r} is neither a star nor a matching, then either $P_{3}+K_{2} \subseteq G_{r}$ or $P_{4} \subseteq G_{r}$ and so $A R_{c}(G) \geq 3$ by Observation 3.1(c). Therefore, $A R(G) \geq 3$ and so $A R(G)=3$.

For the following results, it is convenient to refer the colors in a 2-edge coloring of a graph as 1 and 2 .
Observation 3.2. Let c be a 2-edge coloring of the cycle $H=C_{m}$ of size $m \geq 3$. For $i=1,2$, let H_{i} be the subgraph of size m_{i} in H induced by the set of edges colored i.
(a) If $m_{i} \geq 3$ where $i \in\{1,2\}$, then $2 K_{2} \subseteq H_{i}$. Thus, if $m \geq 6$ and such that $2 K_{2} \subseteq H_{i}$ and $m_{j} \geq 3$, where $\{i, j\}=\{1,2\}$, then $A R_{c}\left(C_{m}\right) \geq 3$.
(b) If $m_{1}, m_{2} \geq 3$, then $A R_{c}\left(C_{m}\right) \geq 3$.
(c) If $m_{i} \geq 5$ for some $i \in\{1,2\}$, then $A R_{c}\left(C_{m}\right) \geq 3$.

In order to present the next result, we first present the following observation.
Observation 3.3. For every 2 -edge coloring of the cycle C_{m} of size $m \geq 3$, either (i) the colors of every two edges at distance 2 in C_{m} are the same or (ii) there exists an edge in C_{m} whose neighboring edges are colored differently.

The following result will be useful to us.
Theorem 3.1. For each integer $m \geq 3, A R\left(C_{m}\right) \leq A R\left(C_{m+1}\right)$.
Proof. Let c be a 2-edge coloring of $C_{m+1}=\left(v_{1}, v_{2}, \ldots, v_{m+1}, v_{1}\right)$ such that $A R_{c}\left(C_{m+1}\right)=A R\left(C_{m+1}\right)=k$. For $i=1,2$, let H_{i} be the subgraph of size m_{i} induced by the set of edges colored i in C_{m+1}. By Observation 3.3, either (i) $H_{i}=m_{i} K_{2}$ for $i=1,2$ where $m_{1}=m_{2}=(m+1) / 2$ or (ii) there are three consecutive edges f_{1}, f_{2}, f_{3} in C_{m+1} such that $c\left(f_{1}\right) \neq c\left(f_{3}\right)$ and the color $c\left(f_{2}\right)$ is assigned to at least two edges of C_{m+1}. We consider these two cases.

Case 1. $H_{i}=m_{i} K_{2}$ for $i=1,2$ where $m_{1}=m_{2}=(m+1) / 2$. Thus, $m+1=2 \ell$ for some integer $\ell \geq 2$ and $H_{1}=H_{2}=\ell K_{2}$. We may assume that $c\left(v_{m+1} v_{1}\right)=2$ and so $c\left(v_{m} v_{m+1}\right)=c\left(v_{1} v_{2}\right)=1$. By contracting the edge $v_{m+1} v_{1}$ in C_{m+1} and labeling the identified vertices v_{m+1} and v_{1} by v_{1}, we obtain the cycle $C_{m}=\left(v_{1}, v_{2}, \ldots, v_{m}, v_{1}\right)$ and a 2-edge coloring c^{\prime} of C_{m} defined by $c^{\prime}(e)=c(e)$ for each edge $e \in E\left(C_{m}\right)-\left\{v_{1} v_{m}\right\}$ and $c^{\prime}\left(v_{m} v_{1}\right)=c\left(v_{m} v_{m+1}\right)=1$. Let H_{1}^{\prime} and H_{2}^{\prime} be the resulting subgraphs of C_{m} such that the edges of H_{i}^{\prime} are colored i by c^{\prime} for $i=1,2$. Then $H_{1}^{\prime}=(\ell-2) K_{2}+P_{3}$ and $H_{2}^{\prime}=(\ell-1) K_{2} \subset H_{2}$ in C_{m+1}. We claim that there is no ascending Ramsey sequence of length $k+1$ in C_{m} with respect to c^{\prime}. Assume, to the contrary, that there is a Ramsey chain $\left(G_{1}, G_{2}, \ldots, G_{k+1}\right)$ of length $k+1$ in C_{m} with respect to c^{\prime}. We may assume that $\left|E\left(G_{j}\right)\right|=j$ for $1 \leq j \leq k+1$. Hence, $G_{1}, G_{2}, \ldots, G_{k+1}$ are pairwise edge-disjoint subgraphs of C_{m} such that
(1) G_{j} is monochromatic for $1 \leq j \leq k+1$,
(2) G_{j} is isomorphic to a proper subgraph of G_{j+1} in for $1 \leq j \leq k$, and
(3) $G_{j}=j K_{2}$ for $1 \leq j \leq k$ and $G_{k+1} \in\left\{(k+1) K_{2},(k-1) P_{3}+K_{2}\right\}$.

For $1 \leq j \leq k$, if $v_{m} v_{1} \notin E\left(G_{j}\right)$, then G_{j} is a subgraph of C_{m+1}; while if $v_{m} v_{1} \in E\left(G_{j}\right)$, then G_{j} can be considered as a subgraph of C_{m+1} by replacing $v_{m} v_{1}$ by $v_{m} v_{m+1}$. Thus, each G_{j} is a subgraph of C_{m+1} for $1 \leq j \leq k$, where $v_{m} v_{1}$ is replaced by $v_{m} v_{m+1}$ if necessary.
\star If $G_{k+1}=(k+1) K_{2}$, then G_{k+1} is also a subgraph of C_{m+1}, where $v_{m} v_{1}$ is replaced by $v_{m} v_{m+1}$ if necessary. Hence, $\left(G_{1}, G_{2}, \ldots, G_{k+1}\right)$ is a Ramsey chain of length $k+1$ in C_{m+1}, which is impossible.
\star If $G_{k+1}=(k-1) P_{3}+K_{2}$, then $G_{k+1} \subseteq H_{1}^{\prime}$ and $P_{3}=\left(v_{m}, v_{1}, v_{2}\right)$. Thus, $v_{m} v_{1} \notin E\left(G_{j}\right)$ for $1 \leq j \leq k$ and so G_{j} is a subgraph of C_{m+1} for $1 \leq j \leq k$. Furthermore, the subgraph $(k-1) K_{2}$ of G_{k+1} is also a subgraph of C_{m+1}. We define a sequence $F_{1}, F_{2}, \ldots, F_{k+1}$ of $k+1$ subgraphs of C_{m+1} by $F_{j}=G_{j}=j K_{2} \subseteq C_{m+1}$ for $1 \leq j \leq k$ and

$$
F_{k+1}=\left(G_{k+1}-v_{m} v_{1}\right)+v_{m} v_{m+1}=(k+1) K_{2} \subseteq H_{1},
$$

where $P_{3}=\left(v_{m}, v_{1}, v_{2}\right) \subseteq C_{m}$ in G_{k+1} is replaced by $2 K_{2}$ (whose edge set is $\left\{v_{m} v_{m+1}, v_{1} v_{2}\right\}$) in C_{m+1}. Thus, $F_{1}, F_{2}, \ldots, F_{k+1}$ is a sequence of $k+1$ pairwise edge-disjoint subgraphs of C_{m+1} such that F_{j} is monochromatic for $1 \leq j \leq k+1$ and F_{j} is isomorphic to a proper subgraph of F_{j+1} for $1 \leq j \leq k$. Hence, $\left(F_{1}, F_{2}, \ldots, F_{k+1}\right)$ is a Ramsey chain of length $k+1$ in C_{m+1}, which is impossible.

Therefore, $A R\left(C_{m}\right) \leq A R_{c^{\prime}}\left(C_{m}\right) \leq k=A R\left(C_{m+1}\right)$.

Case 2. There are three consecutive edges f_{1}, f_{2}, f_{3} in C_{m+1} such that $c\left(f_{1}\right) \neq c\left(f_{3}\right)$. We may assume that $f_{1}=v_{m} v_{m+1}$, $f_{2}=v_{m+1} v_{1}$ and $f_{3}=v_{1} v_{2}$ such that $c\left(v_{m} v_{m+1}\right)=c\left(v_{m+1} v_{1}\right)=1$ and $c\left(v_{1} v_{2}\right)=2$. By contracting the edge $v_{m+1} v_{1}$ in C_{m+1} and labeling the identified vertices v_{m+1} and v_{1} by v_{1}, we obtain the cycle $C_{m}=\left(v_{1}, v_{2}, \ldots, v_{m}, v_{1}\right)$. The 2-edge coloring c of C_{m+1} gives rise to a 2-edge coloring c^{\prime} of C_{m} defined by $c^{\prime}(e)=c(e)$ for each edge $e \in E\left(C_{m}\right)-\left\{v_{1} v_{m}\right\}$ and $c^{\prime}\left(v_{m} v_{1}\right)=c\left(v_{m} v_{m+1}\right)=1$. Let H_{1}^{\prime} and H_{2}^{\prime} be the resulting subgraphs of C_{m} such that the edges of H_{i}^{\prime} are colored i by c^{\prime} for $i=1,2$. Thus, $H_{1}^{\prime}=H_{1}-v_{1} \subseteq C_{m+1}$ where $v_{m} v_{m+1}$ in H_{1} in C_{m+1} is replaced by $v_{m} v_{1}$ in H_{1}^{\prime} in C_{m} and $H_{2}^{\prime}=H_{2}$. We claim that there is no a Ramsey chain of length $k+1$ in C_{m} with respect to c^{\prime}. Assume, to the contrary, that there is a Ramsey chain $\left(G_{1}, G_{2}, \ldots, G_{k+1}\right)$ of length $k+1$ in C_{m} with respect to c^{\prime}. Hence, $G_{1}, G_{2}, \ldots, G_{k+1}$ are pairwise edge-disjoint subgraphs of C_{m} such that $G_{j} \subseteq H_{1}^{\prime}$ or $G_{j} \subseteq H_{2}^{\prime}$ for each integer j with $1 \leq j \leq k+1$ and G_{j} is isomorphic to a proper subgraph of G_{j+1} in C_{m} for $1 \leq j \leq k$. By the defining property of C_{m+1} and the coloring c, it follows that $\left(G_{1}, G_{2}, \ldots, G_{k+1}\right)$ is a Ramsey chain of length $k+1$ in C_{m+1}, which is impossible. Therefore, $A R\left(C_{m}\right) \leq A R_{c^{\prime}}\left(C_{m}\right) \leq k=A R\left(C_{m+1}\right)$.

Not only is $A R\left(C_{m+1}\right) \geq A R\left(C_{m}\right)$ for $m \geq 3$, but even more can be said.
Theorem 3.2. $\lim _{m \rightarrow \infty} A R\left(C_{m}\right)=\infty$.
Proof. We show, for every positive integer k, that there is a positive integer m such that $A R\left(C_{m}\right) \geq k$. Let

$$
m=\binom{k+1}{2}-1=2\left[\binom{k+1}{2}-1\right]+1
$$

and let c be any red-blue coloring of C_{m}. We show that $A R_{c}\left(C_{m}\right) \geq k$. Let H_{r} be the red subgraph of size m_{r} induced by the set of red edges and let H_{b} be the blue subgraph of size m_{b} induced by the set of blue edges, where $m_{r} \leq m_{b}$. Since

$$
m_{b} \geq\left\lceil\frac{2\left[\binom{k+1}{2}-1\right]+1}{2}\right\rceil=\binom{k+1}{2}
$$

it follows that H_{b} contains edge-disjoint copies of $K_{2}, 2 K_{2}, \ldots, k K_{2}$ and so $A R_{c}\left(C_{m}\right) \geq k$. Therefore, $A R\left(C_{m}\right) \geq k$. It then follows by Theorem 3.1 that $\lim _{m \rightarrow \infty} A R\left(C_{m}\right)=\infty$.

We are now prepared to determine the Ramsey indices of all cycles C_{m} for $3 \leq m \leq 20$.
Proposition 3.2. The Ramsey index of C_{m} for $3 \leq m \leq 20$ is given as follows

$$
A R\left(C_{m}\right)= \begin{cases}2 & \text { if } 3 \leq m \leq 5 \\ 3 & \text { if } 6 \leq m \leq 9 \\ 4 & \text { if } 10 \leq m \leq 14 \\ 5 & \text { if } 15 \leq m \leq 20\end{cases}
$$

Proof. Since the proof is rather lengthy and the reasoning technique is similar, we only show that $A R\left(C_{m}\right)=5$ for $15 \leq m \leq 20$. To do this, it suffices to show that $A R\left(C_{15}\right)=5$. Since $20<\binom{6+1}{2}$, once it has been verified that $A R\left(C_{15}\right)=5$, it follows by Theorem 3.1 that $A R\left(C_{m}\right)=5$ for $15 \leq m \leq 20$. Since the size of C_{15} is $15=\binom{5+1}{2}$, it follows that $A R\left(C_{15}\right) \leq 5$. It therefore suffices to show that $A R\left(C_{15}\right) \geq 5$. Let c be a red-blue edge coloring of $H=C_{15}$ using the colors 1 and 2 . We show that there is a Ramsey chain $R_{c}=\left(G_{1}, G_{2}, G_{3}, G_{4}, G_{5}\right)$ of length 5 in H with respect to c. Since the size of C_{15} is 15 , it follows that $\left\{G_{1}, G_{2}, G_{3}, G_{4}, G_{5}\right\}$ is a decomposition of C_{15}. Let H_{a} denote the subgraph of H of size a induced by the set of red edges of H and let H_{b} denote the subgraph of H of size b induced by the set of blue edges of H. We may assume that $a<b$. Then $1 \leq a \leq 7$ and $a+b=15$. Hence, $(a, b)=(i, 15-i)$ for $i=1,2, \ldots, 7$. Furthermore, H_{a} and H_{b} have the same number κ of components. Then $1 \leq \kappa \leq a \leq 7$. We consider these seven cases. For convenience, let $Q_{q}=P_{q+1}$ denote a path of size $q \geq 1$.

Case 1. $\kappa=1$. Then H_{a} is the path of size a where $1 \leq a \leq 7$ and H_{b} is the path of size b where $8 \leq b \leq 14$ and $a+b=15$. First, observe that C_{15} can be decomposed into five consecutive paths $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}$. If $1 \leq a \leq 5$, let $H_{a}=Q_{a}$. Then $H_{b}=Q_{15-a}$ can be decomposed into the remaining four paths. If $a=6$, then H_{a} can be decomposed into Q_{1}, Q_{2}, Q_{3} and H_{b} can be decomposed into Q_{4} and Q_{5}. If $a=7$, then H_{a} can be decomposed into Q_{3} and Q_{4} and H_{b} can be decomposed into Q_{5}, Q_{1}, and Q_{2}. Therefore, $R_{c}=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}\right)$.

Case 2. $\kappa=2$. Then $H_{a}=Q_{a_{1}}+Q_{a_{2}}$, and $H_{b}=Q_{b_{1}}+Q_{b_{2}}$ where $2 \leq a=a_{1}+a_{2} \leq 7$ with $a_{1} \geq a_{2}$ and $b=b_{1}+b_{2}$ with $b_{1} \geq b_{2}$.
\star If $a=2$, then $H_{a}=2 K_{2}$ and $H_{b} \in\left\{P_{13}+K_{2}, P_{12}+P_{3}, P_{11}+P_{4}, P_{10}+P_{5}, P_{9}+P_{6}, P_{8}+P_{7}\right\}$. The graph H_{b} can be decomposed into $K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}$, as shown in Figure 1, where an edge labeled i belongs to $i K_{2}$. Therefore, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$.

Figure 1: Decompositions of H_{b} when $b=13$.
\star If $a=3$, then $H_{a}=P_{3}+K_{2}$ and so H_{a} can be decomposed into K_{2} and $2 K_{2}$. Furthermore,

$$
H_{b} \in\left\{P_{12}+K_{2}, P_{11}+P_{3}, P_{10}+P_{4}, P_{9}+P_{5}, P_{8}+P_{6}, P_{7}+P_{7}\right\} .
$$

Hence, H_{b} can be decomposed into $3 K_{2}, 4 K_{2}, 5 K_{2}$, as shown in Figure 2, where an edge labeled i belongs to $i K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$.

Figure 2: Decompositions of H_{b} when $b=12$.
\star If $a=4$, then $H_{a} \in\left\{P_{4}+K_{2}, 2 P_{3}\right\}$ and $H_{b} \in\left\{P_{11}+K_{2}, P_{10}+P_{3}, P_{9}+P_{4}, P_{8}+P_{5}, P_{7}+P_{6}\right\}$.

- If $H_{a}=P_{4}+K_{2}$, then H_{a} can be decomposed into K_{2} and $3 K_{2}$ and H_{b} can be decomposed into $2 K_{2}, 4 K_{2}, 5 K_{2}$, as shown in Figure 3, where an edge labeled i belongs to $i K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$.

Figure 3: Decompositions of H_{b} when $b=11$ and when $H_{a}=P_{4}+K_{2}$.

- If $H_{a}=2 P_{3}$, then H_{a} can be decomposed into $G_{1}=K_{2}$ and $G_{3}=P_{3}+K_{2}$ and H_{b} can be decomposed into $G_{2}=P_{3}, G_{4}=P_{3}+2 K_{2}, G_{5}=P_{3}+3 K_{2}$, where an edge labeled i belongs to G_{i} for $i=2,4,5$. Therefore, $R_{c}=\left(K_{2}, P_{3}, P_{3}+K_{2}, P_{3}+2 K_{2}, P_{3}+3 K_{2}\right)$.
\star If $a=5$, then $H_{a} \in\left\{P_{5}+K_{2}, P_{4}+P_{3}\right\}$ and $H_{b} \in\left\{P_{10}+K_{2}, P_{9}+P_{3}, P_{8}+P_{4}, P_{7}+P_{5}, P_{6}+P_{6}\right\}$. Then H_{a} can be decomposed into $2 K_{2}$ and $3 K_{2}$ and H_{b} can be decomposed into $K_{2}, 4 K_{2}, 5 K_{2}$, as shown in Figure 4, where an edge labeled i belongs to $i K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$.

Figure 4: Decompositions of H_{b} when $b=10$.
\star If $a=6$, then $H_{a} \in\left\{P_{6}+K_{2}, P_{5}+P_{3}, 2 P_{4}\right\}$ and $H_{b} \in\left\{P_{9}+K_{2}, P_{8}+P_{3}, P_{7}+P_{4}, P_{6}+P_{5}\right\}$. Then H_{a} can be decomposed into $K_{2}, 2 K_{2}, 3 K_{2}$ and H_{b} can be decomposed into $4 K_{2}$ and $5 K_{2}$, as shown in Figure 5, where an edge labeled i belongs to $i K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$.

Figure 5: Decompositions of H_{b} when $b=9$ and when $H_{a} \in\left\{P_{6}+K_{2}, P_{5}+P_{3}, 2 P_{4}\right\}$.
\star If $a=7$, then $H_{a} \in\left\{P_{7}+K_{2}, P_{6}+P_{3}, P_{5}+P_{4}\right\}$ and $H_{b} \in\left\{P_{8}+K_{2}, P_{7}+P_{3}, P_{6}+P_{4}, 2 P_{5}\right\}$. Then H_{a} can be decomposed into $G_{3}=P_{3}+K_{2}$ and $G_{4}=P_{3}+2 K_{2}$ and H_{b} can be decomposed into $G_{1}=K_{2}, G_{2}=P_{3}, G_{5}=P_{4}+2 K_{2}$, as shown in Figure 6, where an edge labeled i belongs to G_{i}. Thus, $R_{c}=\left(K_{2}, P_{3}, P_{3}+K_{2}, P_{3}+2 K_{2}, P_{4}+2 K_{2}\right)$.

Figure 6: Decompositions of H_{a} and H_{b} when $a=7$.
Case 3. $\kappa=$ 3. Then $H_{a}=Q_{a_{1}}+Q_{a_{2}}+Q_{a_{3}}$, and $H_{b}=Q_{b_{1}}+Q_{b_{2}}+Q_{b_{3}}$ where $3 \leq a=a_{1}+a_{2}+a_{3} \leq 7$ with $a_{1} \geq a_{2} \geq a_{3}$ and $b=b_{1}+b_{2}+b_{3}$ with $b_{1} \geq b_{2} \geq b_{3}$. If $a=3$, then $H_{a}=3 K_{2}$ and so H_{a} can be decomposed into K_{2} and $2 K_{2}$. The graph H_{b} is a linear forest of size 12 with three components. It can be shown that H_{b} can be decomposed into $3 K_{2}, 4 K_{2}, 5 K_{2}$ (see Figure 2 where H_{a} is decomposed into K_{2} and $2 K_{2}$ and H_{b} has two components and $b=12$). Thus, $R_{c}=$ $\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$. If $a=4$, then $H_{a}=P_{3}+2 K_{2}$ and then H_{a} can be decomposed into K_{2} and $3 K_{2}$ The graph H_{b} is a linear forest of size 11 with three components. It can be shown that H_{b} can be decomposed into $2 K_{2}, 4 K_{2}, 5 K_{2}$, (see Figure 3 where H_{a} is decomposed into K_{2} and $3 K_{2}$ and H_{b} has two components and $b=11$). Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$. If $a=5$, then $H_{a} \in\left\{P_{4}+2 K_{2}, 2 P_{3}+K_{2}\right\}$ and so H_{a} can be decomposed into $2 K_{2}$ and $3 K_{2}$. The graph H_{b} is a linear forest of size 10 with three components. It can be shown that H_{b} can be decomposed into $K_{2}, 4 K_{2}, 5 K_{2}$, (see Figure 4 where H_{a} is decomposed into $2 K_{2}$ and $3 K_{2}$ and H_{b} has two components and $b=10$). Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$. If $a=6$, then $H_{a} \in\left\{P_{5}+2 K_{2}, P_{4}+P_{3}+K_{2}, 3 P_{3}\right\}$ and so H_{a} can be decomposed into $K_{2}, 2 K_{2}, 3 K_{2}$. The graph H_{b} is a linear forest of size 9 with three components. It can be shown that H_{b} can be decomposed into $4 K_{2}$ and $5 K_{2}$, (see Figure 5 , where H_{a} is decomposed into $K_{2}, 2 K_{2}, 3 K_{2}$ and H_{b} has two components and $b=9$). Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$. If $a=7$, then $H_{a} \in\left\{P_{6}+2 K_{2}, P_{5}+P_{3}+K_{2}, 2 P_{4}+K_{2}, P_{4}+2 P_{3}\right\}$ and so H_{a} can be decomposed into $3 K_{2}, 4 K_{2}$. The graph H_{b} is a linear forest of size 8 with three components and can be decomposed into $K_{2}, 2 K_{2}, 5 K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$.

Case 4. $\kappa=4$. Then $H_{a}=Q_{a_{1}}+Q_{a_{2}}+Q_{a_{3}}+Q_{a_{4}}$, and $H_{b}=Q_{b_{1}}+Q_{b_{2}}+Q_{b_{3}}+Q_{b_{4}}$ where $4 \leq a=a_{1}+a_{2}+a_{3}+a_{4} \leq 7$ with $a_{1} \geq a_{2} \geq a_{3} \geq a_{4}$ and $b=b_{1}+b_{2}+b_{3}+b_{4}$ with $b_{1} \geq b_{2} \geq b_{3} \geq b_{4}$. If $a=4$, then $H_{a}=4 K_{2}$ and so H_{a} can be decomposed into $K_{2}, 3 K_{2}$. The graph H_{b} is a linear forest of size 11 with four components. It can be shown that H_{b} can be decomposed into $2 K_{2}, 4 K_{2}, 5 K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$. If $a=5$, then $H_{a}=P_{3}+3 K_{2}$ and so H_{a} can be decomposed into $K_{2}, 4 K_{2}$. The graph H_{b} is a linear forest of size 10 with four components. It can be shown that H_{b} can be decomposed into $2 K_{2}, 3 K_{2}, 5 K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$. If $a=6$, then $H_{a} \in\left\{P_{4}+3 K_{2}, 2 P_{3}+2 K_{2}\right\}$ and so H_{a} can be decomposed into $2 K_{2}, 4 K_{2}$. The graph H_{b} is a linear forest of size 9 with four components and can be decomposed into $K_{2}, 3 K_{2}, 5 K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$. If $a=7$, then $H_{a} \in\left\{P_{5}+3 K_{2}, P_{4}+P_{3}+2 K_{2}, 3 P_{3}+K_{2}\right\}$ and so H_{a} can be decomposed into $3 K_{2}, 4 K_{2}$. The graph H_{b} is a linear forest of size 8 with four components and can be decomposed into $K_{2}, 2 K_{2}, 5 K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$.

Case 5. $\kappa=5$. Then $H_{a}=Q_{a_{1}}+Q_{a_{2}}+Q_{a_{3}}+Q_{a_{4}}+Q_{a_{5}}$ and $H_{b}=Q_{b_{1}}+Q_{b_{2}}+Q_{b_{3}}+Q_{b_{4}}+Q_{b_{5}}$ where $5 \leq a=$ $a_{1}+a_{2}+a_{3}+a_{4}+a_{5} \leq 7$ with $a_{1} \geq a_{2} \geq a_{3} \geq a_{4} \geq a_{5}$ and $b=b_{1}+b_{2}+b_{3}+b_{4}+b_{5}$ with $b_{1} \geq b_{2} \geq b_{3} \geq b_{4} \geq b_{5}$. If $a=5$, then $H_{a}=5 K_{2}$ and so H_{a} can be decomposed into $K_{2}, 4 K_{2}$. The graph H_{b} is a linear forest of size 10 with five components and can be decomposed into $2 K_{2}, 3 K_{2}, 5 K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$. If $a=6$, then $H_{a}=P_{3}+4 K_{2}$ and so H_{a} can be decomposed into $K_{2}, 5 K_{2}$. The graph H_{b} is a linear forest of size 9 with five components and can be decomposed into $2 K_{2}, 3 K_{2}, 4 K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$. If $a=7$, then $H_{a} \in\left\{P_{4}+4 K_{2}, 2 P_{3}+3 K_{2}\right\}$ and so H_{a} can be decomposed into $2 K_{2}, 5 K_{2}$. The graph H_{b} is a linear forest of size 8 with five components and can be decomposed into $K_{2}, 3 K_{2}, 4 K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$.

Case 6. $\kappa=6$. Then $H_{a}=Q_{a_{1}}+Q_{a_{2}}+\cdots+Q_{a_{6}}$ and $H_{b}=Q_{b_{1}}+Q_{b_{2}}+\cdots+Q_{b_{6}}$ where $6 \leq a=a_{1}+a_{2}+\cdots+a_{6} \leq 7$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{6}$ and $b=b_{1}+b_{2}+\cdots+b_{6}$ with $b_{1} \geq b_{2} \geq \cdots \geq b_{6}$. If $a=6$, then $H_{a}=6 K_{2}$ and so H_{a} can be decomposed into $K_{2}, 5 K_{2}$. The graph H_{b} is a linear forest of size 9 with five components and can be decomposed into $2 K_{2}, 3 K_{2}, 4 K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$. If $a=7$, then $H_{a}=P_{3}+5 K_{2}$ and so H_{a} can be decomposed into $2 K_{2}, 5 K_{2}$. The graph H_{b} is a linear forest of size 8 with five components and can be decomposed into $K_{2}, 3 K_{2}, 4 K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$.

Case 7. $\kappa=7$. Then (1) $a=7$ and $H_{a}=7 K_{2}$ and (2) $b=8$ and $H_{b}=P_{3}+6 K_{2}$. The graph H_{a} can be decomposed into $3 K_{2}, 4 K_{2}$ and the graph H_{b} can be decomposed into $K_{2}, 3 K_{2}, 5 K_{2}$. Thus, $R_{c}=\left(K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}, 5 K_{2}\right)$.

Therefore, $A R\left(C_{15}\right)=5$ and so $A R\left(C_{m}\right)=5$ for $15 \leq m \leq 20$.
Proposition 3.2 can therefore be stated as below.
Proposition 3.3. Let k be an integer such that $2 \leq k \leq 5$. Then $A R\left(C_{m}\right)=k$ if and only if

$$
\binom{k+1}{2} \leq m<\binom{k+2}{2} .
$$

Consequently, for cycles of size 20 or less, we have the same result as stated in Corollary 2.1 for stars and matchings. There is reason to believe that Corollary 2.1 holds for all cycles as well as all stars and matchings.

Conjecture 3.1. For every integer $m \geq 3, A R\left(C_{m}\right)=k$ if and only if

$$
\binom{k+1}{2} \leq m<\binom{k+2}{2} .
$$

4. Maximal Ramsey chains

Let c be a red-blue edge coloring of a graph G. A Ramsey chain ($G_{1}, G_{2}, \ldots, G_{k}$) of G with respect to c is maximal if the chain cannot be extended to one of greater length. The minimum length of a maximal Ramsey chain in G with respect to c is referred to as the lower Ramsey index $A R_{c}^{-}(G)$ of G with respect to c. The lower Ramsey index $A R^{-}(G)$ of G is

$$
A R^{-}(G)=\min \left\{A R_{c}^{-}(G): c \text { is a red-blue coloring of } G\right\} .
$$

Thus, $A R^{-}(G) \leq A R(G)$ for every graph G. We now investigate this inequality.
By Corollary 2.1, if G is the star $K_{1, m}$ or the matching $m K_{2}$ of size $m \geq 3$, then $A R(G)=k$ for an integer $k \geq 2$ if and only if $\binom{k+1}{2} \leq m<\binom{k+2}{2}$. We now determine the lower Ramsey indices of stars and matchings. To do this, we return to a class of graphs we encountered in Theorem 2.1. For a Ramsey chain R in a graph, we write $E(R)$ for the union of the edge sets of the links in R.

Theorem 4.1. Let G be a graph of size $m \geq 6$ without isolated vertices such that for every two subgraphs F and H of G without isolated vertices, $|E(F)|<|E(H)|$ implies $F \subseteq H$.
(1) If $\binom{k+1}{2} \leq m \leq\binom{ k+2}{2}-3$, then $A R^{-}(G)=k-1$.
(2) If $\binom{k+2}{2}-2 \leq m \leq\binom{ k+2}{2}-1$, then $A R^{-}(G)=k$.

Proof. To verify (1), we first show that if $m=\binom{k+1}{2}$, then $\left.A R^{-} G\right)=k-1$. Let c be the red-blue coloring of G that assigns red to all edges of G except one and let s_{c} be a Ramsey chain of length $k-1$ consisting of $k-1$ red subgraphs of G. Then s_{c} is maximal and so $A R^{-}(G) \leq k-1$. Next, we show that

$$
A R^{-}(G) \geq k-1
$$

We claim that every Ramsey chain $R_{j}=\left(G_{1}, G_{2}, \ldots, G_{j}\right)$ of length j, where $j \leq k-2$, can be extended to a Ramsey chain ($G_{1}, G_{2}, \ldots, G_{j}, G_{j+1}$) of length $j+1$. Observe that

$$
\left|E(G)-E\left(R_{j}\right)\right|=\binom{k+1}{2}-\binom{j+1}{2}=(j+1)+(j+2)+\cdots+k \geq 2 k-1
$$

and so

$$
\left\lceil\frac{\binom{k+1}{2}-\binom{j+1}{2}}{2}\right\rceil \geq k-1 .
$$

Hence, $G-E\left(R_{j}\right)$ contains a monochromatic subgraph of size at least $k-1$. Since the required size of G_{j+1} is $j+1$ and $j+1 \leq k-1$, the chain R_{j} can be extended to ($G_{1}, G_{2}, \ldots, G_{j}, G_{j+1}$). Thus, $A R^{-}(G) \geq k-1$ and so $A R^{-}(G)=k-1$.

We now show that if $m=\binom{k+1}{2}-3$, then $A R^{-}(G)=k-1$. Since $k \geq 2$, it follows that

$$
\binom{k+2}{2}-3 \geq\binom{ k+1}{2}
$$

and so

$$
A R^{-}(G) \geq A R^{-}\left(\binom{k+1}{2} K_{2}\right)=k-1
$$

Thus, it remains to show that $A R^{-}(G) \leq k-1$. Let c be the red-blue coloring of G that assigns blue to $k-1$ edges of G and assigns red to the remaining $\binom{k+2}{2}-3-(k-1)$ edges of G. Since

$$
\binom{k+2}{2}-3-(k-1)=\binom{k+1}{2}-1
$$

there is a Ramsey chain $R_{c}=\left(G_{1}, G_{2}, \ldots, G_{k-1}\right)$ of length $k-1$ where each subgraph $G_{i}(1 \leq i \leq k-1)$ is a red subgraph of G but no such sequence of length k where all subgraphs are red. Since there are only $k-1$ blue edges, there is no blue subgraph of size k. Thus, s_{c} cannot be extended and so s_{c} is maximal. Therefore, $A R^{-}(G) \leq k-1$ and so $A R^{-}(G)=k-1$.

If $\binom{k+1}{2} \leq m \leq\binom{ k+2}{2}-3$, then

$$
A R^{-}\left(\binom{k+1}{2} K_{2}\right) \leq A R^{-}(G) \leq A R^{-}\left(\left[\binom{k+2}{2}-3\right] K_{2}\right)
$$

and so $A R^{-}(G)=k-1$.
Next, we verify (2). Let $m=\binom{k+2}{2}-2$. Since $A R^{-}(G) \leq A R(G) \leq k$ by Corollary 2.1, it remains to show that $A R^{-}(G) \geq k$. We claim that every Ramsey chain $R_{j}=\left(G_{1}, G_{2}, \ldots, G_{j}\right)$ of length j, where $j \leq k-1$, can be extended to a Ramsey chain $\left(G_{1}, G_{2}, \ldots, G_{j}, G_{j+1}\right)$ of length $j+1$. Observe that

$$
\left|E(G)-E\left(R_{j}\right)\right|=\left[\binom{k+2}{2}-2\right]-\binom{j+1}{2}=[(j+1)+(j+2)+\cdots+k+(k+1)]-2 \geq 2 k-1
$$

and so

$$
\left\lceil\frac{\left[\binom{k+2}{2}-2\right]-\binom{j+1}{2}}{2}\right\rceil \geq k .
$$

Hence, $G-E\left(R_{j}\right)$ contains a monochromatic subgraph of size at least k. Since the required size of G_{j+1} is $j+1$ and $j+1 \leq k$, the chain R_{j} can be extended to a Ramsey chain $\left(G_{1}, G_{2}, \ldots, G_{j}, G_{j+1}\right.$). Thus, $A R^{-}(G) \geq k$. Therefore, $A R^{-}(G)=k$.

The following is a consequence of Proposition 2.1 and Theorem 4.1.
Corollary 4.1. Let $k \geq 2$ be an integer and let G be the star $K_{1, m}$ or the matching $m K_{2}$.
(1) If $\binom{k+1}{2} \leq m \leq\binom{ k+2}{2}-3$, then $A R^{-}(G)=k-1$.
(2) If $\binom{k+2}{2}-2 \leq m \leq\binom{ k+2}{2}-1$, then $A R^{-}(G)=k$.

5. Comparing two Ramsey indices

We have seen that $A R^{-}(G) \leq A R(G)$ for every graph G. By Theorems 2.1 and 4.1, if $G \in\left\{K_{1, m}, m K_{2}\right\}$ where

$$
\binom{k+2}{2}-2 \leq m \leq\binom{ k+2}{2}-1
$$

then $A R^{-1}(G)=A R(G)=k$; while if $\binom{k+1}{2} \leq m<\binom{k+2}{2}-3$, then $A R^{-1}(G)=k-1$ and $A R(G)=k$. Therefore, there are graphs G for which $A R^{-1}(G)=A R(G)$ and graphs G for which $A R(G)=A R^{-1}(G)+1$. This brings up the question as to how large the number $A R(G)-A R^{-}(G)$ may be for some graph G. In order to answer this question, we first present a lemma.

Lemma 5.1. Let $q \geq 3$ be an integer. For each integer m with $\frac{1}{2}\binom{q+1}{2}<m<\binom{q+1}{2}$, there exist integers $k_{1}, k_{2}, \ldots, k_{t}$ with $1 \leq k_{1}<k_{2}<\cdots<k_{t}=q$ such that $\sum_{i=1}^{t} k_{i}=m$.

Proof. We proceed by induction on q. If $q=3$, then $\binom{q+1}{2}=\binom{4}{2}=6$. If m is an integer such that $3<m<6$, then $m=4$ or $m=5$. If $m=4$, then $1+3=4$; while if $m=5$, then $2+3=5$. Thus, the statement is true for $m=3$. Assume that the statement is true for an integer q where $q \geq 3$. We show that the statement is true for $q+1$. Let m be an integer such that $\frac{1}{2}\binom{q+2}{2}<m<\binom{q+2}{2}$. Since $q+1 \geq 4$, it follows that $q+1<\frac{1}{2}\binom{q+2}{2}$. Let $m^{\prime}=m-(q+1)$. Then

$$
\frac{1}{2}\binom{q+2}{2}-(q+1)<m^{\prime}<\binom{q+2}{2}-(q+1)
$$

Hence,

$$
q \leq \frac{1}{2}\binom{q+1}{2}<m^{\prime}<\binom{q+1}{2}
$$

for each integer $q \geq 3$. By the induction hypothesis, there exists integers $k_{1}, k_{2}, \ldots, k_{t}$ with $1 \leq k_{1}<k_{2}<\cdots<k_{t}=q$ such that $\sum_{i=1}^{t} k_{i}=m^{\prime}$. Letting $k_{t+1}=q+1$, we obtain $\sum_{i=1}^{t+1} k_{i}=m$.

With the aid of Lemma 5.1 and Ramsey chains of cycles, we now show that $A R(G)-A R^{-}(G)$ can be arbitrarily large.
Theorem 5.1. For every two integers p and q with $2 \leq p<q$, there exists a cycle with a red-blue coloring possessing a maximal Ramsey chain of length pand a maximum Ramsey chain of length q.

Proof. If $\binom{p+1}{2}$ and $\binom{q+1}{2}$ are of opposite parity, let $n=\binom{q+1}{2}$; while if $\binom{p+1}{2}$ and $\binom{q+1}{2}$ are of the same parity, let $n=\binom{q+1}{2}+1$. Let $G=C_{n}$ where the n consecutive edges of G are denoted by $e_{1}, e_{2}, \ldots, e_{n}$. We now define a red-blue coloring of G where e_{i} is colored red if $1 \leq i \leq\binom{ p+1}{2}, e_{i}$ is colored blue if $i=\binom{p+1}{2}+1,\binom{p+1}{2}+3, \cdots, n$, and all remaining edges of G are colored red. Therefore, the red subgraph of G is

$$
G_{r}=Q_{\binom{p+1}{2}}+\left\lfloor\frac{n-\binom{p+1}{2}}{2}\right\rfloor K_{2},
$$

where $Q_{\binom{p+1}{2}}$ is a path of size $\binom{p+1}{2}$ in G_{r}, and the blue subgraph of G is

$$
G_{b}=\left\lceil\frac{n-\binom{p+1}{2}}{2}\right\rceil K_{2}
$$

Let $m_{r}=\binom{p+1}{2}+\left\lfloor\frac{n-\binom{p+1}{2}}{2}\right\rfloor$ be the number of red edges of G and let $m_{b}=\left\lceil\frac{n-\binom{p+1}{2}}{2}\right\rceil$ be the number of blue edges of G. Then $m_{r}>m_{b}$ and $m_{r}+m_{b}=n$.

First, we show that there is a maximal Ramsey chain of length p in G. The subgraph $Q_{\binom{p+1}{2}}$ of G_{r} can be decomposed into $\left\{Q_{1}, Q_{2}, \ldots, Q_{p}\right\}$ where Q_{i} is a path of size i for $1 \leq i \leq p$. Thus, $R=\left(Q_{1}, Q_{2}, \ldots, Q_{p}\right)$ is a Ramsey chain in G_{r} and in G. Since $G-E(R)$ contains no monochromatic subgraph isomorphic to either Q_{p+1} or $Q_{p}+K_{2}$, the chain R is a maximal Ramsey chain of length p in G. Next, we show that there is a maximum Ramsey chain of length q in G. Define a sequence \mathcal{S} of the m_{r} red edges of G_{r} as follows:
\star If $\binom{p+1}{2}$ is even, then let $\mathcal{S}=\left(\underline{e_{1}, e_{3}, \ldots, e_{\binom{p+1}{2}-1}}, \quad \underline{e_{\binom{p+1}{2}+2}, e_{\binom{p+1}{2}+4}, \ldots, e_{n-1}}, \quad \underline{\left.e_{2}, e_{4}, \ldots, e_{\binom{p+1}{2}}\right) .}\right.$
\star If $\binom{p+1}{2}$ is odd, the let $\mathcal{S}=\left(\underline{e_{1}, e_{3}, \ldots, e_{\binom{p+1}{2}},} \underline{e_{\binom{p+1}{2}+2}, e_{\binom{p+1}{2}+4}, \ldots, e_{n-1}}, \quad \underline{e_{2}, e_{4}, \ldots, e_{\binom{p+1}{2}-1}}\right)$.

Then no two consecutive edges in \mathcal{S} are adjacent. Denote the sequence \mathcal{S} by $\left(f_{1}, f_{2}, \ldots, f_{m_{r}}\right)$, where then $f_{i} f_{i+1} \notin E(G)$ for $1 \leq i \leq m_{r}-1$. To construct a maximum Ramsey chain of length q in G, we consider two cases, according to whether $n=\binom{q+1}{2}$ or $n=\binom{q+1}{2}+1$.

Case 1. $n=\binom{q+1}{2}$. Since $\frac{1}{2}\binom{q+1}{2}<m_{r}<\binom{q+1}{2}$, it follows by Lemma 5.1 that there exist integers $a_{1}, a_{2}, \ldots, a_{t}$ with $1 \leq a_{1}<a_{2}<\cdots<a_{t}=q$ such that $\sum_{i=1}^{t} a_{i}=m_{r}$. Define a labeling ℓ of \mathcal{S} by

$$
\ell\left(f_{i}\right)=\left\{\begin{array}{cl}
t & \text { if } 1 \leq i \leq a_{t}=q \\
t-1 & \text { if } a_{t}+1 \leq i \leq a_{t}+a_{t-1} \\
\vdots & \vdots \\
1 & \text { if } a_{t}+a_{t-1}+\cdots+a_{2}+1 \leq i \leq m_{r}
\end{array}\right.
$$

Since $q \leq \frac{1}{2}\binom{q+1}{2}<\frac{1}{2} m_{r}$, it follows that for every pair i, j of distinct integers with $1 \leq i, j \leq t$, if $\ell\left(f_{i}\right)=\ell\left(f_{j}\right)$, then f_{i} and f_{j} are not adjacent. Thus, for $1 \leq i \leq t$, the a_{i} edges labeled i form the matching $a_{i} K_{2}$ and so G_{r} can be decomposed into the matchings $a_{1} K_{2}, a_{2} K_{2}, \ldots, a_{t} K_{2}=q K_{2}$. Since

$$
\left(\sum_{i=1}^{t} a_{i}\right)+m_{b}=\binom{q+1}{2}=\sum_{i=1}^{q} i,
$$

it follows that there exist t^{\prime} distinct integers $b_{1}, b_{2}, \ldots, b_{t^{\prime}}$, where $t^{\prime}=q-t$ and $1 \leq b_{1}<b_{2}<\cdots<b_{t^{\prime}} \leq q-1$ such that (i) $\sum_{i=1}^{t^{\prime}} b_{i}=m_{b}$ and (ii) $a_{i} \neq b_{j}$ for every pair i, j of integers with $1 \leq i \leq t$ and $1 \leq j \leq t^{\prime}$. That is,

$$
\left\{a_{1}, a_{2}, \ldots, a_{t}\right\} \cup\left\{b_{1}, b_{2}, \ldots, b_{t^{\prime}}\right\}=\{1,2, \ldots, q\} .
$$

The blue subgraph $G_{b}=m_{b} K_{2}$ can be decomposed into the matchings $b_{1} K_{2}, b_{2} K_{2}, \ldots, b_{t^{\prime}} K_{2}$. Consequently,

$$
\left(K_{2}, 2 K_{2}, 3 K_{3}, \ldots, q K_{2}\right)
$$

is a maximum Ramsey chain of length q in G.
Case 2. $n=\binom{q+1}{2}+1$. Thus, $\binom{p+1}{2}$ and $\binom{q+1}{2}$ are of the same parity. Then

$$
m_{r}=\binom{p+1}{2}+\left\lfloor\frac{\binom{q+1}{2}+1-\binom{p+1}{2}}{2}\right\rfloor=\frac{1}{2}\left[\binom{q+1}{2}+\binom{p+1}{2}\right] .
$$

Since $3 \leq p<q$, it follows that

$$
\frac{1}{2}\binom{q+1}{2}<\frac{1}{2}\left[\binom{q+1}{2}+\binom{p+1}{2}\right]<\binom{q+1}{2}
$$

and so $\frac{1}{2}\binom{q+1}{2}<m_{r}<\binom{q+1}{2}$. By the argument in Case 1, there exist integers $a_{1}, a_{2}, \ldots, a_{t}$ with $1 \leq a_{1}<a_{2}<\cdots<a_{t}=q$ such that $\sum_{i=1}^{t} a_{i}=m_{r}$ and the red subgraph G_{r} can be decomposed into the matchings $a_{1} K_{2}, a_{2} K_{2}, \ldots, a_{t} K_{2}$. In this case, $m_{r}+\left(m_{b}-1\right)=\binom{q+1}{2}$. By the argument in Case 1, there exist t^{\prime} distinct integers $b_{1}, b_{2}, \ldots, b_{t^{\prime}}$, where $t^{\prime}=q-t$ and $1 \leq b_{1}<b_{2}<\cdots<b_{t^{\prime}} \leq q-1$ such that (i) $\sum_{i=1}^{t^{\prime}} b_{i}=m_{b}-1$ and (ii) $a_{i} \neq b_{j}$ for every pair i, j of integers with $1 \leq i \leq t$ and $1 \leq j \leq t^{\prime}$. The blue subgraph $\left(m_{b}-1\right) K_{2} \subseteq G_{b}$ can be decomposed into the matchings $b_{1} K_{2}, b_{2} K_{2}, \ldots, b_{t^{\prime}} K_{2}$. Since the size of G is $n=\binom{q+1}{2}+1<\binom{q+2}{2}$, there is no Ramsey chain of length $q+1$ and so ($K_{2}, 2 K_{2}, 3 K_{3}, \ldots, q K_{2}$) is a maximum Ramsey chain of G.

The following is therefore a consequence of Theorem 5.1.
Corollary 5.1. For each positive integer N, there is a graph G such that $A R(G)-A R^{-}(G)>N$.

6. Alternating Ramsey chains

In the proof of Theorem 5.1, every link of both the maximal Ramsey chain and the maximum Ramsey chain has the same color, namely red. We now show that Corollary 5.1 can be obtained without all the links having the same color.

An alternating Ramsey chain in a graph with a red-blue coloring is a Ramsey chain in which the colors of every two consecutive links are distinct. For integers p and q with $1 \leq p<q$, we write $Q_{q}(p)$ to denote the subpath of length p obtained by selecting the first p edges (in clockwise direction) from a path Q_{q} of length q in a cycle. We now show that there is a red-blue coloring of a cycle that produces arbitrarily many maximal alternating Ramsey chains of distinct lengths.

Theorem 6.1. For every positive integer k, there exists a cycle with a red-blue coloring possessing at least k maximal alternating Ramsey chains of distinct lengths.

Proof. The statement is true trivially for $k=1$ and so we may assume that $k \geq 2$. Let $G=C_{n}$ where

$$
n= \begin{cases}\frac{11 k^{2}-5 k}{2} & \text { if } k \text { is odd } \\ \frac{11 k^{2}-5 k+2}{2} & \text { if } k \text { is even. }\end{cases}
$$

We now describe a red-blue coloring of G as follows.

* Select an arbitrary edge of G and color it red. This is a red Q_{1}, which we denote by F_{1}. As we proceed clockwise about G, the next two edges are colored blue. This results in a blue Q_{2}, which we denote by F_{2}. The next three edges are colored red, resulting in a red Q_{3}, which we denote by F_{3}. We continue this procedure until arriving at a blue $Q_{2 k}$, denoted by $F_{2 k}$. Thus, the sequence $\left(F_{1}, F_{2}, \ldots, F_{2 k}\right)=\left(Q_{1}, Q_{2}, \ldots, Q_{2 k}\right)$ appears (in clockwise direction) on G where $F_{i}=Q_{i}$ for $1 \leq i \leq 2 k$ and

$$
\sum_{i=1}^{2 k}\left|E\left(F_{i}\right)\right|=\sum_{i=1}^{2 k}\left|E\left(Q_{i}\right)\right|=\sum_{i=1}^{2 k} i=\binom{2 k+1}{2} .
$$

\star The next $2 k-1$ edges following $F_{2 k}$ are colored red, resulting in a red $Q_{2 k-1}$, denoted by H_{1}. The next $2 k-2$ edges following H_{1} are colored blue, resulting in a red $Q_{2 k-2}$, denoted by H_{2}. We continue this procedure until arriving at Q_{k+1}, denoted by H_{k-1}. If k is odd, then H_{k-1} is a blue Q_{k+1}; while if k is even, then H_{k-1} is a red Q_{k+1}. Thus, the sequence $\left(H_{1}, H_{2}, \ldots, H_{k-1}\right)=\left(Q_{2 k-1}, Q_{2 k-2}, \ldots, Q_{k+1}\right)$ appears (after $F_{2 k}$ in clockwise direction) on G, where $H_{i}=Q_{2 k-i}$ for $1 \leq i \leq k-1$ and

$$
\sum_{i=1}^{k-1}\left|E\left(H_{i}\right)\right|=\sum_{i=1}^{k-1}\left|E\left(Q_{2 k-i}\right)\right|=\sum_{i=1}^{k-1}(2 k-i)=\binom{2 k}{2}-\binom{k+1}{2} .
$$

* Let X be the set consisting of the remaining edges of G, namely

$$
X=E(G)-\left[E\left(F_{1}\right) \cup E\left(F_{2}\right) \cup \cdots \cup E\left(F_{2 k}\right) \cup E\left(H_{1}\right) \cup E\left(H_{2}\right) \cup \cdots \cup E\left(H_{k-1}\right)\right] .
$$

Then

$$
\begin{aligned}
|X| & =n-\left[\binom{2 k+1}{2}+\binom{2 k}{2}-\binom{k+1}{2}\right]=n-\frac{7 k^{2}-k}{2} \\
& = \begin{cases}\frac{11 k^{2}-5 k}{2}-\frac{7 k^{2}-k}{2}=2 k(k-1) & \text { if } k \text { is odd } \\
\frac{11 k^{2}-5 k+2}{2}-\frac{7 k^{2}-k}{2}=2 k(k-1)+1 & \text { if } k \text { is even. }\end{cases}
\end{aligned}
$$

The edges in X are alternately colored red and blue such that the edge following H_{k-1} is colored differently than the edges of H_{k-1} and the edge preceding F_{1} is blue. Hence,
\circ if k is odd, then H_{k-1} is blue and so the edge following H_{k-1} is colored red. Since $|X|=2 k(k-1)$ is even, the edge preceding F_{1} is blue as required;
\circ if k is even, then H_{k-1} is red and so the edge following H_{k-1} is colored blue. Since $|X|=2 k(k-1)+1$ is odd, the edge preceding F_{1} is blue.

Consequently, if $|X|=t$, then $G[X]=\left(f_{1}, f_{2}, \ldots, f_{t}\right)$ is a subpath Q_{t} of size t where f_{1} is the edge following H_{k-1} and f_{t} is the edge preceding F_{1}. The edges of $G[X]$ are alternately colored red and blue such that f_{1} is colored differently than the edges of H_{k-1} and f_{t} is blue.

We now have the following.
Observation. No red edge in X is adjacent to any red edge in G and no blue edge in X is adjacent to any blue edge in G. Thus, each edge in X is a monochromatic component Q_{1} either in the red subgraph G_{r} of G or in the blue subgraph G_{b} of G.

If k is odd, then the red subgraph G_{r} and the blue subgraph G_{b} of G are

$$
\begin{aligned}
G_{r} & =F_{1}+F_{3}+\cdots+F_{2 k-1}+H_{1}+H_{3}+\cdots+H_{k-2}+k(k-1) K_{2} \\
& =Q_{1}+Q_{3}+\cdots+Q_{2 k-1}+Q_{2 k-1}+Q_{2 k-3}+\cdots+Q_{k+2}+k(k-1) K_{2} \\
G_{b} & =F_{2}+F_{4}+\cdots+F_{2 k}+H_{2}+H_{4}+\cdots+H_{k-1}+k(k-1) K_{2} \\
& =Q_{2}+Q_{4}+\cdots+Q_{2 k}+Q_{2 k-2}+Q_{2 k-4}+\cdots+Q_{k+1}+k(k-1) K_{2} .
\end{aligned}
$$

If k is even, then the red subgraph G_{r} and the blue subgraph G_{b} of G are

$$
\begin{aligned}
G_{r} & =F_{1}+F_{3}+\cdots+F_{2 k-1}+H_{1}+H_{3}+\cdots+H_{k-1}+k(k-1) K_{2} \\
& =Q_{1}+Q_{3}+\cdots+Q_{2 k-1}+Q_{2 k-1}+Q_{2 k-3}+\cdots+Q_{k+1}+k(k-1) K_{2} \\
G_{b} & =F_{2}+F_{4}+\cdots+F_{2 k}+H_{2}+H_{4}+\cdots+H_{k-2}+[k(k-1)+1] K_{2} \\
& =Q_{2}+Q_{4}+\cdots+Q_{2 k}+Q_{2 k-2}+Q_{2 k-4}+\cdots+Q_{k+2}+[k(k-1)+1] K_{2} .
\end{aligned}
$$

We claim that G possesses k maximal alternating Ramsey chains $R_{1}, R_{2}, \ldots, R_{k}$ where R_{i} has length $2 k-1+i$ for $1 \leq i \leq k$.

- First, $R_{1}=\left(F_{1}, F_{2}, \ldots, F_{2 k}\right)$ is an alternating Ramsey chain of length $2 k$ in G. Since $G-E\left(R_{1}\right)$ contains no monochromatic subgraph isomorphic to $F_{2 k}=Q_{2 k}$, it follows that R_{1} is maximal.
- Next, let $R_{2}=\left(F_{1}, F_{2}, \ldots, F_{2 k-1}, F_{2 k}(2 k-1)+K_{2}, H_{1}+2 K_{2}\right)$, where the edges of K_{2} and $2 K_{2}$ are taken from X such that each link in R_{2} is monochromatic. Then R_{2} is an alternating Ramsey chain of length $2 k+1$ in G. Since $G-E\left(R_{2}\right)$ contains no monochromatic subgraph isomorphic to $Q_{2 k-1}$, it follows that R_{2} is maximal.
- Next, let $R_{3}=\left(F_{1}, F_{2}, \ldots, F_{2 k-2}, F_{2 k-1}(2 k-2)+K_{2}, F_{2 k}(2 k-2)+2 K_{2}, H_{1}(2 k-2)+3 K_{2}, H_{2}+4 K_{2}\right)$, where the edges of $K_{2}, 2 K_{2}, 3 K_{2}, 4 K_{2}$ are taken from X such that each link in R_{3} is monochromatic. Then R_{3} is an alternating Ramsey chain of length $2 k+2$ in G. Since $G-E\left(R_{3}\right)$ contains no monochromatic subgraph isomorphic to $Q_{2 k-2}$, it follows that R_{3} is maximal.
- In general, for $2 \leq i \leq k$, let

$$
\begin{aligned}
R_{i}= & \left(F_{1}, F_{2}, \ldots, F_{2 k+1-i}, \quad F_{2 k+2-i}(2 k+1-i)+K_{2}\right. \\
& F_{2 k+3-i}(2 k+1-i)+2 K_{2}, \ldots, F_{2 k}(2 k+1-i)+(i-1) K_{2}, \\
& \left.H_{1}(2 k+1-i)+i K_{2}, \quad H_{2}(2 k+1-i)+(i+1) K_{2}, \ldots, H_{i-1}+2(i-1) K_{2}\right)
\end{aligned}
$$

where the edges of $K_{2}, 2 K_{2}, \ldots, 2(i-1) K_{2}$ are taken from X such that each link in R_{i} is monochromatic. Thus, R_{i} is an alternating Ramsey chain of length $2 k-1+i$ in G. Since $G-E\left(R_{i}\right)$ contains no monochromatic subgraph isomorphic to $Q_{2 k+1-i}$, it follows that R_{i} is maximal. In particular,

$$
\begin{aligned}
R_{k}= & \left(F_{1}, F_{2}, \ldots, F_{k+1}, \quad F_{k+2}(k+1)+K_{2}, F_{k+3}(k+1)+2 K_{2}, \ldots, F_{2 k}(k+1)+(k-1) K_{2}\right. \\
& \left.H_{1}(k+1)+k K_{2}, \quad H_{2}(k+1)+(k+1) K_{2}, \ldots, H_{k-1}+2(k-1) K_{2}\right)
\end{aligned}
$$

where the edges of $K_{2}, 2 K_{2}, \ldots, 2(k-1) K_{2}$ are taken from X such that each link in R_{k} is monochromatic. Thus, R_{k} is an alternating Ramsey chain of length $3 k-1$ in G. Since $G-E\left(R_{k}\right)$ contains no monochromatic subgraph isomorphic to Q_{k+1}, it follows that R_{k} is maximal.

Finally, we show that each of the k maximal alternating Ramsey chains $R_{1}, R_{2}, \ldots, R_{k}$ of distinct lengths in G can be constructed as described. Of the k alternating Ramsey chains $R_{1}, R_{2}, \ldots, R_{k}$ in G, the longest chain R_{k} among them takes the maximum number of edges from X. This maximum number is $1+2+\cdots+2(k-1)=\binom{2 k-1}{2}=k(2 k-1)$.

- If k is odd, then the link $F_{k+2}(k+1)+K_{2}$ in R_{k} is red and so the number of red components Q_{1} required in R_{k} from X is $1+3+\cdots+(2 k-3)=(k-1)^{2}$ and the number of blue components Q_{1} in R_{k} is

$$
2+4+\cdots+2(k-1)=2[1+2+\cdots+(k-1)]=2\binom{k}{2}=k(k-1)
$$

Since $|X|=2 k(k-1)$, where $k(k-1)$ edges are red and $k(k-1)$ edges are blue, it follows by the observation that k such maximal alternating Ramsey chains $R_{1}, R_{2}, \ldots, R_{k}$ of distinct lengths in G can be constructed.

- If k is even, then the link $F_{k+2}(k+1)+K_{2}$ in R_{k} is blue and so the number of blue components Q_{1} required in R_{k} is $1+3+\cdots+(2 k-3)=(k-1)^{2}$ and the number of red components Q_{1} from X is

$$
2+4+\cdots+2(k-1)=2[1+2+\cdots+(k-1)]=2\binom{k}{2}=k(k-1)
$$

Since $|X|=2 k(k-1)+1$, where $k(k-1)$ edges are red and $k(k-1)+1$ edges are blue, it follows by the observation that such k maximal alternating Ramsey chains $R_{1}, R_{2}, \ldots, R_{k}$ of distinct lengths in G can be constructed.

This completes the proof.

References

[1] Y. Alavi, A. J. Boals, G. Chartrand, P. Erdős, O. R. Oellermann, The ascending subgraph decomposition problem, Congr. Numer. 58 (1987) 7-14.
[2] A. Ali, G. Chartrand, P. Zhang, Irregularity in Graphs, Springer, New York, 2021.
[3] G. Chartrand, P. Zhang, The ascending Ramsey index of a graph, Symmetry 15 (2023) \#523.
[4] F. Chung, R. Graham, Erdốs on Graphs: His Legacy of Unsolved Problems, CRC Press, Boca Raton, 1999.
[5] H. L. Fu, W. H. Hu, Ascending subgraph decompositions of regular graphs, Discrete Math. 253 (2002) 11-18.
[6] R. L. Graham, B. L. Rothschild, J. H. Spencer, Ramsey Theorey, Wiley, New York, 2013.
[7] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930) 264-286.

[^0]: *Corresponding author (ping.zhang@wmich.edu).

