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Abstract
Let G be a graph with a red-blue coloring c of the edges of G. A Ramsey chain in G with respect to c is a sequence G1, G2,
. . ., Gk of pairwise edge-disjoint subgraphs of G such that each subgraph Gi (1 ≤ i ≤ k) is monochromatic of size i and Gi is
isomorphic to a subgraph of Gi+1 (1 ≤ i ≤ k−1). The Ramsey index ARc(G) of G with respect to c is the maximum length of
a Ramsey chain in G with respect to c. The Ramsey index AR(G) of G is the minimum value of ARc(G) among all red-blue
colorings c of G. A Ramsey chain with respect to c is maximal if it cannot be extended to one of greater length. The lower
Ramsey index AR−

c (G) of G with respect to c is the minimum length of a maximal Ramsey chain in G with respect to c. The
lower Ramsey index AR−(G) of G is the minimum value of AR−

c (G) among all red-blue colorings c of G. Ramsey chains
and maximal Ramsey chains are investigated for stars, matchings, and cycles. It is shown that (1) for every two integers p
and q with 2 ≤ p < q, there exists a graph with a red-blue coloring possessing a maximal Ramsey chain of length p and
a maximum Ramsey chain of length q and (2) for every positive integer k, there exists a graph with a red-blue coloring
possessing at least k maximal Ramsey chains of distinct lengths with prescribed conditions. A conjecture and additional
results are also presented.
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1. Introduction

In 1987 a conjecture was stated that has drawn the interest of many researchers. When the famous mathematician
Paul Erdős first learned of it, he immediately doubted its truth. Soon afterward, Erdős offered a cash reward for a
counterexample or a proof if it were true (as was common for Erdős). This conjecture appeared in a book [4, p.72] containing
a list of graph theory problems that are associated with Erdős. Now, more than 35 years later, the conjecture has neither
been proved nor disproved. Let us describe this conjecture.

If G is a nonempty graph of size m (without isolated vertices), then there is a unique positive integer k such that(
k+1
2

)
≤ m <

(
k+2
2

)
. The graph G is said to have an ascending subgraph decomposition {G1, G2, . . ., Gk} into k (pairwise

edge-disjoint) subgraphs ofG ifGi is isomorphic to a proper subgraph ofGi+1 for i = 1, 2, . . . , k−1. The following conjecture
was stated in [1].

The Ascending Subgraph Decomposition Conjecture. Every nonempty graph has an ascending subgraph decompo-
sition.

If this conjecture was shown to be false, then the question occurred of determining the maximum length ` of a sequence
G1, G2, . . ., G` of ` pairwise edge-disjoint subgraphs (without isolated vertices) of G such that

(1) Gi has size i for each i ∈ [`] = {1, 2, . . . , `} and

(2) Gi is isomorphic to a subgraph of Gi+1 for each i ∈ [`− 1].

A sequence with properties (1) and (2) is called an ascending subgraph sequence of the graphG and the maximum length of
such a sequence is the ascending subgraph index of G, denoted by AS(G). The following conjecture is therefore equivalent
to the Ascending Subgraph Decomposition Conjecture.

The Ascending Subgraph Index Conjecture. Let G be a nonempty graph of size m. Then AS(G) = k if and only if(
k + 1

2

)
≤ m <

(
k + 2

2

)
.
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While the truth of the Ascending Subgraph Decomposition Conjecture remains an open question, this conjecture has
been verified for many classes of graphs, including all regular graphs [5].

We now turn briefly to a different topic. A well-known area within graph theory is Ramsey theory and a well-known
concept in this theory is Ramsey numbers. Let G be a graph without isolated vertices and let each edge of G be assigned
one of two given colors (a 2-edge coloring of G). Typically, these colors are chosen to be red or blue (or 1 or 2). In a red-blue
coloring of a graph G, every edge of G is colored red or blue. For two graphs F and H (without isolated vertices), the
Ramsey number R(F,H) is the minimum positive integer n for which every red-blue coloring of the complete graph Kn

of order n results in either a subgraph of Kn isomorphic to F all of whose edges are colored red (a red F ) or a subgraph
of Kn isomorphic to H all of whose edges are colored blue (a blue H). It is a consequence of a theorem of Ramsey [7] that
the number R(F,H) exists for every two graphs F and H. If F ∼= H, then R(F,H) = R(F, F ) is the minimum positive
integer n such that every red-blue coloring of Kn results in a monochromatic F . If F and H are both complete graphs,
then R(F,H) is called a classical Ramsey number. For example, it is well known that R(K3,K3) = 6, R(K4,K4) = 18,
and R(K5,K5) is unknown. Many variations of Ramsey numbers have been studied, such as considering classes of graphs
different from complete graphs and allowing the edges of the graphs in question to be colored with more than two colors
(see [6] for example).

In [2], a concept was introduced that involves both ascending subgraph decompositions and a Ramsey-type coloring
problem. Let G be a graph (without isolated vertices) of size m with a red-blue edge coloring c. A Ramsey chain of G with
respect to c is a sequence G1, G2, . . ., G` of pairwise edge-disjoint subgraphs of G such that each subgraph Gi (1 ≤ i ≤ `)
is monochromatic of size i and Gi is isomorphic to a subgraph of Gi+1 for 1 ≤ i ≤ `− 1. Each subgraph Gi (1 ≤ i ≤ `) in a
Ramsey chain is called a link of this chain. The maximum length of a Ramsey chain ofGwith respect to c is the (ascending)
Ramsey index ARc(G) of G. The (ascending) Ramsey index AR(G) of G is defined by

AR(G) = min{ARc(G) : c is a red-blue edge coloring of G}.

These concepts were introduced in [2,3], using somewhat different technology.

2. Ramsey chains in stars and matchings

Among the observations presented in [3] is the following.

Observation 2.1. If G is a graph of size m where 2 ≤ m <
(
k+2
2

)
for a positive integer k, then AR(G) ≤ k.

On the other hand, if G is a graph of size m such that AR(G) ≥ k, then m ≥
(
k+1
2

)
. The following result presents a class

of graphs G for which AR(G) = k in terms of the size of G.

Theorem 2.1. Let G be a graph of size m ≥ 2 without isolated vertices such that for every two subgraphs F and H of G
without isolated vertices, |E(F )| < |E(H)| implies F ⊆ H. Then AR(G) = k if and only if(

k + 1

2

)
≤ m <

(
k + 2

2

)
.

Proof. First, we verify the following claim.

Claim. Let G be a graph of size m ≥ 2 without isolated vertices such that for every two subgraphs F and H

of G without isolated vertices, |E(F )| < |E(H)| implies F ⊆ H. If m ≥
(
k+1
2

)
for some positive integer k, then

AR(G) ≥ k.

We proceed by induction on k. The truth of the claim is immediate if k = 1 or k = 2. Assume for an integer k ≥ 2 that a
graph G′ without isolated vertices has AR(G′) ≥ k if G′ has size m′ ≥

(
k+1
2

)
such that for every two subgraphs F ′ and H ′

of G′ without isolated vertices, |E(F ′)| < |E(H ′)| implies F ′ ⊆ H ′. Let G be a graph without isolated vertices having
size m ≥

(
k+2
2

)
such that for every two subgraphs F and H of G without isolated vertices, |E(F )| < |E(H)| implies F ⊆ H.

We show that AR(G) ≥ k + 1. Let there be given a red-blue coloring c of G. Since k ≥ 2, it follows that 1
2

(
k+2
2

)
≥ k + 1.

Thus, G has a monochromatic subgraph Gk+1 of size k + 1. Let G′ = G − E(Gk+1), where G′ has size m′ = m − (k + 1).
Then the restriction c′ of c to G′ is a red-blue coloring of G′. Since m ≥

(
k+2
2

)
, it follows that

m′ = m− (k + 1) ≥
(
k + 1

2

)
.

By the induction hypothesis,G′ has a Ramsey chain (G1, G2, . . . , Gk) of length kwith respect to c′. Then (G1, G2, . . . , Gk, Gk+1)

is a Ramsey chain of length k + 1 in G. Thus, the claim holds.
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Now, let G be a graph of size m ≥ 2 without isolated vertices such that for every two subgraphs F and H of G without
isolated vertices, |E(F )| < |E(H)| implies F ⊆ H. First, assume that(

k + 1

2

)
≤ m <

(
k + 2

2

)
.

Since m <
(
k+2
2

)
, it follows by Observation 2.1 that AR(G) ≤ k. Since m ≥

(
k+1
2

)
, it follows by the claim that AR(G) ≥ k.

Therefore, AR(G) = k.
For the converse, assume that AR(G) = k. Since AR(G) = k, there is a Ramsey chain of length k for every red-blue

coloring ofG. Thus, m ≥
(
k+1
2

)
. By the claim, ifm ≥

(
k+2
2

)
, then AR(G) ≥ k+1. Since AR(G) = k, it follows thatm <

(
k+2
2

)
.

Consequently,
(
k+1
2

)
≤ m <

(
k+2
2

)
.

For example, the 5-cycle C5 satisfies the hypothesis of Theorem 2.1 and so AR(C5) = 2. The 6-cycle C6 does not satisfy
the hypothesis of Theorem 2.1, however, since both P3 and 3K2 are subgraphs of C6 but P3 6⊆ 3K2. In fact, there are only
two classes of graphs of size 6 or more that satisfy the hypothesis of Theorem 2.1.

Proposition 2.1. Let G be a graph of size at least 6 without isolated vertices such that for every two subgraphs F and H

of G without isolated vertices, |E(F )| < |E(H)| implies F ⊆ H. Then G is either a star or a matching.

Proof. Assume, to the contrary, that G is neither a star nor a matching. Thus, G contains two adjacent edges and two
nonadjacent edges. If G contains a vertex of degree at least 3 or a matching of size at least 3, then G contains subgraphs F
and H where F has a smaller size than H and F is not isomorphic to a subgraph of H. Therefore, we may assume that
∆(G) = 2 and 2K2 is a maximum matching in G. The graph G contains no triangle since 2K2 6⊆ K3. If G contains a
k-cycle Ck where k ≥ 4, then Ck is a component of G and so G contains a matching of size 3, a contradiction. Hence, G
is a linear forest with two components. Since the size of G is at least 6, it follows that G contains a matching of size 3, a
contradiction.

As a consequence of Theorem 2.1 and Proposition 2.1, we have the following result.

Corollary 2.1. [3] Let k ≥ 2 be an integer and let G be the star K1,m or the matching mK2. Then AR(G) = k if and only if(
k + 1

2

)
≤ m <

(
k + 2

2

)
.

3. Ramsey chains in cycles

One question that arises is whether there is a familiar class of graphs different from stars and matchings such that every
graph G of size m in this class has the property that AR(G) = k if and only if

(
k+1
2

)
≤ m <

(
k+2
2

)
. While this question has

not been answered, there is a class of graphs of small size for which this is the case, namely the cycles Cm of order and
size m. Every proper subgraph of Cm is a linear forest (where each component is a path). In order to verify this, we first
present some observations and preliminary results.

Observation 3.1. Let G be a graph of size m ≥ 2.

(a) If m = 2, then AR(G) = 1 and if m > 2, then AR(G) ≥ 2.

(b) If m = 3, 4, 5, then AR(G) = 2.

(c) If 6 ≤ m ≤ 8, then AR(G) ∈ {2, 3}. Furthermore, if m ≥ 6 and c is a 2-edge coloring of G such that (i) there is a
monochromatic subgraph F of G where F ∈ {P4, P3 +K2} and (ii) G−E(F ) has a monochromatic subgraph of size 2,
then ARc(G) ≥ 3.

If G is a graph of size 8, then we only know that AR(G) = 2 or AR(G) = 3. The situation is clearer if G has size 9.

Proposition 3.1. If G is a graph of size 9, then AR(G) = 3.

Proof. Let G be a graph of size 9. By Observation 2.1, AR(G) ≤ 3. It remains to show that AR(G) ≥ 3. Let there be given
a red-blue coloring c of G, where Gr is the red subgraph and Gb is the blue subgraph. Let mr be the size of Gr and mb the
size of Gb. Thus, mr + mb = 9. We may assume that mr > mb and so mr ≥ 5. If Gr is a star or a matching of size mr ≥ 5,
then G has a Ramsey chain of length 3 and so ARc(G) ≥ 3. If Gr is neither a star nor a matching, then either P3 +K2 ⊆ Gr

or P4 ⊆ Gr and so ARc(G) ≥ 3 by Observation 3.1(c). Therefore, AR(G) ≥ 3 and so AR(G) = 3.

3
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For the following results, it is convenient to refer the colors in a 2-edge coloring of a graph as 1 and 2.

Observation 3.2. Let c be a 2-edge coloring of the cycleH = Cm of sizem ≥ 3. For i = 1, 2, letHi be the subgraph of sizemi

in H induced by the set of edges colored i.

(a) If mi ≥ 3 where i ∈ {1, 2}, then 2K2 ⊆ Hi. Thus, if m ≥ 6 and such that 2K2 ⊆ Hi and mj ≥ 3, where {i, j} = {1, 2},
then ARc(Cm) ≥ 3.

(b) If m1,m2 ≥ 3, then ARc(Cm) ≥ 3.

(c) If mi ≥ 5 for some i ∈ {1, 2}, then ARc(Cm) ≥ 3.

In order to present the next result, we first present the following observation.

Observation 3.3. For every 2-edge coloring of the cycle Cm of sizem ≥ 3, either (i) the colors of every two edges at distance 2

in Cm are the same or (ii) there exists an edge in Cm whose neighboring edges are colored differently.

The following result will be useful to us.

Theorem 3.1. For each integer m ≥ 3, AR(Cm) ≤ AR(Cm+1).

Proof. Let c be a 2-edge coloring of Cm+1 = (v1, v2, . . . , vm+1, v1) such that ARc(Cm+1) = AR(Cm+1) = k. For i = 1, 2, let
Hi be the subgraph of size mi induced by the set of edges colored i in Cm+1. By Observation 3.3, either (i) Hi = miK2 for
i = 1, 2 where m1 = m2 = (m + 1)/2 or (ii) there are three consecutive edges f1, f2, f3 in Cm+1 such that c(f1) 6= c(f3) and
the color c(f2) is assigned to at least two edges of Cm+1. We consider these two cases.

Case 1. Hi = miK2 for i = 1, 2 where m1 = m2 = (m+ 1)/2. Thus, m+ 1 = 2` for some integer ` ≥ 2 and H1 = H2 = `K2.
We may assume that c(vm+1v1) = 2 and so c(vmvm+1) = c(v1v2) = 1. By contracting the edge vm+1v1 in Cm+1 and labeling
the identified vertices vm+1 and v1 by v1, we obtain the cycle Cm = (v1, v2, . . . , vm, v1) and a 2-edge coloring c′ of Cm defined
by c′(e) = c(e) for each edge e ∈ E(Cm)− {v1vm} and c′(vmv1) = c(vmvm+1) = 1. Let H ′1 and H ′2 be the resulting subgraphs
of Cm such that the edges of H ′i are colored i by c′ for i = 1, 2. Then H ′1 = (`− 2)K2 + P3 and H ′2 = (`− 1)K2 ⊂ H2 in Cm+1.
We claim that there is no ascending Ramsey sequence of length k + 1 in Cm with respect to c′. Assume, to the contrary,
that there is a Ramsey chain (G1, G2, . . . , Gk+1) of length k + 1 in Cm with respect to c′. We may assume that |E(Gj)| = j

for 1 ≤ j ≤ k + 1. Hence, G1, G2, . . . , Gk+1 are pairwise edge-disjoint subgraphs of Cm such that

(1) Gj is monochromatic for 1 ≤ j ≤ k + 1,

(2) Gj is isomorphic to a proper subgraph of Gj+1 in for 1 ≤ j ≤ k, and

(3) Gj = jK2 for 1 ≤ j ≤ k and Gk+1 ∈ {(k + 1)K2, (k − 1)P3 +K2}.

For 1 ≤ j ≤ k, if vmv1 /∈ E(Gj), then Gj is a subgraph of Cm+1; while if vmv1 ∈ E(Gj), then Gj can be considered as a
subgraph of Cm+1 by replacing vmv1 by vmvm+1. Thus, each Gj is a subgraph of Cm+1 for 1 ≤ j ≤ k, where vmv1 is replaced
by vmvm+1 if necessary.

? If Gk+1 = (k + 1)K2, then Gk+1 is also a subgraph of Cm+1, where vmv1 is replaced by vmvm+1 if necessary. Hence,
(G1, G2, . . . , Gk+1) is a Ramsey chain of length k + 1 in Cm+1, which is impossible.

? If Gk+1 = (k − 1)P3 + K2, then Gk+1 ⊆ H ′1 and P3 = (vm, v1, v2). Thus, vmv1 /∈ E(Gj) for 1 ≤ j ≤ k and so Gj is a
subgraph of Cm+1 for 1 ≤ j ≤ k. Furthermore, the subgraph (k− 1)K2 of Gk+1 is also a subgraph of Cm+1. We define
a sequence F1, F2, . . . , Fk+1 of k + 1 subgraphs of Cm+1 by Fj = Gj = jK2 ⊆ Cm+1 for 1 ≤ j ≤ k and

Fk+1 = (Gk+1 − vmv1) + vmvm+1 = (k + 1)K2 ⊆ H1,

whereP3 = (vm, v1, v2) ⊆ Cm inGk+1 is replaced by 2K2 (whose edge set is {vmvm+1, v1v2}) inCm+1. Thus, F1, F2, . . . , Fk+1

is a sequence of k+1 pairwise edge-disjoint subgraphs of Cm+1 such that Fj is monochromatic for 1 ≤ j ≤ k+1 and Fj

is isomorphic to a proper subgraph of Fj+1 for 1 ≤ j ≤ k. Hence, (F1, F2, . . . , Fk+1) is a Ramsey chain of length k + 1

in Cm+1, which is impossible.

Therefore, AR(Cm) ≤ ARc′(Cm) ≤ k = AR(Cm+1).
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Case 2. There are three consecutive edges f1, f2, f3 in Cm+1 such that c(f1) 6= c(f3). We may assume that f1 = vmvm+1,
f2 = vm+1v1 and f3 = v1v2 such that c(vmvm+1) = c(vm+1v1) = 1 and c(v1v2) = 2. By contracting the edge vm+1v1

in Cm+1 and labeling the identified vertices vm+1 and v1 by v1, we obtain the cycle Cm = (v1, v2, . . . , vm, v1). The 2-edge
coloring c of Cm+1 gives rise to a 2-edge coloring c′ of Cm defined by c′(e) = c(e) for each edge e ∈ E(Cm) − {v1vm} and
c′(vmv1) = c(vmvm+1) = 1. Let H ′1 and H ′2 be the resulting subgraphs of Cm such that the edges of H ′i are colored i by c′
for i = 1, 2. Thus, H ′1 = H1 − v1 ⊆ Cm+1 where vmvm+1 in H1 in Cm+1 is replaced by vmv1 in H ′1 in Cm and H ′2 = H2. We
claim that there is no a Ramsey chain of length k + 1 in Cm with respect to c′. Assume, to the contrary, that there is a
Ramsey chain (G1, G2, . . . , Gk+1) of length k+1 in Cm with respect to c′. Hence, G1, G2, . . . , Gk+1 are pairwise edge-disjoint
subgraphs of Cm such that Gj ⊆ H ′1 or Gj ⊆ H ′2 for each integer j with 1 ≤ j ≤ k + 1 and Gj is isomorphic to a proper
subgraph ofGj+1 in Cm for 1 ≤ j ≤ k. By the defining property of Cm+1 and the coloring c, it follows that (G1, G2, . . . , Gk+1)

is a Ramsey chain of length k + 1 in Cm+1, which is impossible. Therefore, AR(Cm) ≤ ARc′(Cm) ≤ k = AR(Cm+1).

Not only is AR(Cm+1) ≥ AR(Cm) for m ≥ 3, but even more can be said.

Theorem 3.2. lim
m→∞

AR(Cm) =∞.

Proof. We show, for every positive integer k, that there is a positive integer m such that AR(Cm) ≥ k. Let

m =

(
k + 1

2

)
− 1 = 2

[(
k + 1

2

)
− 1

]
+ 1

and let c be any red-blue coloring of Cm. We show that ARc(Cm) ≥ k. Let Hr be the red subgraph of size mr induced by
the set of red edges and let Hb be the blue subgraph of size mb induced by the set of blue edges, where mr ≤ mb. Since

mb ≥


2
[(

k+1
2

)
− 1
]

+ 1

2

 =

(
k + 1

2

)
,

it follows that Hb contains edge-disjoint copies of K2, 2K2, . . . , kK2 and so ARc(Cm) ≥ k. Therefore, AR(Cm) ≥ k. It then
follows by Theorem 3.1 that lim

m→∞
AR(Cm) =∞.

We are now prepared to determine the Ramsey indices of all cycles Cm for 3 ≤ m ≤ 20.

Proposition 3.2. The Ramsey index of Cm for 3 ≤ m ≤ 20 is given as follows

AR(Cm) =


2 if 3 ≤ m ≤ 5

3 if 6 ≤ m ≤ 9

4 if 10 ≤ m ≤ 14

5 if 15 ≤ m ≤ 20.

Proof. Since the proof is rather lengthy and the reasoning technique is similar, we only show that AR(Cm) = 5 for
15 ≤ m ≤ 20. To do this, it suffices to show that AR(C15) = 5. Since 20 <

(
6+1
2

)
, once it has been verified that AR(C15) = 5,

it follows by Theorem 3.1 that AR(Cm) = 5 for 15 ≤ m ≤ 20. Since the size of C15 is 15 =
(
5+1
2

)
, it follows that AR(C15) ≤ 5.

It therefore suffices to show that AR(C15) ≥ 5. Let c be a red-blue edge coloring of H = C15 using the colors 1 and 2. We
show that there is a Ramsey chain Rc = (G1, G2, G3, G4, G5) of length 5 in H with respect to c. Since the size of C15 is 15,
it follows that {G1, G2, G3, G4, G5} is a decomposition of C15. Let Ha denote the subgraph of H of size a induced by the set
of red edges of H and let Hb denote the subgraph of H of size b induced by the set of blue edges of H. We may assume that
a < b. Then 1 ≤ a ≤ 7 and a + b = 15. Hence, (a, b) = (i, 15 − i) for i = 1, 2, . . . , 7. Furthermore, Ha and Hb have the same
number κ of components. Then 1 ≤ κ ≤ a ≤ 7. We consider these seven cases. For convenience, let Qq = Pq+1 denote a
path of size q ≥ 1.

Case 1. κ = 1. Then Ha is the path of size a where 1 ≤ a ≤ 7 and Hb is the path of size b where 8 ≤ b ≤ 14 and a+ b = 15.
First, observe that C15 can be decomposed into five consecutive paths Q1, Q2, Q3, Q4, Q5. If 1 ≤ a ≤ 5, let Ha = Qa. Then
Hb = Q15−a can be decomposed into the remaining four paths. If a = 6, then Ha can be decomposed into Q1, Q2, Q3 and Hb

can be decomposed into Q4 and Q5. If a = 7, then Ha can be decomposed into Q3 and Q4 and Hb can be decomposed into
Q5, Q1, and Q2. Therefore, Rc =(Q1, Q2, Q3, Q4, Q5).

Case 2. κ = 2. Then Ha = Qa1
+ Qa2

, and Hb = Qb1 + Qb2 where 2 ≤ a = a1 + a2 ≤ 7 with a1 ≥ a2 and b = b1 + b2 with
b1 ≥ b2.

5
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? If a = 2, then Ha = 2K2 and Hb ∈ {P13 + K2, P12 + P3, P11 + P4, P10 + P5, P9 + P6, P8 + P7}. The graph Hb can
be decomposed into K2, 3K2, 4K2, 5K2, as shown in Figure 1, where an edge labeled i belongs to iK2. Therefore,
Rc = (K2, 2K2, 3K2, 4K2, 5K2).
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Figure 1: Decompositions of Hb when b = 13.

? If a = 3, then Ha = P3 +K2 and so Ha can be decomposed into K2 and 2K2. Furthermore,

Hb ∈ {P12 +K2, P11 + P3, P10 + P4, P9 + P5, P8 + P6, P7 + P7}.

Hence, Hb can be decomposed into 3K2, 4K2, 5K2, as shown in Figure 2, where an edge labeled i belongs to iK2.
Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2).
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Figure 2: Decompositions of Hb when b = 12.

? If a = 4, then Ha ∈ {P4 +K2, 2P3} and Hb ∈ {P11 +K2, P10 + P3, P9 + P4, P8 + P5, P7 + P6}.

◦ If Ha = P4 +K2, then Ha can be decomposed into K2 and 3K2 and Hb can be decomposed into 2K2, 4K2, 5K2, as
shown in Figure 3, where an edge labeled i belongs to iK2. Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2).
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Figure 3: Decompositions of Hb when b = 11 and when Ha = P4 +K2.

◦ If Ha = 2P3, then Ha can be decomposed into G1 = K2 and G3 = P3 + K2 and Hb can be decomposed into
G2 = P3, G4 = P3 + 2K2, G5 = P3 + 3K2, where an edge labeled i belongs to Gi for i = 2, 4, 5. Therefore,
Rc = (K2, P3, P3 +K2, P3 + 2K2, P3 + 3K2).

? If a = 5, then Ha ∈ {P5 + K2, P4 + P3} and Hb ∈ {P10 + K2, P9 + P3, P8 + P4, P7 + P5, P6 + P6}. Then Ha can be
decomposed into 2K2 and 3K2 and Hb can be decomposed into K2, 4K2, 5K2, as shown in Figure 4, where an edge
labeled i belongs to iK2. Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2).
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Figure 4: Decompositions of Hb when b = 10.

? If a = 6, then Ha ∈ {P6 +K2, P5 +P3, 2P4} and Hb ∈ {P9 +K2, P8 +P3, P7 +P4, P6 +P5}. Then Ha can be decomposed
intoK2, 2K2, 3K2 andHb can be decomposed into 4K2 and 5K2, as shown in Figure 5, where an edge labeled i belongs
to iK2. Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2).
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Figure 5: Decompositions of Hb when b = 9 and when Ha ∈ {P6 +K2, P5 + P3, 2P4}.

? If a = 7, then Ha ∈ {P7 +K2, P6 +P3, P5 +P4} and Hb ∈ {P8 +K2, P7 +P3, P6 +P4, 2P5}. Then Ha can be decomposed
into G3 = P3 +K2 and G4 = P3 + 2K2 and Hb can be decomposed into G1 = K2, G2 = P3, G5 = P4 + 2K2, as shown in
Figure 6, where an edge labeled i belongs to Gi. Thus, Rc = (K2, P3, P3 +K2, P3 + 2K2, P4 + 2K2).
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Figure 6: Decompositions of Ha and Hb when a = 7.

Case 3. κ = 3. Then Ha = Qa1 + Qa2 + Qa3 , and Hb = Qb1 + Qb2 + Qb3 where 3 ≤ a = a1 + a2 + a3 ≤ 7 with
a1 ≥ a2 ≥ a3 and b = b1 + b2 + b3 with b1 ≥ b2 ≥ b3. If a = 3, then Ha = 3K2 and so Ha can be decomposed into K2 and
2K2. The graph Hb is a linear forest of size 12 with three components. It can be shown that Hb can be decomposed into
3K2, 4K2, 5K2 (see Figure 2 where Ha is decomposed into K2 and 2K2 and Hb has two components and b = 12). Thus, Rc =

(K2, 2K2, 3K2, 4K2, 5K2). If a = 4, then Ha = P3 + 2K2 and then Ha can be decomposed into K2 and 3K2 The graph Hb is a
linear forest of size 11 with three components. It can be shown thatHb can be decomposed into 2K2, 4K2, 5K2, (see Figure 3
where Ha is decomposed into K2 and 3K2 and Hb has two components and b = 11). Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2).
If a = 5, then Ha ∈ {P4 + 2K2, 2P3 +K2} and so Ha can be decomposed into 2K2 and 3K2. The graph Hb is a linear forest
of size 10 with three components. It can be shown that Hb can be decomposed into K2, 4K2, 5K2, (see Figure 4 where Ha

is decomposed into 2K2 and 3K2 and Hb has two components and b = 10). Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2). If a = 6,
then Ha ∈ {P5 + 2K2, P4 + P3 +K2, 3P3} and so Ha can be decomposed into K2, 2K2, 3K2. The graph Hb is a linear forest
of size 9 with three components. It can be shown that Hb can be decomposed into 4K2 and 5K2, (see Figure 5, where Ha is
decomposed into K2, 2K2, 3K2 and Hb has two components and b = 9). Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2). If a = 7, then
Ha ∈ {P6 + 2K2, P5 + P3 + K2, 2P4 + K2, P4 + 2P3} and so Ha can be decomposed into 3K2, 4K2. The graph Hb is a linear
forest of size 8 with three components and can be decomposed into K2, 2K2, 5K2. Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2).

7
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Case 4. κ = 4. Then Ha = Qa1 +Qa2 +Qa3 +Qa4 , and Hb = Qb1 +Qb2 +Qb3 +Qb4 where 4 ≤ a = a1 + a2 + a3 + a4 ≤ 7

with a1 ≥ a2 ≥ a3 ≥ a4 and b = b1 + b2 + b3 + b4 with b1 ≥ b2 ≥ b3 ≥ b4. If a = 4, then Ha = 4K2 and so Ha can be
decomposed into K2, 3K2. The graph Hb is a linear forest of size 11 with four components. It can be shown that Hb can
be decomposed into 2K2, 4K2, 5K2. Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2). If a = 5, then Ha = P3 + 3K2 and so Ha can be
decomposed into K2, 4K2. The graph Hb is a linear forest of size 10 with four components. It can be shown that Hb can be
decomposed into 2K2, 3K2, 5K2. Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2). If a = 6, then Ha ∈ {P4 + 3K2, 2P3 + 2K2} and so Ha

can be decomposed into 2K2, 4K2. The graph Hb is a linear forest of size 9 with four components and can be decomposed
into K2, 3K2, 5K2. Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2). If a = 7, then Ha ∈ {P5 + 3K2, P4 + P3 + 2K2, 3P3 +K2} and so Ha

can be decomposed into 3K2, 4K2. The graph Hb is a linear forest of size 8 with four components and can be decomposed
into K2, 2K2, 5K2. Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2).

Case 5. κ = 5. Then Ha = Qa1
+ Qa2

+ Qa3
+ Qa4

+ Qa5
and Hb = Qb1 + Qb2 + Qb3 + Qb4 + Qb5 where 5 ≤ a =

a1 + a2 + a3 + a4 + a5 ≤ 7 with a1 ≥ a2 ≥ a3 ≥ a4 ≥ a5 and b = b1 + b2 + b3 + b4 + b5 with b1 ≥ b2 ≥ b3 ≥ b4 ≥ b5. If a = 5, then
Ha = 5K2 and so Ha can be decomposed into K2, 4K2. The graph Hb is a linear forest of size 10 with five components and
can be decomposed into 2K2, 3K2, 5K2. Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2). If a = 6, then Ha = P3 + 4K2 and so Ha can
be decomposed into K2, 5K2. The graph Hb is a linear forest of size 9 with five components and can be decomposed into
2K2, 3K2, 4K2. Thus,Rc = (K2, 2K2, 3K2, 4K2, 5K2). If a = 7, thenHa ∈ {P4+4K2, 2P3+3K2} and soHa can be decomposed
into 2K2, 5K2. The graph Hb is a linear forest of size 8 with five components and can be decomposed into K2, 3K2, 4K2.
Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2).

Case 6. κ = 6. Then Ha = Qa1
+ Qa2

+ · · · + Qa6
and Hb = Qb1 + Qb2 + · · · + Qb6 where 6 ≤ a = a1 + a2 + · · · + a6 ≤ 7

with a1 ≥ a2 ≥ · · · ≥ a6 and b = b1 + b2 + · · · + b6 with b1 ≥ b2 ≥ · · · ≥ b6. If a = 6, then Ha = 6K2 and so Ha

can be decomposed into K2, 5K2. The graph Hb is a linear forest of size 9 with five components and can be decomposed
into 2K2, 3K2, 4K2. Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2). If a = 7, then Ha = P3 + 5K2 and so Ha can be decomposed
into 2K2, 5K2. The graph Hb is a linear forest of size 8 with five components and can be decomposed into K2, 3K2, 4K2.
Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2).

Case 7. κ = 7. Then (1) a = 7 and Ha = 7K2 and (2) b = 8 and Hb = P3 + 6K2. The graph Ha can be decomposed
into 3K2, 4K2 and the graph Hb can be decomposed into K2, 3K2, 5K2. Thus, Rc = (K2, 2K2, 3K2, 4K2, 5K2).

Therefore, AR(C15) = 5 and so AR(Cm) = 5 for 15 ≤ m ≤ 20.

Proposition 3.2 can therefore be stated as below.

Proposition 3.3. Let k be an integer such that 2 ≤ k ≤ 5. Then AR(Cm) = k if and only if(
k + 1

2

)
≤ m <

(
k + 2

2

)
.

Consequently, for cycles of size 20 or less, we have the same result as stated in Corollary 2.1 for stars and matchings.
There is reason to believe that Corollary 2.1 holds for all cycles as well as all stars and matchings.

Conjecture 3.1. For every integer m ≥ 3, AR(Cm) = k if and only if(
k + 1

2

)
≤ m <

(
k + 2

2

)
.

4. Maximal Ramsey chains

Let c be a red-blue edge coloring of a graph G. A Ramsey chain (G1, G2, . . ., Gk) of G with respect to c is maximal if the
chain cannot be extended to one of greater length. The minimum length of a maximal Ramsey chain in G with respect to c
is referred to as the lower Ramsey index AR−c (G) of G with respect to c. The lower Ramsey index AR−(G) of G is

AR−(G) = min{AR−c (G) : c is a red-blue coloring of G}.

Thus, AR−(G) ≤ AR(G) for every graph G. We now investigate this inequality.
By Corollary 2.1, if G is the star K1,m or the matching mK2 of size m ≥ 3, then AR(G) = k for an integer k ≥ 2 if and

only if
(
k+1
2

)
≤ m <

(
k+2
2

)
. We now determine the lower Ramsey indices of stars and matchings. To do this, we return to a

class of graphs we encountered in Theorem 2.1. For a Ramsey chain R in a graph, we write E(R) for the union of the edge
sets of the links in R.

8
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Theorem 4.1. Let G be a graph of size m ≥ 6 without isolated vertices such that for every two subgraphs F and H of G
without isolated vertices, |E(F )| < |E(H)| implies F ⊆ H.

(1) If
(
k+1
2

)
≤ m ≤

(
k+2
2

)
− 3, then AR−(G) = k − 1.

(2) If
(
k+2
2

)
− 2 ≤ m ≤

(
k+2
2

)
− 1, then AR−(G) = k.

Proof. To verify (1), we first show that if m =
(
k+1
2

)
, then AR−G) = k − 1. Let c be the red-blue coloring of G that assigns

red to all edges of G except one and let sc be a Ramsey chain of length k − 1 consisting of k − 1 red subgraphs of G. Then
sc is maximal and so AR−(G) ≤ k − 1. Next, we show that

AR−(G) ≥ k − 1.

We claim that every Ramsey chain Rj = (G1, G2, . . ., Gj) of length j, where j ≤ k − 2, can be extended to a Ramsey chain
(G1, G2, . . ., Gj , Gj+1) of length j + 1. Observe that

|E(G)− E(Rj)| =

(
k + 1

2

)
−
(
j + 1

2

)
= (j + 1) + (j + 2) + · · ·+ k ≥ 2k − 1

and so ⌈(
k+1
2

)
−
(
j+1
2

)
2

⌉
≥ k − 1.

Hence, G − E(Rj) contains a monochromatic subgraph of size at least k − 1. Since the required size of Gj+1 is j + 1 and
j + 1 ≤ k − 1, the chain Rj can be extended to (G1, G2, . . ., Gj , Gj+1). Thus, AR−(G) ≥ k − 1 and so AR−(G) = k − 1.

We now show that if m =
(
k+1
2

)
− 3, then AR−(G) = k − 1. Since k ≥ 2, it follows that(

k + 2

2

)
− 3 ≥

(
k + 1

2

)
and so

AR−(G) ≥ AR−
((

k + 1

2

)
K2

)
= k − 1.

Thus, it remains to show that AR−(G) ≤ k− 1. Let c be the red-blue coloring of G that assigns blue to k− 1 edges of G and
assigns red to the remaining

(
k+2
2

)
− 3− (k − 1) edges of G. Since(

k + 2

2

)
− 3− (k − 1) =

(
k + 1

2

)
− 1,

there is a Ramsey chain Rc = (G1, G2, . . . , Gk−1) of length k − 1 where each subgraph Gi (1 ≤ i ≤ k − 1) is a red subgraph
of G but no such sequence of length k where all subgraphs are red. Since there are only k − 1 blue edges, there is no blue
subgraph of size k. Thus, sc cannot be extended and so sc is maximal. Therefore, AR−(G) ≤ k − 1 and so AR−(G) = k − 1.

If
(
k+1
2

)
≤ m ≤

(
k+2
2

)
− 3, then

AR−
((

k + 1

2

)
K2

)
≤ AR−(G) ≤ AR−

([(
k + 2

2

)
− 3

]
K2

)
and so AR−(G) = k − 1.

Next, we verify (2). Letm =
(
k+2
2

)
−2. SinceAR−(G) ≤ AR(G) ≤ k by Corollary 2.1, it remains to show thatAR−(G) ≥ k.

We claim that every Ramsey chain Rj =(G1, G2, . . ., Gj) of length j, where j ≤ k − 1, can be extended to a Ramsey chain
(G1, G2, . . ., Gj , Gj+1) of length j + 1. Observe that

|E(G)− E(Rj)| =
[(
k + 2

2

)
− 2

]
−
(
j + 1

2

)
= [(j + 1) + (j + 2) + · · ·+ k + (k + 1)]− 2 ≥ 2k − 1

and so 
[(

k+2
2

)
− 2
]
−
(
j+1
2

)
2

 ≥ k.
Hence,G−E(Rj) contains a monochromatic subgraph of size at least k. Since the required size ofGj+1 is j+1 and j+1 ≤ k,
the chain Rj can be extended to a Ramsey chain (G1, G2, . . ., Gj , Gj+1). Thus, AR−(G) ≥ k. Therefore, AR−(G) = k.

The following is a consequence of Proposition 2.1 and Theorem 4.1.

Corollary 4.1. Let k ≥ 2 be an integer and let G be the star K1,m or the matching mK2.

(1) If
(
k+1
2

)
≤ m ≤

(
k+2
2

)
− 3, then AR−(G) = k − 1.

(2) If
(
k+2
2

)
− 2 ≤ m ≤

(
k+2
2

)
− 1, then AR−(G) = k.

9
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5. Comparing two Ramsey indices

We have seen that AR−(G) ≤ AR(G) for every graph G. By Theorems 2.1 and 4.1, if G ∈ {K1,m,mK2} where(
k + 2

2

)
− 2 ≤ m ≤

(
k + 2

2

)
− 1,

then AR−1(G) = AR(G) = k; while if
(
k+1
2

)
≤ m <

(
k+2
2

)
− 3, then AR−1(G) = k − 1 and AR(G) = k. Therefore, there are

graphs G for which AR−1(G) = AR(G) and graphs G for which AR(G) = AR−1(G) + 1. This brings up the question as to
how large the number AR(G) − AR−(G) may be for some graph G. In order to answer this question, we first present a
lemma.

Lemma 5.1. Let q ≥ 3 be an integer. For each integer m with 1
2

(
q+1
2

)
< m <

(
q+1
2

)
, there exist integers k1, k2, . . . , kt with

1 ≤ k1 < k2 < · · · < kt = q such that
∑t

i=1 ki = m.

Proof. We proceed by induction on q. If q = 3, then
(
q+1
2

)
=
(
4
2

)
= 6. If m is an integer such that 3 < m < 6, then m = 4 or

m = 5. If m = 4, then 1 + 3 = 4; while if m = 5, then 2 + 3 = 5. Thus, the statement is true for m = 3. Assume that the
statement is true for an integer q where q ≥ 3. We show that the statement is true for q+ 1. Let m be an integer such that
1
2

(
q+2
2

)
< m <

(
q+2
2

)
. Since q + 1 ≥ 4, it follows that q + 1 < 1

2

(
q+2
2

)
. Let m′ = m− (q + 1). Then

1

2

(
q + 2

2

)
− (q + 1) < m′ <

(
q + 2

2

)
− (q + 1).

Hence,
q ≤ 1

2

(
q + 1

2

)
< m′ <

(
q + 1

2

)
for each integer q ≥ 3. By the induction hypothesis, there exists integers k1, k2, . . . , kt with 1 ≤ k1 < k2 < · · · < kt = q such
that

∑t
i=1 ki = m′. Letting kt+1 = q + 1, we obtain

∑t+1
i=1 ki = m.

With the aid of Lemma 5.1 and Ramsey chains of cycles, we now show that AR(G)−AR−(G) can be arbitrarily large.

Theorem 5.1. For every two integers p and q with 2 ≤ p < q, there exists a cycle with a red-blue coloring possessing a
maximal Ramsey chain of length p and a maximum Ramsey chain of length q.

Proof. If
(
p+1
2

)
and

(
q+1
2

)
are of opposite parity, let n =

(
q+1
2

)
; while if

(
p+1
2

)
and

(
q+1
2

)
are of the same parity, let n =

(
q+1
2

)
+1.

Let G = Cn where the n consecutive edges of G are denoted by e1, e2, . . . , en. We now define a red-blue coloring of G where
ei is colored red if 1 ≤ i ≤

(
p+1
2

)
, ei is colored blue if i =

(
p+1
2

)
+ 1,

(
p+1
2

)
+ 3, · · · , n, and all remaining edges of G are colored

red. Therefore, the red subgraph of G is

Gr = Q(p+1
2 ) +

⌊
n−

(
p+1
2

)
2

⌋
K2,

where Q(p+1
2 ) is a path of size

(
p+1
2

)
in Gr, and the blue subgraph of G is

Gb =

⌈
n−

(
p+1
2

)
2

⌉
K2.

Let mr =
(
p+1
2

)
+

⌊
n−(p+1

2 )
2

⌋
be the number of red edges of G and let mb =

⌈
n−(p+1

2 )
2

⌉
be the number of blue edges of G.

Then mr > mb and mr +mb = n.
First, we show that there is a maximal Ramsey chain of length p in G. The subgraph Q(p+1

2 ) of Gr can be decomposed
into {Q1, Q2, . . . , Qp} where Qi is a path of size i for 1 ≤ i ≤ p. Thus, R = (Q1, Q2, . . . , Qp) is a Ramsey chain in Gr and
in G. Since G−E(R) contains no monochromatic subgraph isomorphic to either Qp+1 or Qp +K2, the chain R is a maximal
Ramsey chain of length p inG. Next, we show that there is a maximum Ramsey chain of length q inG. Define a sequence S
of the mr red edges of Gr as follows:

? If
(
p+1
2

)
is even, then let S =

(
e1, e3, . . . , e(p+1

2 )−1, e(p+1
2 )+2, e(p+1

2 )+4, . . . , en−1, e2, e4, . . . , e(p+1
2 )

)
.

? If
(
p+1
2

)
is odd, the let S =

(
e1, e3, . . . , e(p+1

2 ), e(p+1
2 )+2, e(p+1

2 )+4, . . . , en−1, e2, e4, . . . , e(p+1
2 )−1

)
.

10



G. Chartrand, R. Chatterjee, and P. Zhang / Electron. J. Math. 6 (2023) 1–14 11

Then no two consecutive edges in S are adjacent. Denote the sequence S by (f1, f2, . . . , fmr ), where then fifi+1 /∈ E(G)

for 1 ≤ i ≤ mr − 1. To construct a maximum Ramsey chain of length q in G, we consider two cases, according to whether
n =

(
q+1
2

)
or n =

(
q+1
2

)
+ 1.

Case 1. n =
(
q+1
2

)
. Since 1

2

(
q+1
2

)
< mr <

(
q+1
2

)
, it follows by Lemma 5.1 that there exist integers a1, a2, . . . , at with

1 ≤ a1 < a2 < · · · < at = q such that
∑t

i=1 ai = mr. Define a labeling ` of S by

`(fi) =



t if 1 ≤ i ≤ at = q

t− 1 if at + 1 ≤ i ≤ at + at−1

...
...

1 if at + at−1 + · · ·+ a2 + 1 ≤ i ≤ mr.

Since q ≤ 1
2

(
q+1
2

)
< 1

2mr, it follows that for every pair i, j of distinct integers with 1 ≤ i, j ≤ t, if `(fi) = `(fj), then fi and fj
are not adjacent. Thus, for 1 ≤ i ≤ t, the ai edges labeled i form the matching aiK2 and so Gr can be decomposed into the
matchings a1K2, a2K2, . . ., atK2 = qK2. Since(

t∑
i=1

ai

)
+mb =

(
q + 1

2

)
=

q∑
i=1

i,

it follows that there exist t′ distinct integers b1, b2, . . . , bt′ , where t′ = q − t and 1 ≤ b1 < b2 < · · · < bt′ ≤ q − 1 such that (i)∑t′

i=1 bi = mb and (ii) ai 6= bj for every pair i, j of integers with 1 ≤ i ≤ t and 1 ≤ j ≤ t′. That is,

{a1, a2, . . . , at} ∪ {b1, b2, . . . , bt′} = {1, 2, . . . , q}.

The blue subgraph Gb = mbK2 can be decomposed into the matchings b1K2, b2K2, . . ., bt′K2. Consequently,

(K2, 2K2, 3K3, . . . , qK2)

is a maximum Ramsey chain of length q in G.
Case 2. n =

(
q+1
2

)
+ 1. Thus,

(
p+1
2

)
and

(
q+1
2

)
are of the same parity. Then

mr =

(
p+ 1

2

)
+

⌊(
q+1
2

)
+ 1−

(
p+1
2

)
2

⌋
=

1

2

[(
q + 1

2

)
+

(
p+ 1

2

)]
.

Since 3 ≤ p < q, it follows that
1

2

(
q + 1

2

)
<

1

2

[(
q + 1

2

)
+

(
p+ 1

2

)]
<

(
q + 1

2

)
and so 1

2

(
q+1
2

)
< mr <

(
q+1
2

)
. By the argument in Case 1, there exist integers a1, a2, . . . , at with 1 ≤ a1 < a2 < · · · < at = q

such that
∑t

i=1 ai = mr and the red subgraph Gr can be decomposed into the matchings a1K2, a2K2, . . ., atK2. In this
case, mr + (mb − 1) =

(
q+1
2

)
. By the argument in Case 1, there exist t′ distinct integers b1, b2, . . . , bt′ , where t′ = q − t and

1 ≤ b1 < b2 < · · · < bt′ ≤ q − 1 such that (i)
∑t′

i=1 bi = mb − 1 and (ii) ai 6= bj for every pair i, j of integers with 1 ≤ i ≤ t

and 1 ≤ j ≤ t′. The blue subgraph (mb− 1)K2 ⊆ Gb can be decomposed into the matchings b1K2, b2K2, . . ., bt′K2. Since the
size of G is n =

(
q+1
2

)
+ 1 <

(
q+2
2

)
, there is no Ramsey chain of length q + 1 and so (K2, 2K2, 3K3, . . . , qK2) is a maximum

Ramsey chain of G.

The following is therefore a consequence of Theorem 5.1.

Corollary 5.1. For each positive integer N , there is a graph G such that AR(G)−AR−(G) > N .

6. Alternating Ramsey chains

In the proof of Theorem 5.1, every link of both the maximal Ramsey chain and the maximum Ramsey chain has the same
color, namely red. We now show that Corollary 5.1 can be obtained without all the links having the same color.

An alternating Ramsey chain in a graph with a red-blue coloring is a Ramsey chain in which the colors of every two
consecutive links are distinct. For integers p and q with 1 ≤ p < q, we writeQq(p) to denote the subpath of length p obtained
by selecting the first p edges (in clockwise direction) from a path Qq of length q in a cycle. We now show that there is a
red-blue coloring of a cycle that produces arbitrarily many maximal alternating Ramsey chains of distinct lengths.

11
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Theorem 6.1. For every positive integer k, there exists a cycle with a red-blue coloring possessing at least k maximal
alternating Ramsey chains of distinct lengths.

Proof. The statement is true trivially for k = 1 and so we may assume that k ≥ 2. Let G = Cn where

n =


11k2 − 5k

2
if k is odd

11k2 − 5k + 2

2
if k is even.

We now describe a red-blue coloring of G as follows.

? Select an arbitrary edge of G and color it red. This is a red Q1, which we denote by F1. As we proceed clockwise
about G, the next two edges are colored blue. This results in a blue Q2, which we denote by F2. The next three edges
are colored red, resulting in a redQ3, which we denote by F3. We continue this procedure until arriving at a blueQ2k,
denoted by F2k. Thus, the sequence (F1, F2, . . . , F2k) = (Q1, Q2, . . . , Q2k) appears (in clockwise direction) on G where
Fi = Qi for 1 ≤ i ≤ 2k and

2k∑
i=1

|E(Fi)| =
2k∑
i=1

|E(Qi)| =
2k∑
i=1

i =

(
2k + 1

2

)
.

? The next 2k − 1 edges following F2k are colored red, resulting in a red Q2k−1, denoted by H1. The next 2k − 2 edges
following H1 are colored blue, resulting in a red Q2k−2, denoted by H2. We continue this procedure until arriving
at Qk+1, denoted by Hk−1. If k is odd, then Hk−1 is a blue Qk+1; while if k is even, then Hk−1 is a red Qk+1. Thus,
the sequence (H1, H2, . . . ,Hk−1) = (Q2k−1, Q2k−2, . . . , Qk+1) appears (after F2k in clockwise direction) on G, where
Hi = Q2k−i for 1 ≤ i ≤ k − 1 and

k−1∑
i=1

|E(Hi)| =
k−1∑
i=1

|E(Q2k−i)| =
k−1∑
i=1

(2k − i) =

(
2k

2

)
−
(
k + 1

2

)
.

? Let X be the set consisting of the remaining edges of G, namely

X = E(G)− [E(F1) ∪ E(F2) ∪ · · · ∪ E(F2k) ∪ E(H1) ∪ E(H2) ∪ · · · ∪ E(Hk−1)].

Then

|X| = n−
[(

2k + 1

2

)
+

(
2k

2

)
−
(
k + 1

2

)]
= n− 7k2 − k

2

=


11k2 − 5k

2
− 7k2 − k

2
= 2k(k − 1) if k is odd

11k2 − 5k + 2

2
− 7k2 − k

2
= 2k(k − 1) + 1 if k is even.

The edges in X are alternately colored red and blue such that the edge following Hk−1 is colored differently than the
edges of Hk−1 and the edge preceding F1 is blue. Hence,

◦ if k is odd, then Hk−1 is blue and so the edge following Hk−1 is colored red. Since |X| = 2k(k − 1) is even, the
edge preceding F1 is blue as required;

◦ if k is even, then Hk−1 is red and so the edge following Hk−1 is colored blue. Since |X| = 2k(k− 1) + 1 is odd, the
edge preceding F1 is blue.

Consequently, if |X| = t, then G[X] = (f1, f2, . . . , ft) is a subpath Qt of size t where f1 is the edge following Hk−1 and
ft is the edge preceding F1. The edges of G[X] are alternately colored red and blue such that f1 is colored differently
than the edges of Hk−1 and ft is blue.

We now have the following.

Observation. No red edge in X is adjacent to any red edge in G and no blue edge in X is adjacent to any blue
edge in G. Thus, each edge in X is a monochromatic component Q1 either in the red subgraph Gr of G or in the
blue subgraph Gb of G.

12
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If k is odd, then the red subgraph Gr and the blue subgraph Gb of G are

Gr = F1 + F3 + · · ·+ F2k−1 +H1 +H3 + · · ·+Hk−2 + k(k − 1)K2

= Q1 +Q3 + · · ·+Q2k−1 +Q2k−1 +Q2k−3 + · · ·+Qk+2 + k(k − 1)K2

Gb = F2 + F4 + · · ·+ F2k +H2 +H4 + · · ·+Hk−1 + k(k − 1)K2

= Q2 +Q4 + · · ·+Q2k +Q2k−2 +Q2k−4 + · · ·+Qk+1 + k(k − 1)K2.

If k is even, then the red subgraph Gr and the blue subgraph Gb of G are

Gr = F1 + F3 + · · ·+ F2k−1 +H1 +H3 + · · ·+Hk−1 + k(k − 1)K2

= Q1 +Q3 + · · ·+Q2k−1 +Q2k−1 +Q2k−3 + · · ·+Qk+1 + k(k − 1)K2

Gb = F2 + F4 + · · ·+ F2k +H2 +H4 + · · ·+Hk−2 + [k(k − 1) + 1]K2

= Q2 +Q4 + · · ·+Q2k +Q2k−2 +Q2k−4 + · · ·+Qk+2 + [k(k − 1) + 1]K2.

We claim that G possesses k maximal alternating Ramsey chains R1, R2, . . . , Rk where Ri has length 2k − 1 + i for
1 ≤ i ≤ k.

• First, R1 = (F1, F2, . . . , F2k) is an alternating Ramsey chain of length 2k in G. Since G−E(R1) contains no monochro-
matic subgraph isomorphic to F2k = Q2k, it follows that R1 is maximal.

• Next, let R2 = (F1, F2, . . . , F2k−1, F2k(2k − 1) +K2, H1 + 2K2), where the edges of K2 and 2K2 are taken from X such
that each link in R2 is monochromatic. ThenR2 is an alternating Ramsey chain of length 2k+1 inG. SinceG−E(R2)

contains no monochromatic subgraph isomorphic to Q2k−1, it follows that R2 is maximal.

• Next, let R3 = (F1, F2, . . . , F2k−2, F2k−1(2k− 2) +K2, F2k(2k− 2) + 2K2, H1(2k− 2) + 3K2, H2 + 4K2), where the edges
ofK2, 2K2, 3K2, 4K2 are taken fromX such that each link in R3 is monochromatic. Then R3 is an alternating Ramsey
chain of length 2k + 2 in G. Since G − E(R3) contains no monochromatic subgraph isomorphic to Q2k−2, it follows
that R3 is maximal.

• In general, for 2 ≤ i ≤ k, let

Ri = (F1, F2, . . . , F2k+1−i, F2k+2−i(2k + 1− i) +K2,

F2k+3−i(2k + 1− i) + 2K2, . . . , F2k(2k + 1− i) + (i− 1)K2,

H1(2k + 1− i) + iK2, H2(2k + 1− i) + (i+ 1)K2, . . . , Hi−1 + 2(i− 1)K2)

where the edges of K2, 2K2, . . . , 2(i − 1)K2 are taken from X such that each link in Ri is monochromatic. Thus, Ri

is an alternating Ramsey chain of length 2k − 1 + i in G. Since G − E(Ri) contains no monochromatic subgraph
isomorphic to Q2k+1−i, it follows that Ri is maximal. In particular,

Rk = (F1, F2, . . . , Fk+1, Fk+2(k + 1) +K2, Fk+3(k + 1) + 2K2, . . . , F2k(k + 1) + (k − 1)K2,

H1(k + 1) + kK2, H2(k + 1) + (k + 1)K2, . . . , Hk−1 + 2(k − 1)K2)

where the edges of K2, 2K2, . . . , 2(k− 1)K2 are taken from X such that each link in Rk is monochromatic. Thus, Rk is
an alternating Ramsey chain of length 3k−1 in G. Since G−E(Rk) contains no monochromatic subgraph isomorphic
to Qk+1, it follows that Rk is maximal.

Finally, we show that each of the k maximal alternating Ramsey chains R1, R2, . . . , Rk of distinct lengths in G can be
constructed as described. Of the k alternating Ramsey chains R1, R2, . . ., Rk in G, the longest chain Rk among them takes
the maximum number of edges from X. This maximum number is 1 + 2 + · · ·+ 2(k − 1) =

(
2k−1

2

)
= k(2k − 1).

◦ If k is odd, then the link Fk+2(k+ 1) +K2 in Rk is red and so the number of red components Q1 required in Rk from X

is 1 + 3 + · · ·+ (2k − 3) = (k − 1)2 and the number of blue components Q1 in Rk is

2 + 4 + · · ·+ 2(k − 1) = 2[1 + 2 + · · ·+ (k − 1)] = 2
(
k
2

)
= k(k − 1).

Since |X| = 2k(k − 1), where k(k − 1) edges are red and k(k − 1) edges are blue, it follows by the observation that k
such maximal alternating Ramsey chains R1, R2, . . . , Rk of distinct lengths in G can be constructed.
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◦ If k is even, then the link Fk+2(k + 1) +K2 in Rk is blue and so the number of blue components Q1 required in Rk is
1 + 3 + · · ·+ (2k − 3) = (k − 1)2 and the number of red components Q1 from X is

2 + 4 + · · ·+ 2(k − 1) = 2[1 + 2 + · · ·+ (k − 1)] = 2

(
k

2

)
= k(k − 1).

Since |X| = 2k(k − 1) + 1, where k(k − 1) edges are red and k(k − 1) + 1 edges are blue, it follows by the observation
that such k maximal alternating Ramsey chains R1, R2, . . . , Rk of distinct lengths in G can be constructed.

This completes the proof.
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[1] Y. Alavi, A. J. Boals, G. Chartrand, P. Erdős, O. R. Oellermann, The ascending subgraph decomposition problem, Congr. Numer. 58 (1987) 7–14.
[2] A. Ali, G. Chartrand, P. Zhang, Irregularity in Graphs, Springer, New York, 2021.
[3] G. Chartrand, P. Zhang, The ascending Ramsey index of a graph, Symmetry 15 (2023) #523.
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