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The imaging features of novel coronavirus (SARS-CoV-2) and coronavirus disease 2019 
(COVID-19) pandemic are still being fully characterized and understood (1, 2). The 
estimated mortality rate is reported between 1.4% and 7% (3). Health services and 

intensive care units (ICUs) are facing critical saturation in this pandemic (4), where early and 
wise resource allocation decisions may impact population outcomes. 

Radiology departments play a key role in this pandemic (5–8), with imaging data poten-
tially contributing towards detection (9–14), characterization (9), monitoring (15–18), tri-
age (19–22), resource allocation, early intervention, and isolation (8). Although speculative, 
models that correlate imaging findings to outcomes could be helpful or predictive in the 
management and triage of the 20% of SARS-CoV-2 positive patients who develop more 
serious manifestations of COVID-19 pneumonia. Epidemiology standards require a waiting 
period in between patients with airborne viral diseases, which may practically limit comput-
ed tomography (CT) use. To date, radiology and thoracic professional societies have pointed 
to the efficiency, ease of access, field availability, and repeatability of chest X-ray as well 

PURPOSE 
Chest X-ray plays a key role in diagnosis and management of COVID-19 patients and imaging 
features associated with clinical elements may assist with the development or validation of auto-
mated image analysis tools. We aimed to identify associations between clinical and radiographic 
features as well as to assess the feasibility of deep learning applied to chest X-rays in the setting 
of an acute COVID-19 outbreak. 

METHODS
A retrospective study of X-rays, clinical, and laboratory data was performed from 48 SARS-CoV-2 
RT-PCR positive patients (age 60±17 years, 15 women) between February 22 and March 6, 2020 
from a tertiary care hospital in Milan, Italy. Sixty-five chest X-rays were reviewed by two radiolo-
gists for alveolar and interstitial opacities and classified by severity on a scale from 0 to 3. Clinical 
factors (age, symptoms, comorbidities) were investigated for association with opacity severity 
and also with placement of central line or endotracheal tube. Deep learning models were then 
trained for two tasks: lung segmentation and opacity detection. Imaging characteristics were 
compared to clinical datapoints using the unpaired student’s t-test or Mann-Whitney U test. Co-
hen’s kappa analysis was used to evaluate the concordance of deep learning to conventional 
radiologist interpretation. 

RESULTS
Fifty-six percent of patients presented with alveolar opacities, 73% had interstitial opacities, and 
23% had normal X-rays. The presence of alveolar or interstitial opacities was statistically correlat-
ed with age (p = 0.008) and comorbidities (p = 0.005). The extent of alveolar or interstitial opac-
ities on baseline X-ray was significantly associated with the presence of endotracheal tube (p = 
0.0008 and p = 0.049) or central line (p = 0.003 and p = 0.007). In comparison to human interpre-
tation, the deep learning model achieved a kappa concordance of 0.51 for alveolar opacities and 
0.71 for interstitial opacities.

CONCLUSION
Chest X-ray analysis in an acute COVID-19 outbreak showed that the severity of opacities was 
associated with advanced age, comorbidities, as well as acuity of care. Artificial intelligence tools 
based upon deep learning of COVID-19 chest X-rays are feasible in the acute outbreak setting.
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as its ease of cleaning and decontamina-
tion. These strengths are balanced against 
the higher sensitivity and specificity of CT. 
Moreover, when patients are encouraged to 
present early in the course of their disease, 
as was the case in Hubei Province, China, 
chest X-ray may have less value than CT.

Typical and characteristic CT features for 
COVID-19 related pneumonia have been re-
cently defined (23–28). Chest X-ray findings 
might help address clinical decision-mak-
ing in screening, management and priori-
tization that may unfortunately arise in the 
care of COVID-19 patients. Resource alloca-
tion may be most critical during peak prev-
alence, when imaging equipment may also 
be stretched thin, or not accessible to inten-
sive care or “medical surge facility” settings. 

Deep learning uses convolutional neural 
networks that are like a “black box” in that 
they may or may not use conventional im-
aging features to function and classify the 
outputs. Machine learning on the other 
hand, would use specific features, and gen-
erally requires less data points to ensure 
clinically relevant accuracy or validity. This 
study uses tools for explanatory purposes, 
not for producing a refined or usable mod-
el at this early stage. There are currently 
limited reports of the role of chest X-ray 
in COVID-19 patients with scarce details of 
the application and role of deep learning of 
chest X-rays in patients with COVID-19. Pre-
vious papers stated that the main findings 
were bilateral reticular nodular opacities, 
ground-glass opacities and peripheral con-
solidations (29–31). Deep learning and arti-
ficial intelligence (AI) applications in chest 
radiography are in their infancy, but there 
are multiple commercial platforms for com-
puter-aided detection for pulmonary nod-
ule detection, characterization and quanti-
fication of interstitial lung disease (32–34). 
We aimed to identify associations between 
clinical and radiographic features as well 
as to assess the feasibility of deep learning 

applied to chest X-rays in the setting of an 
acute COVID-19 outbreak. 

Methods
A total of 48 patients (60±17 years, 15 

women) with 65 X-rays, collected during 
the initial hit phase of the outbreak in Italy, 
were analyzed. Research Ethics Committee 
/ Institutional Review Board approval was 
obtained for this study with an exemption 
of requirement for written informed con-
sent since the protocol met waiver of con-
sent criteria. Chest X-rays, limited clinical 
and laboratory data of 48 Italian patients 
with positive RT-PCR for SARS-CoV-2 from 
February 22 to March 6, 2020 were ret-
rospectively analyzed. Nine patients had 
multiple X-rays. The average time delay 
between RT-PCR and imaging was 0.54 day 
with a maximum of 10 days. Clinical data 
and characteristics included date of X-rays, 
gender, symptoms (fever, cough, dyspnea, 
and other), associated comorbidity diagno-
sis, smoking history, date of real-time RT-
PCR testing, RT-PCR titer, platelets, absolute 
white cell count with differentials including 
neutrophils, lymphocytes, monocytes, eo-
sinophils, and basophils. 

Image characterization
The X-rays were assessed by two radiolo-

gists of five and seven years of experience, 
who analyzed the presence of alveolar 
opacity and interstitial opacity. Alveolar 
pattern was noted when there was a fluffy 
ill-defined opacity with rounded shapes. 
The interstitial pattern was noted for lin-
ear opacities coming from the hilum and 
extended through the lung parenchyma, 
parallel to vessels. The severity of the extent 
of both alveolar and interstitial opacity was 
subjectively graded on a scale from 0 to 3 
(13, 15). Specifically, the alveolar opacity ex-
tent severity was 0 for 0% of lung space, 1 
for 1%–25% of lung space, 2 for 26%–50%, 
and 3 for >50% of lung space (35). The in-
terstitial opacity extent severity was 0 for 
no reticular opacities, 1 for reticular opac-
ities immediately adjacent to the hilum, 2 
for reticular opacities from the hilum and 
extended through half of the lung paren-
chyma, and 3 for reticular opacities that 
extended from hilum to chest wall. Further, 
alveolar opacities were characterized as lo-
bar or multi-lobar based on presence in one 
lobe or more than one lobe, respectively. 
The apical-basal distribution of the overall 
extent of opacity was characterized as be-

ing present in the apex of the lung, basal 
portion of the lung, diffusely involving the 
entire lung, or none. The laterality of overall 
opacity was characterized as bilateral, right, 
left, or none. The X-rays were evaluated for 
mediastinal silhouette enlargement as de-
fined as greater than 0.5 of the cardiotho-
racic index (regardless of portability, PA, or 
AP orientation). The X-rays were evaluated 
for pleural effusion as well as presence of 
endotracheal tube (ETT) or central line. The 
two radiologists independently charac-
terized and classified the X-rays, identified 
mismatch characterizations and came to 
consensus agreement based on definitions 
above. Patients with more than one X-ray 
were evaluated for evolution of imaging 
findings. 

Deep learning modeling
Our deep learning AI model had two dif-

ferent tasks. A lung segmentation model 
with a modified U-Net (with EfficientNet 
as backbone) (36) architecture which was 
trained using public datasets, e.g., JSRT (37), 
MontgomeryCXR and ShenzhenCXR (38), 
including a total of 1048 images. The sec-
ond task consisted of image classification, 
to predict whether or not alveolar and in-
terstitial opacities existed. This used a mul-
titask multiclass classification framework 
based on an ImageNet-pretrained Densen-
et121 (39) model that was finetuned and 
evaluated using the 65 images in a 5-fold 
cross-validation fashion. The classification 
was applied only for the segmented lung 
regions of the image based on the mask 
from the first task. Saliency heatmaps for 
both interstitial and alveolar opacities were 
generated for all 65 X-rays (130 heatmaps 
total) to visualize geographic regions of 
importance that aided in the classification 
tasks of presence of interstitial or alveolar 
opacity (40). Both models were trained us-
ing Pytorch on a NVIDIA Titan Xp. 

Statistical analysis
Clinical and imaging characteristics were 

analyzed for descriptive statistics using 
averages and standard deviations. Subse-
quently, imaging characteristics were com-
pared to clinical datapoints with statistical 
analysis of the comparison using the un-
paired student’s t-test for parametric data 
and a Mann-Whitney U test for nonpara-
metric data. To evaluate the performance 
of the deep learning model, Cohen’s kappa 
(κ) analysis was done to compare the con-
cordance of the model to the radiologists’ 

Main points

•	 A deep learning model allowed for automated 
classification of chest X-rays in patients with 
acute COVID-19 pneumonia.

•	 Alveolar and interstitial opacities in chest 
X-rays from COVID-19 patients correlated with 
comorbidities and advanced age.

•	 The severity of opacities on baseline chest 
X-ray were significantly correlated to increased 
acuity of intensive care.



consensus diagnosis. Accuracy was defined 
as the overall agreement of the radiologist 
consensus diagnosis to the models. A p val-
ue of <0.05 was considered significant and 
results were reported as mean ± standard 
deviation (SD). Statistical analyses were 
done in R (version 3.6.3).

 
Results

Table 1 outlines demographic and clini-
cal characteristics. The main clinical finding 
was fever in 35 cases (73%), followed by 
cough in 22 (46%), and dyspnea in 7 (15%). 
Among other symptoms, the most com-
mon was pharyngeal pain (6 cases; 13%). 
Thirteen patients had chest X-rays but did 
not have complete clinical presentation 
information, as they were transferred from 
other hospitals. 

Twenty-seven patients had multiple co-
morbidities (56%). The main comorbidities 
were hypertension (n=12; 25%), diabetes 
(n=7; 15%) and obesity (n=6; 13%). The 
majority of the patients (n=28; 59%) had 
multiple comorbidities. Other potentially 
relevant comorbidities included cardiopa-
thy (n=3; 6%), chronic obstructive pulmo-
nary disease (n=2; 4%), congestive heart 
failure (n=2; 4%), ischemic heart disease 
(n=1; 2%), and acute myeloid leukemia 
(n=1; 2%).

All 48 patients had a positive RT-PCR for 
SARS-CoV-2, with 13 patients receiving ini-
tial diagnostic testing and RT-PCR at out-
side facilities, with clinical presenting data 
not available for analysis. The 35 patients 
with laboratory counts had a mean PCR 
result of 5.83 mg/dL (reference range <0.5 
mg/dL; SD, 8.29 mg/dL). The mean blood 
cell counts were as follows: neutrophil 4.09 
×109/L (reference range, 1.50–6.50 ×109/L; 
SD, 2.86×109/L), monocyte 0.53 ×109/L 
(reference range, 0.30–0.60 ×109/L; SD, 
0.27×109/L), basophil 0.02 ×109/L (reference 
range, 0.01–0.20 ×109/L; SD, 0.02×109/L), 
platelet 176.09 ×109/L (reference range, 
130–400 ×109/L; SD, 47.55×109/L); lympho-
cyte and eosinophil counts were low, with 
a mean of 1.09 ×109/L (reference range, 
1.20–3.40 ×109/L; SD, 0.50×109/L) for lym-
phocyte and a mean 0.01 ×109/L (reference 
range, 0.10–0.80 ×109/L; SD, 0.03×109/L) for 
eosinophil. 

Eleven of initial X-rays were without infil-
trates (23%). Twenty-seven patients (56%) 
had alveolar opacities on initial X-ray, with 
8 (17%) having alveolar opacities involving 
more than 50% of the lung (Table 2). Thir-
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Table 1.  Demographic and clinical characteristics of SARS-CoV-2 positive patients

n (%)

Age (years), mean (min–max) 60.2 (27–92)

Gender F 15 (31)

 M 33 (69)

Fever Yes 35 (73)

 No 4 (8)

 Not reported 9 (19)

Cough Yes 22 (46)

 No 17 (35)

 Not reported 9 (19)

Dyspnea Yes 7 (15)

 No 28 (58)

 Not reported 9 (19)

Other symptoms Yes 15 (31)

 No 24 (50)

 Not reported 9 (19)

Comorbidity Yes 27 (56)

 No 12 (25)

 Not reported 9 (19)

Table 2.  Analysis of baseline chest X-rays of SARS-CoV-2 positive patients

Imaging characteristics  n (%)*

Alveolar opacity  27 (56)

Severity 0 21 (44)

 1 13 (27)

 2 6 (13)

 3 8 (17)

Distribution Multi-lobar 20 (42)

 Lobar 7 (15)

 None 21 (44)

Interstitial opacity  35 (73)

Severity 0 13 (27)

 1 20 (42)

 2 11 (23)

 3 4 (8)

Apical-basal predominance Apical 0 (0)

 Basal 22 (46)

 Diffuse 15 (31)

 None 11 (23)

Laterality Right 2 (4)

 Left 2 (4)

 Bilateral 33 (69)

 None 11 (23)

Heart size enlarged (cardiothoracic index >1/2)  4 (8)

Pleural effusion  3 (6)

Endotracheal tube  6 (13)

Central line  9 (19)

*Percentage based on 48 patients.
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ty-five patients (73%) had interstitial opac-
ities, with most of those being adjacent 
to the hilum. Thirty-three (69%) of overall 
opacities, including both alveolar and in-
terstitial opacities, were bilateral. A basal 
predominance of overall opacity distribu-
tion was noted in 22 X-rays (46%), while 15 
patients (31%) had diffuse involvement of 
both apex and base. Six (13%) and 9 (19%) 
of the initial X-rays had an endotracheal 
tube or central line, respectively.

The presence of either alveolar or inter-
stitial opacities (i.e., presence of infiltrate of 
any type) on chest X-ray was statistically cor-
related with patient age (presence of opac-
ity, 46±18 years; no opacity, 64±14 years, 
p = 0.008) and the number of comorbidities 
(presence of opacity, 0.5±0.9; no opacity, 
1.6±1.2; p  =  0.005) (Fig. 1). The number of 
primary symptoms (fever, cough, and/or 
dyspnea) did not correlate with presence 
of opacities (presence of opacity, 1.8±0.6, 
no opacity, 1.7±0.8; p = 0.596). There were 
trends between opacity extent and age, as 
well as between opacity extent and comor-
bidity. 

Figure 1. a, b. Chest X-ray and clinical data correlation for COVID-19 positive patients. Panel (a) shows comparison of patients with (n=37) and without 
(n=11) the presence of either alveolar or interstitial opacity. Alveolar or interstitial opacity were statistically correlated to a higher age and higher number 
of comorbidities. Panel (b) shows the distribution of patients with and without the presence of alveolar or interstitial opacity. This data suggests a trend of 
increasing alveolar and interstitial opacity with age and comorbidities.
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A higher severity of both alveolar or in-
terstitial opacities on baseline chest X-ray 
was significantly correlated to the presence 
of endotracheal tube or central line (Fig. 2). 
Alveolar opacity extent severity was higher 
for patients with ETT placement (with ETT: 
median, 2.5 [range, 2–3]; no ETT: median, 

0.5 [range, 0–3]; p  =  0.0008). Interstitial 
opacity extent severity was higher for pa-
tients with ETT placement (with ETT: medi-
an, 2 [range, 1–2]; no ETT: median, 1 [range, 
0–3]; p = 0.049). Similarly, average alveolar 
opacity extent severity was higher for pa-
tients when a central line was used (with 

central line: median, 3 [range, 0–3]; no cen-
tral line: median, 1 [range, 0–3]; p = 0.003), 
and interstitial opacity extent severity was 
higher when a central line was used (with 
central line: median, 2 [range, 1–2]; no cen-
tral line: median, 1 [range, 0–3]; p = 0.007). 
Further, patients with diffuse involvement 
of both apex and base showed a higher rate 
of endotracheal tube (n=3, 19% vs. n=3, 
13%) or a central line (n=4, 25% vs. n=4, 
17%) placement.

In 9 patients with longitudinal chest 
X-rays, 5 showed evolution of X-ray findings 
over time, with increasing alveolar or inter-
stitial opacity severity (Fig. 3). Radiographic 
evolution of opacities was increased in 5 
patients over time. In one representative 
patient, the day 0 X-ray showed interstitial 
opacity with development of alveolar opac-
ity, which became more severe and diffuse 
over the 7 day period. The patient received 
a central line as the opacities progressed 
(Fig. 3). Deep learning models were not ap-
plied to these serial data.

The deep learning workflow consisted of 
initially building and applying a whole lung 
field segmentation model based upon a 
public dataset. Image classification of this 
small data set was then performed with a 
multi-task, multi-class classification frame-
work and finally 5-fold cross-validation.

In 4 radiologists’ subjective evaluation, 
the lung field segmentation using the AI 
model was reasonably accurate in the de-
lineation of lung field margins and pleural 
edges for all 65 X-ray images. Whole lung 
field segmentation was possible without fo-
cal infiltrates confounding the task (Fig. 4). 
For the lung field segmentation, the main 
limits/errors were the retrocardiac left lower 
lobe (61/65), the pleural sulci (12/65), pre-
dominantly consolidated lung (8/65) and 
erroneously including small non lung areas 
in the segmentation (10/65).

Following segmentation, the deep 
learning model achieved an accuracy of 
diagnosing alveolar opacities with 78.5% 
concordance (κ=0.51) to the radiologist 
diagnosis and 90.7% for the interstitial 
opacities (κ=0.71). A 58-year-old male with 
typical alveolar and interstitial opacities 
who presented with fever is shown in Fig. 
4. Same figure also illustrates the computed 
heatmaps consisting of saliency maps for 
positive case with alveolar and interstitial 
opacity, respectively. The multi-class classi-
fication accuracy was computed using sk-
learn.metrics.accuracy score.
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Figure 3. a, b. Longitudinal chest X-ray evaluation. Panel (a) shows the change in alveolar opacity 
severity versus days since first scan. Changes in imaging findings and if a central line was placed are 
indicated at corresponding timepoints. Panel (b) shows longitudinal chest X-ray series for an 81-year-
old female patient, whose disease course is documented in panel (a) (dark green line).
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Discussion
This preliminary analysis correlating chest 

X-rays from the Northern Italy Pandemic 
outbreak to demographic and clinical fea-
tures provides a model for demonstrating 
deep learning. Opacities of any kind may be 
classified with deep learning, and may also 
correlate with certain demographic and 
clinical features. The specific utility of chest 
X-ray versus CT has yet to reach consensus 
in this rapidly evolving pandemic, and re-
mains an area of active investigation. 

Advanced age and presence of comor-
bidities were recapitulated as risk factors 
in COVID-19 associated with presence of 
opacities of either type. Endotracheal and 
central line placement (as surrogates of 
clinical severity) were associated with in-
creased extent of opacities. Five of the nine 
patients with multiple X-rays showed pro-
gression of extent of opacity. This is not un-
expected, but suggests potential utility in 
obtaining a baseline X-ray and trending the 
radiographic appearance to correlate with 
clinical condition. The typical evolution of 
imaging features over time and upon intu-
bation and ICU admission may be reflect-
ed and monitored with serial chest X-rays 
which can highlight superimposed heart 

failure or bacterial superinfections, which 
mandate treatment modifications. Sequen-
tial quantification of serial X-ray chang-
es may be one way in the future for deep 
learning models to provide a standardized, 
reproducible response or progression met-
ric as a biomarker for therapies and disease, 
which merits further attention.

This series lays the foundational feasibil-
ity for future deep learning and AI chest 
X-ray segmentation and classification anal-
yses for COVID-19 patients. This deep learn-
ing model reasonably predicted the pres-
ence of alveolar and interstitial chest X-ray 
opacities in patients with positive PCR, even 
with a fairly small source data set. Although 
entirely speculative, this lays the founda-
tion for the potential use of deep learning 
models for chest X-ray quantification of dis-
ease, decompensation risk, prognosis, addi-
tional therapies, contagiousness, outcomes, 
triage, or even potentially scarce resource 
allocation. Addressing these critical but 
speculative questions and defining down-
stream utility will require larger aggregate 
data sets with paired outcomes. 

This series is limited by the retrospective 
nature of the small 48 patient data analysis. 
Further, patients were excluded from some 

clinical analyses, when associated data 
points were not available. Patient selection 
biases certainly exist, as patients were not 
selected in a prospective nor randomized 
fashion. Such limitations are understand-
able, given the acute patient care and time 
burdens on the medical team in Italy. Lack of 
chest X-ray orientation (posteroanterior or 
anteroposterior, upright or supine) poten-
tially interfered with X-ray analysis. An addi-
tional limitation is the unrecorded timing of 
the chest X-rays relative to symptoms, and 
remains a major gap in our understanding. 
It is known that 50% of CT scans are positive 
in the initial 2 days, and the number and site 
of involvement increases in days 3–5, with a 
maximum CT infiltrate seen at days 10–13 
(19). The exact timing and evolution for 
chest X-ray features remains ill-defined, al-
though may be expected to be less sensitive 
than CT. The classification system of semi-
quantitative X-ray evaluation by two ob-
servers was created for the purpose of this 
study, but is not validated, which is a major 
limitation of this study. Finally, the lack of a 
control group is a major shortcoming of this 
early analysis. And for instance, background 
chronic lung disease was not specifically 
controlled, and could certainly alter the re-
sults even though we could suspect it be 
evenly distributed amongst the groups.

Age and comorbidities were associated 
with increased opacities on chest X-ray. In-
creased opacities were associated with in-
creased level and acuity of care, manifest as 
placement of ETTs or central lines. One can 
imagine the potential impact of deep learn-
ing models in the ability to segment lungs 
and quantify opacities in a standardized and 
reproducible fashion. The deep learning 
evaluation was limited by the small sample 
size and will require further development 
with larger datasets with ground truth im-
ages with annotations. Unfortunately, the 
time for meaningful action and impactful 
science is short. Realization of the fullest 
potential of deep learning and AI to im-
pact the COVID-19 pandemic and address 
urgent unmet clinical needs will necessi-
tate open multinational team science and 
open data sharing and aggregation. Deep 
learning algorithms for CT have displayed 
the ability to detect COVID-19, differentiate 
from community-acquired pneumonia, and 
quantify disease burden (29, 30). Even with 
limited small training data in COVID-19 pos-
itive patients, this reasonably correlative 
deep learning model for chest X-rays sug-
gests that larger data sets will have larger 
opportunity for clinical utility. 

Figure 4. a–d. Illustrative case of deep learning model for lung segmentation and classification 
of alveolar and interstitial opacities. Baseline chest X-ray (a) of a patient with both alveolar and 
interstitial opacities. The total lung field segmentation image (b) of the same patient. Note that retro-
cardiac left lower lobe is erroneously neglected from total lung field segmentation, a challenging 
problem with frontal chest X-ray lung field segmentation. Alveolar opacity heat map (c). Interstitial 
opacity heat map (d). Note that the map used the retrocardiac region, but did not use the region of 
the small round ground glass opacity in the mid left lung (arrow).

c

a

d

b



In conclusion, chest X-ray analysis in an 
acute COVID-19 outbreak showed that the 
severity of opacities was associated with 
advanced age, comorbidities, as well as acu-
ity of care. This small series from early time 
points of the outbreak in Italy showed that 
chest X-ray may inform triage and manage-
ment of COVID-19 patients and AI may add 
future value, especially in the state of over-
load induced by such a pandemic. Future 
work in AI could also try to predict outcomes 
and prognosis based upon clinical input, 
which might include imaging. Such mod-
els likely will need to be multiparametric 
where imaging is but one feature of a pre-
dictive model. Our study begins to address 
the urgent need for deep learning models 
and other data science assessments to uni-
fy multiparametric factors and meta-data 
into a single metric. Future work will deter-
mine if and how chest X-ray AI models could 
play roles at multiple time points during the 
COVID-19 disease process, including diagno-
sis, triage, prognosis, and response. 
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