
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (124) 2023

6

PERFORMANCE

EVALUATION OF THE

CLOUD COMPUTING

APPLICATION

FOR IOT-BASED

PUBLIC TRANSPORT

SYSTEMS

I h o r Z a k u t y n s k y i

Postgraduate Student*

L e o n i d S i b r u k

Doctor of Technical Sciences, Professor*

I h o r R a b o d z e i

Corresponding author

Department of Information Technology Security

National Aviation University

Liubomyra Huzara ave., 1, Kyiv, Ukraine, 03058

E-mail: igor.rabodzei@gmail.com

*Department of Radio-Electronic Devices and

Systems National Aviation University

Liubomyra Huzara ave., 1, Kyiv, Ukraine, 03058

The object of research is cloud computing as an element
of the server infrastructure for intelligent public transport
systems. Given the increasing complexity and requirements
for modern transportation, the application of the Internet
of Things concept has a high potential to improve efficien-
cy and passenger comfort. Since the load generated in IoT
systems is dynamic and difficult to predict, the use of tradi-
tional infrastructure with dedicated servers is suboptimal.
This study considers the use of cloud computing as the main
server infrastructure for the above systems. The paper
investigates the main cloud platforms that can be used to
develop such systems and evaluates their advantages and
disadvantages. The authors developed the overall architec-
ture of the system and evaluated the performance and scal-
ability of individual components of the server infrastruc-
ture. To test the system, a software emulator was developed
that simulates the controller module installed in vehicles.
Using the developed emulator, stress tests were conduct-
ed to analyze and confirm the ability to scale and process
input data by the proposed architecture. The test scenarios
were developed and conducted on the basis of the existing
public transportation system in Kyiv, Ukraine. The exper-
imental results showed that the proposed IoT architecture
is able to scale efficiently according to the load generated
by the connected devices. It has been found that when the
number of incoming messages increases from 40 to 6000, the
average message processing time remains unchanged, and
the error rate does not increase, which is an indicator of
stable system operation. The obtained results can be used
in the development of modern public transport systems, as
well as for the modernization of existing ones

Keywords: internet of things, cloud computing, system
architecture, public transport systems, scalability

UDC 621.382.2
DOI: 10.15587/1729-4061.2023.285514

How to Cite: Zakutynskyi, I., Sibruk, L., Rabodzei, I. (2023). Performance evaluation of the cloud computing applica-

tion for iot-based public transport systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (124)), 6–13.

doi: https://doi.org/10.15587/1729-4061.2023.285514

Received date 17.03.2023

Accepted date 23.05.2023

Published date 30.08.2023

1. Introduction

The International Data Corporation (IDC) predicts that
the global Internet of Things (IoT) market will grow rapidly,
with the number of connected devices reaching 55.7 billion
by 2025 [1]. The increase in the number of connected IoT
devices will contribute to the creation and development of
intellectual public transport systems (IPTS) based on the
concept of the Internet of Things.

The integration of IoT solutions into public transport
systems has revolutionized the way people move around cit-
ies. These systems collect real-time data from buses, trams,
trains, and other transport units, allowing operators to
optimize routes, improve passenger convenience, and reduce
transport costs. Existing intelligent transport systems usu-
ally use the classic IoT architecture. With this approach, the
data collected by the sensors installed in the transport units
are transmitted over the network to the server for further
processing and storage. Most existing IoT systems use dedi-
cated servers to store and process data.

Managing and analyzing this vast amount of data re-
quires significant computing power and memory that tradi-
tional on-premises infrastructure may not be able to handle.
In addition, local solutions are inflexible and unprofitable
due to the inability to quickly respond to changes in load.
The load generated by IoT devices is dynamic and non-de-
terministic and can be high (during peak times) or low
(during idle times). In both cases, the server infrastructure
must adapt to the load generated by IoT clients. The system
should work stably with a large number of simultaneously
connected devices, and should not use redundant resources
with a small number of connected clients. Therefore, there
is a need to explore alternatives to traditional methods of
dedicated servers to manage the complexity and scalability
of the above systems.

The main paradigm of modern cloud technologies is
serverless computing. Serverless computing is a model in
which a provider dynamically manages and allocates re-
sources to run applications. With serverless computing,
the underlying infrastructure automatically scales up or

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license

INFORMATION AND CONTROLLING SYSTEM

7

Information and controlling system

down based on demand. This ensures that the system can
handle fluctuations in data volume and traffic without the
need for manual configuration or infrastructure management.
Usually, the architecture of the IoT system is event-driven,
when software functions are triggered based on the arrival
of sensor data or as a result of direct interaction with the
user (commands). Serverless computing is well-suited to such
architectures, as it allows the corresponding functions to be
started and executed when a command is received, and to ter-
minate the command immediately after execution. Therefore,
research aimed at the development and analysis of IoT systems
using serverless computing and cloud technologies is relevant.

2. Literature review and problem statement

In work [2], the general paradigms of server computing
and the role of cloud technologies for the concept of the Inter-
net of Things are considered. The reported research results
show that the potential of the modern IoT system cannot
be fully realized on the basis of classic infrastructures with
dedicated servers. This is due to issues with scalability, net-
work bandwidth, and inefficient use of computing resources.
These shortcomings are especially evident in systems with
dynamic load, such as intelligent transport systems. In [3],
the authors consider the concepts of high-level frameworks
for intelligent transport systems. In [4], the authors also pro-
pose a high-level concept of the system, without analyzing
communication technologies and data processing methods.
Work [5] proposed a practical implementation of the system
using cloud storage and a database. The shortcomings of
this work include the fact that it was not tested, and the load
resistance of such an architecture was not confirmed. The
authors of study [6] proposed an approach for analyzing and
processing a large volume of data generated in modern IoT-
based transport systems. In the proposed approach, cloud
computing is used as the main server infrastructure, but the
feasibility of such an approach is not proven. In [7], a system
was developed to detect driver drowsiness using neural net-
work methods. For data processing, cloud technologies are
also used to save data, as well as to ensure data exchange in
real time. Works [2–7] explore the possibilities of integrat-
ing cloud technologies into existing transport systems, em-
phasizing their potential to increase efficiency and analytics.

An important aspect when building an IoT system is
the provision of secure communication channels and data
security. In the last few years, many studies have appeared
that shed light on this topic. In particular, in [8], the authors
conduct a security study using modeling at the physical and
network levels. The security modeling method proposed in
the cited paper can be applied in the construction of the IoT
network architecture, in particular, in the design of an intelli-
gent transport system. In [9], a comprehensive study of cyber
security issues in cloud computing based on the concept of
the Internet of Things is conducted. The authors consider the
problems and vulnerabilities that arise as a result of the intro-
duction of cloud computing in IoT systems, and also identify
future research directions. Also, a similar study is conducted
in [10], where the authors analyze potential attacks in IoT
systems, as well as known countermeasures. These studies
examine security protocols, encryption methods, and access
control mechanisms to address security issues and protect
sensitive data. At the same time, the above studies show a
number of unresolved problems in the field of data security.

Another unresolved issue is scaling and efficient use of
computing resources. The first step in overcoming these
difficulties is to identify and analyze the highly loaded com-
ponents of the system. This is the approach used in work [11],
where the general architecture of the public transport sys-
tem is given, with a complete analysis of communication
technologies and data transmission protocols. However,
study [11] does not consider the behavior of the system under
dynamically changing load, and therefore its ability to scale.

This gives reason to assert that it is appropriate to
conduct a study to analyze the use of serverless computing
methods in Internet of Things systems in general and in the
context of intelligent transport systems.

3. The aim and objectives of the study

The purpose of this study is to determine the possibili-
ties of serverless computing in intelligent transport systems
based on the Internet of Things. This will provide an oppor-
tunity to evaluate the effectiveness and feasibility of using
serverless cloud computing as the main server infrastructure
for data processing and storage.

To achieve the goal, the following tasks were set:
– to develop a general software architecture for process-

ing and saving data of an intelligent transport system;
– to develop a prototype and emulator of a car module for

data generation, testing and determination of system limits;
– to investigate the possibilities of scaling, as well as the

efficiency of the system under load.

4. The study materials and methods

4. 1. The object and hypothesis of the study
The object of research is serverless cloud computing as

an element of the server infrastructure for intelligent public
transport systems.

The hypothesis of the study assumed that serverless
cloud could significantly increase the efficiency and speed of
server data processing, based on methods of dynamic scaling
of resources.

The research was carried out using prototypes, an emu-
lator of a car module (IoT controller), and a deployed server
infrastructure on the AWS IoT Core platform.

In this study, the surface urban transport system of Kyiv,
Ukraine was taken as a basis; load modeling and forecasting
were carried out according to these data. Public ground
transport in Kyiv consists of buses, trolleybuses, and trams,
which are used by an average of 1.1 million residents every
day [12] (Table 1).

Table 1

State of public transport in Kyiv, 2019

Type of transport Routes Number of vehicles

Buses 105 400

Trolleybuses 50 370

Trams 20 290

In the research process, it was assumed that all transport
units would be on the route at the same time, and the test
load would be planned according to this amount of data and
transmission speed.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (124) 2023

8

4. 2. System requirements
In the structure of the IoT system, the controller is the

main source of data that transmits and receives informa-
tion from the server through the software level protocol –
MQTT (Message Queue Telemetry Transport). Table 2 lists
the main data types and MQTT sections used to exchange
messages between the device and the server.

Table 2

MQTT sections

Section
Size

(bytes)
Interval

(seconds)
Bandwidth

Data de-
scription

geolocation 100 5 12
Current

coordinates

fuel_level 30 10 6
Fuel level/

Battery
charge

climate/temperature 30 60 1 Temperature

climate/humidity 30 60 1 Humidity, %

passengers_count 30
60 seconds

after the
Stop event

Max. 1
Number of
passengers

Table 3 [13] shows the accessibility requirements of mod-
ern cloud systems according to the type of system.

Table 3

Accessibility requirements

Availability
Unavailability

(hours per year)
System type

99 % 3 days 15 hours
Batch processing, data transfer

and download

99.9 % 8 days 45 minutes Monitoring

99.95 % 4 hours 22 minutes E-commerce platforms

99.99 % 52 minutes Video services

99.999 % 5 minutes
Payment transactions,

telecommunications loads

Since the system generates dynamic and non-determinis-
tic data flows, the cloud part must provide the highest class
of availability – 99.999 %.

The number of connected (active) devices/clients
can constantly change, so the system must scale ac-
cording to the load.

Data transmitted between the device and the cloud
must be securely protected. In addition, it is necessary to
limit user access to the system by roles and access level.

The system must provide a cost-effective way
to store and process data generated by IoT devices.
Traditional server architectures require dedicated
servers even during periods of low usage. Serverless
computing makes it possible to pay only for the actual
use of resources since the cloud provider manages the
infrastructure and dynamically allocates resources.
This pay-as-you-go model can lead to cost savings,
especially in IoT systems where the load can vary
greatly at different points in time.

4. 3. Research methodology
The methodology of test development (TDD –

test driven development) was used to conduct the re-

search. TDD is a software development process that involves
creating software requirements through the description of
software tests before the software is fully developed. This
approach differs from the conventional method of developing
the software first and then describing the tests.

According to the TDD methodology (Fig. 1), an emula-
tor of the IoT module was designed.

The developed emulator repeats the algorithms of the car
module (Fig. 2) as well as the data structure transmitted to
the server.

Fig. 1. Algorithm of the study

Fig. 2. The algorithm of the automotive module

9

Information and controlling system

5. 2. Design of a device prototype and emulator to
analyze and evaluate the performance of the proposed
architecture

A group of automotive modules is a group of Internet
of Things devices that are installed in transport units and
transmit sensor data to a server. Each device consists of
a controller, an LTE modem, and connected sensors. The
device controller reads data from sensors and forms packets
for transmission. Data is transmitted using NB-IoT (Narrow
Band Internet of Things) technology via an LTE channel.
MQTT is used as a software layer protocol.

Fig. 4 shows a prototype of a car module based on a Rasp-
berry PI microcomputer and a Teltonika TRM250 modem.

The emulator can be run programmatically with any
level of parallelism, which makes it possible to define system
limits on the number of connected devices.

5. Results of research into the application of cloud
computing for the intelligent system

of public transport

5. 1. Development of the general system architecture
for data processing

Based on the analysis of existing cloud platforms for
Internet of Things systems, AWS IoT Core was taken as
a basis. This platform fully meets the
set technical requirements, communi-
cation security requirements, and also
has the most distributed infrastruc-
ture.

Fig. 3 shows the general archi-
tecture of the system, which is con-
ventionally divided into the follow-
ing components (groups): a group of
automotive modules, an Internet of
Things gateway, data processing and
storage.

An additional advantage of the
AWS IoT platform is the pay-per-sec-
ond computing model, which makes
this approach cost-effective, as only the
resources used (computing hours) are
paid for.

Fig. 3. General system architecture

a b

Fig. 4. Automotive module prototype: a – Raspberry Pi [14];

b – Teltonika TRM 250 [15]

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (124) 2023

10

Fig. 5 shows the diagram of information flows between the
client (automotive module) and the server (AWS IoT Core).

In this case, the automotive module is both a subscriber
and a publisher, according to the concept of the MQTT
protocol.

5. 3. Investigating the possibilities of scaling and the
efficiency of the data storage and processing system

In the proposed architecture, all received data via the
MQTT protocol is distributed on special topics according to
routing rules. Routing rules define filtering criteria based on
the content of an incoming message and perform the distri-
bution of incoming messages between AWS services. In this
case, routing of incoming messages between AWS IoT Core
and AWS Lambda will be considered for further processing,
analysis, and evaluation of system performance.

AWS Lambda functions are stateless functions for exe-
cuting software code. In this case, lambda functions are used
as the first level of data processing. The Lambda function
code is responsible for receiving a message from the device
and forming a structure for further storage or transmission
to another service. For the proposed system, two cases of
using the lambda function are considered:

– forming a data structure and saving it in a database
based on time series (geolocation, climate data, fuel level,
number of passengers);

– forming the data structure and sending it to the lo-
cation monitoring service. Lambda functions receive data

via the HTTP protocol. Processing
functions (Fig. 6) are written using
the Python programming language.

The proposed architecture uses
three services for data storage: AWS
Dynamo DB, AWS S3, and AWS
Timestream.

As IoT modules generate large
amounts of data in real time, it is

necessary to provide time-series-based retention. AWS
Timestream is designed to collect, store, and analyze time se-
ries data from devices that emit a sequence of time-stamped
data [16]. The database allows recording in two different
formats: multidimensional, which allows multiple measure-
ments per record, and unidimensional, which allows only one
measurement per record. Since the devices of the automotive
module transmit different indicators in different periods of
time (Table 1), a one-dimensional format was used (Table 4).

Table 4

Unidimensional recordings Timestream

Device ID Module
Measurement

name
Time Value

auto-1127 kyiv-west fuel_level 2023-04-15 19:00:01 66.14

auto-2448 kyiv-west fuel_level 2023-04-15 19:00:01 100

auto-1127 kyiv-west fuel_level 2023-04-15 19:00:12 66.14

auto-2331 kyiv-west fuel_level 2023-04-15 19:00:24 42.29

auto-1127 kyiv-west fuel_level 2023-04-15 19:00:26 66.13

AWS Dynamodb and AWS S3 are used as additional
databases to store user preferences, configurations, and
artifacts.

Fig. 5. Scheme of information flows of the automotive module

Fig. 6. Example of a lambda function

11

Information and controlling system

The purpose of testing is to reproduce the load that
will be created by the intelligent public transport system
of Kyiv (Table 4). It is assumed that each transport unit is
equipped with an automotive module that transmits data
to the server via the NB-IoT connection, and that all trans-
port units are on the route at the same time. It is necessary
to evaluate the performance and scalability of the system
according to the change in load: the number of connected
devices and the amount of data they generate.

An automotive module emulator was designed for test-
ing. The emulator reproduces the algorithm (Fig. 2), as well
as data types and structures (Table 1). For simulation data,
the emulator uses a set of geolocation points of the trolley-
bus route in Kyiv, as well as randomly generated data on
temperature, humidity, fuel level, and number of passengers.

Below are the main results and key indicators of the con-
ducted tests. The load was generated for 45 minutes.

The ratio of successful requests – this indicator rep-
resents the percentage of successful calls (Fig. 7) of the
lambda function during the testing period.

The ratio is calculated by dividing the number of suc-
cessful calls by the total number of calls (events).

The frequency of function calls is a call indicator that
shows the number of calls to the lambda function (Fig. 8)
over a certain period of time.

In the context of the proposed system, this means the
number of received messages from the IoT Core. This indi-
cator makes it possible to evaluate the volume of incoming
messages, as well as their dynamics.

Function execution time – this indicator makes it possible
to estimate the amount of time required to execute the logic
described in the lambda function (Fig. 9). In this case, it is es-
timated how much time is spent on receiving messages, build-
ing a data structure, and saving information in the database.

Fig. 9. Function execution time

Fig. 7. Success rate of lambda function queries

Fig. 8. Lambda function calls

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 (124) 2023

12

The number of parallel launches makes it possible
to estimate the number of parallel launches of the func-
tion (Fig. 10).

 Since the load is dynamic, there is a need for parallel
function calls.

6. Discussion of results of investigating the effectiveness
of cloud computing for intelligent public transport

systems

Our results demonstrate and confirm the feasibility of
using serverless cloud computing for data processing and
storage in Internet of Things systems, in particular in the
context of intelligent transport systems.

To conduct the experiment, a general cloud system
architecture (Fig. 3) is proposed, which allows receiving
data from IoT devices in real time, as well as processing and
saving them. The system is built on the basis of the concept
of microservice architecture, where each logical element is
a separate microservice. This approach made it possible to
scale each individual microservice according to the load
on it, without affecting other components. In the proposed
MQTT system, the server is the input gateway for connect-
ing IoT devices.

To reproduce the workload of the system, a prototype
of a connected automotive module (Fig. 4) was designed,
which transmits data to the server, as well as its software
emulator, which fully reproduces the work algorithm and
data structures of the IoT device. Effective load testing of
the system architecture was carried out on the basis of the
proposed IoT controller software emulator. The method of
emulating connected devices is extremely effective because
it allows one to reduce costs and simplify the validation
and testing of the system before its implementation in the
real environment, and it also allows the system to be test-
ed at different scales and configurations. In this study, a
simulation of the transport system of the city of Kyiv was
carried out.

Based on our experiment, the possibilities of scaling the
system according to the input load were evaluated. During
the entire testing period (Fig. 7), no performance errors
were detected. This means that all messages have been
delivered and the following data storage and processing
logic has been executed successfully. From the plot (Fig. 8)
it can be seen that the system simultaneously executed

~6 thousand functions. In addition, it can be seen that
changing the number of function calls does not affect the
overall rate of successful requests (Fig. 7). Also, the plot

(Fig. 9) shows that with
an increase in the number
of messages, the maximum
execution time increas-
es (to 2 seconds) but the
average indicator remains
unchanged. The lambda
function automatically
scales resources (Fig. 10)
to process incoming re-
quests and messages. As
demand grows, addition-
al containers are created,
which are automatically
removed when the load de-
creases. The results of per-
formance tests show that

the change in load does not significantly affect the main
indicators of processing speed and data retention. These
results are due to the principles of dynamic management
of computing resources inherent in cloud systems, and are
the main advantage over traditional infrastructures with
dedicated servers.

The proposed system development methodology, as
well as the software architecture, can be used to build and
modernize modern Internet of Things systems, in partic-
ular, intelligent transport systems. Unlike systems with a
static server infrastructure [17], the proposed architecture
is scalable and can dynamically respond to changes in the
input load.

The disadvantages of the proposed technique include:
– dependence on the communication network: to use

cloud systems, constant access to a fast and reliable Internet
connection is necessary. In the case of failure of the commu-
nication network or unavailability of the Internet, there may
be a problem with the functioning of the system;

– complexity of development and support.
The limitation of this study is that the construction

and analysis of the data processing and storage system
was carried out only on the basis of one platform –
AWS IoT. Further development could be to analyze and
build similar systems on cloud platforms such as GCP,
IBM, and Azure to assess differences in performance and
architecture.

7. Conclusions

1. In the course of executing the task set, a general
software architecture was developed for processing and
saving data of an intelligent transport system based on
cloud computing. A microservice architecture was used
to build the system, where each module is a separate
microservice. This approach makes it possible to dynami-
cally manage computing resources (increase or decrease)
according to the load. Also, the advantage of this architec-
ture is that if one of the services is unavailable, the system
will continue to work.

2. To perform simulation experiments, prototypes of
automotive modules (IoT controllers) were designed, as

Fig. 10. Number of parallel launches of lambda functions

13

Information and controlling system

well as corresponding software emulators that fully repro-
duce the algorithm and data structures of a real device.
This approach made it possible to test the system under
conditions close to actual ones, as well as evaluate the abil-
ity to scale and the efficiency of using computing resources.
In the course of the experiment, a simulation of the intelli-
gent transport system of the city of Kyiv was carried out.

3. The results of our experiments confirm that the pro-
posed architecture is dynamic and scalable since the change
in the number of connected devices and the volume of input
data do not significantly affect the stability and speed of
processing. Based on the research, it can be concluded that
cloud computing could be used in intelligent public trans-
port systems as the main server infrastructure. In addition,
this approach is flexible and cost-effective compared to tra-
ditional dedicated servers.

 Conflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial,
personal, authorship, or any other, that could affect the study
and the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

All data are available in the main text of the manuscript.

References

1. Future Of Industry Ecosystems: Shared Data And Insights. IDC. URL: https://blogs.idc.com/2021/01/06/future-of-industry-

ecosystems-shared-data-and-insights/

2. Mchergui, A., Hajlaoui, R., Moulahi, T., Alabdulatif, A., Lorenz, P. (2023). Steam computing paradigm: Cross‐layer solutions over

cloud, fog, and edge computing. IET Wireless Sensor Systems. doi: https://doi.org/10.1049/wss2.12051

3. Porru, S., Misso, F. E., Pani, F. E., Repetto, C. (2020). Smart mobility and public transport: Opportunities and challenges in rural

and urban areas. Journal of Traffic and Transportation Engineering (English Edition), 7 (1), 88–97. doi: https://doi.org/10.1016/

j.jtte.2019.10.002

4. Farkas, K., Feher, G., Benczur, A., Sidlo, C. (2015). Crowdsending based public transport information service in smart cities. IEEE

Communications Magazine, 53 (8), 158–165. doi: https://doi.org/10.1109/mcom.2015.7180523

5. Vieira, E., Almeida, J., Ferreira, J., Dias, T., Vieira Silva, A., Moura, L. (2023). A Roadside and Cloud-Based Vehicular Communications

Framework for the Provision of C-ITS Services. Information, 14 (3), 153. doi: https://doi.org/10.3390/info14030153

6. Metzger, F., Hobfeld, T., Bauer, A., Kounev, S., Heegaard, P. E. (2019). Modeling of Aggregated IoT Traffic and Its Application to an

IoT Cloud. Proceedings of the IEEE, 107 (4), 679–694. doi: https://doi.org/10.1109/jproc.2019.2901578

7. Khan, M. A., Nawaz, T., Khan, U. S., Hamza, A., Rashid, N. (2023). IoT-Based Non-Intrusive Automated Driver Drowsiness

Monitoring Framework for Logistics and Public Transport Applications to Enhance Road Safety. IEEE Access, 11, 14385–14397.

doi: https://doi.org/10.1109/access.2023.3244008

8. Hind, M., Noura, O., Sanae, M., Abraham, A. (2023). A Comparative Study for Modeling IoT Security Systems. Lecture Notes in

Networks and Systems, 258–269. doi: https://doi.org/10.1007/978-3-031-35510-3_25

9. Ahmad, W., Rasool, A., Javed, A. R., Baker, T., Jalil, Z. (2021). Cyber Security in IoT-Based Cloud Computing: A Comprehensive

Survey. Electronics, 11 (1), 16. doi: https://doi.org/10.3390/electronics11010016

10. Siwakoti, Y. R., Bhurtel, M., Rawat, D. B., Oest, A., Johnson, R. C. (2023). Advances in IoT Security: Vulnerabilities, Enabled

Criminal Services, Attacks, and Countermeasures. IEEE Internet of Things Journal, 10 (13), 11224–11239. doi: https://

doi.org/10.1109/jiot.2023.3252594

11. Zakutynskyi, I., Sibruk, L., Kokarieva, A. (2023). IoT System for Monitoring and Managing Public Transport Data. WSEAS

TRANSACTIONS ON SYSTEMS, 22, 242–248. doi: https://doi.org/10.37394/23202.2023.22.25

12. Kyivpastrans. Wikipedia. URL: https://en.wikipedia.org/wiki/Kyivpastrans

13. Availability. Amazon. URL: https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/availability.html

14. Image "RaspberryPi B3 +". URL: https://media.distrelec.com/Web/WebShopImages/landscape_large/8-/01/RaspberryPi_B3_

plus_30109158-01.jpg

15. Image "Teltonika TRM 250". URL: https://wiki.teltonika-networks.com/images/3/3f/Trm250_hd_1.png

16. Data modeling. Amazon. URL: https://docs.aws.amazon.com/timestream/latest/developerguide/data-modeling.html

17. Massaro, A., Selicato, S., Galiano, A. (2020). Predictive Maintenance of Bus Fleet by Intelligent Smart Electronic Board

Implementing Artificial Intelligence. IoT, 1 (2), 180–197. doi: https://doi.org/10.3390/iot1020012

