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The object of research is cloud computing as an element 
of the server infrastructure for intelligent public transport 
systems. Given the increasing complexity and requirements 
for modern transportation, the application of the Internet 
of Things concept has a high potential to improve efficien-
cy and passenger comfort. Since the load generated in IoT 
systems is dynamic and difficult to predict, the use of tradi-
tional infrastructure with dedicated servers is suboptimal. 
This study considers the use of cloud computing as the main 
server infrastructure for the above systems. The paper 
investigates the main cloud platforms that can be used to 
develop such systems and evaluates their advantages and 
disadvantages. The authors developed the overall architec-
ture of the system and evaluated the performance and scal-
ability of individual components of the server infrastruc-
ture. To test the system, a software emulator was developed 
that simulates the controller module installed in vehicles. 
Using the developed emulator, stress tests were conduct-
ed to analyze and confirm the ability to scale and process 
input data by the proposed architecture. The test scenarios 
were developed and conducted on the basis of the existing 
public transportation system in Kyiv, Ukraine. The exper-
imental results showed that the proposed IoT architecture 
is able to scale efficiently according to the load generated 
by the connected devices. It has been found that when the 
number of incoming messages increases from 40 to 6000, the 
average message processing time remains unchanged, and 
the error rate does not increase, which is an indicator of 
stable system operation. The obtained results can be used 
in the development of modern public transport systems, as 
well as for the modernization of existing ones

Keywords: internet of things, cloud computing, system 
architecture, public transport systems, scalability

UDC 621.382.2
DOI: 10.15587/1729-4061.2023.285514

How to Cite: Zakutynskyi, I., Sibruk, L., Rabodzei, I. (2023). Performance evaluation of the cloud computing applica-

tion for iot-based public transport systems. Eastern-European Journal of Enterprise Technologies, 4 (9 (124)), 6–13. 

doi: https://doi.org/10.15587/1729-4061.2023.285514

Received date 17.03.2023

Accepted date 23.05.2023

Published date 30.08.2023

1. Introduction 

The International Data Corporation (IDC) predicts that 
the global Internet of Things (IoT) market will grow rapidly, 
with the number of connected devices reaching 55.7 billion 
by 2025 [1]. The increase in the number of connected IoT 
devices will contribute to the creation and development of 
intellectual public transport systems (IPTS) based on the 
concept of the Internet of Things.

The integration of IoT solutions into public transport 
systems has revolutionized the way people move around cit-
ies. These systems collect real-time data from buses, trams, 
trains, and other transport units, allowing operators to 
optimize routes, improve passenger convenience, and reduce 
transport costs. Existing intelligent transport systems usu-
ally use the classic IoT architecture. With this approach, the 
data collected by the sensors installed in the transport units 
are transmitted over the network to the server for further 
processing and storage. Most existing IoT systems use dedi-
cated servers to store and process data.

Managing and analyzing this vast amount of data re-
quires significant computing power and memory that tradi-
tional on-premises infrastructure may not be able to handle. 
In addition, local solutions are inflexible and unprofitable 
due to the inability to quickly respond to changes in load. 
The load generated by IoT devices is dynamic and non-de-
terministic and can be high (during peak times) or low 
(during idle times). In both cases, the server infrastructure 
must adapt to the load generated by IoT clients. The system 
should work stably with a large number of simultaneously 
connected devices, and should not use redundant resources 
with a small number of connected clients. Therefore, there 
is a need to explore alternatives to traditional methods of 
dedicated servers to manage the complexity and scalability 
of the above systems.

The main paradigm of modern cloud technologies is 
serverless computing. Serverless computing is a model in 
which a provider dynamically manages and allocates re-
sources to run applications. With serverless computing, 
the underlying infrastructure automatically scales up or 
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down based on demand. This ensures that the system can 
handle fluctuations in data volume and traffic without the 
need for manual configuration or infrastructure management. 
Usually, the architecture of the IoT system is event-driven, 
when software functions are triggered based on the arrival 
of sensor data or as a result of direct interaction with the 
user (commands). Serverless computing is well-suited to such 
architectures, as it allows the corresponding functions to be 
started and executed when a command is received, and to ter-
minate the command immediately after execution. Therefore, 
research aimed at the development and analysis of IoT systems 
using serverless computing and cloud technologies is relevant.

2. Literature review and problem statement

In work [2], the general paradigms of server computing 
and the role of cloud technologies for the concept of the Inter-
net of Things are considered. The reported research results 
show that the potential of the modern IoT system cannot 
be fully realized on the basis of classic infrastructures with 
dedicated servers. This is due to issues with scalability, net-
work bandwidth, and inefficient use of computing resources. 
These shortcomings are especially evident in systems with 
dynamic load, such as intelligent transport systems. In [3], 
the authors consider the concepts of high-level frameworks 
for intelligent transport systems. In [4], the authors also pro-
pose a high-level concept of the system, without analyzing 
communication technologies and data processing methods. 
Work [5] proposed a practical implementation of the system 
using cloud storage and a database. The shortcomings of 
this work include the fact that it was not tested, and the load 
resistance of such an architecture was not confirmed. The 
authors of study [6] proposed an approach for analyzing and 
processing a large volume of data generated in modern IoT-
based transport systems. In the proposed approach, cloud 
computing is used as the main server infrastructure, but the 
feasibility of such an approach is not proven. In [7], a system 
was developed to detect driver drowsiness using neural net-
work methods. For data processing, cloud technologies are 
also used to save data, as well as to ensure data exchange in 
real time. Works [2–7] explore the possibilities of integrat-
ing cloud technologies into existing transport systems, em-
phasizing their potential to increase efficiency and analytics.

An important aspect when building an IoT system is 
the provision of secure communication channels and data 
security. In the last few years, many studies have appeared 
that shed light on this topic. In particular, in [8], the authors 
conduct a security study using modeling at the physical and 
network levels. The security modeling method proposed in 
the cited paper can be applied in the construction of the IoT 
network architecture, in particular, in the design of an intelli-
gent transport system. In [9], a comprehensive study of cyber 
security issues in cloud computing based on the concept of 
the Internet of Things is conducted. The authors consider the 
problems and vulnerabilities that arise as a result of the intro-
duction of cloud computing in IoT systems, and also identify 
future research directions. Also, a similar study is conducted 
in [10], where the authors analyze potential attacks in IoT 
systems, as well as known countermeasures. These studies 
examine security protocols, encryption methods, and access 
control mechanisms to address security issues and protect 
sensitive data. At the same time, the above studies show a 
number of unresolved problems in the field of data security. 

Another unresolved issue is scaling and efficient use of 
computing resources. The first step in overcoming these 
difficulties is to identify and analyze the highly loaded com-
ponents of the system. This is the approach used in work [11], 
where the general architecture of the public transport sys-
tem is given, with a complete analysis of communication 
technologies and data transmission protocols. However, 
study [11] does not consider the behavior of the system under 
dynamically changing load, and therefore its ability to scale.

This gives reason to assert that it is appropriate to 
conduct a study to analyze the use of serverless computing 
methods in Internet of Things systems in general and in the 
context of intelligent transport systems.

3. The aim and objectives of the study

The purpose of this study is to determine the possibili-
ties of serverless computing in intelligent transport systems 
based on the Internet of Things. This will provide an oppor-
tunity to evaluate the effectiveness and feasibility of using 
serverless cloud computing as the main server infrastructure 
for data processing and storage.

To achieve the goal, the following tasks were set:
– to develop a general software architecture for process-

ing and saving data of an intelligent transport system;
– to develop a prototype and emulator of a car module for 

data generation, testing and determination of system limits;
– to investigate the possibilities of scaling, as well as the 

efficiency of the system under load.

4. The study materials and methods

4. 1. The object and hypothesis of the study
The object of research is serverless cloud computing as 

an element of the server infrastructure for intelligent public 
transport systems.

The hypothesis of the study assumed that serverless 
cloud could significantly increase the efficiency and speed of 
server data processing, based on methods of dynamic scaling 
of resources.

The research was carried out using prototypes, an emu-
lator of a car module (IoT controller), and a deployed server 
infrastructure on the AWS IoT Core platform.

In this study, the surface urban transport system of Kyiv, 
Ukraine was taken as a basis; load modeling and forecasting 
were carried out according to these data. Public ground 
transport in Kyiv consists of buses, trolleybuses, and trams, 
which are used by an average of 1.1 million residents every 
day [12] (Table 1).

Table 1

State of public transport in Kyiv, 2019

Type of transport Routes Number of vehicles

Buses 105 400

Trolleybuses 50 370

Trams 20 290

In the research process, it was assumed that all transport 
units would be on the route at the same time, and the test 
load would be planned according to this amount of data and 
transmission speed.



Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/9 ( 124 ) 2023

8

4. 2. System requirements
In the structure of the IoT system, the controller is the 

main source of data that transmits and receives informa-
tion from the server through the software level protocol – 
MQTT (Message Queue Telemetry Transport). Table 2 lists 
the main data types and MQTT sections used to exchange 
messages between the device and the server.

Table 2

MQTT sections 

Section 
Size 

(bytes)
Interval 

(seconds)
Bandwidth

Data de-
scription

geolocation 100 5 12
Current 

coordinates

fuel_level 30 10 6
Fuel level/

Battery 
charge

climate/temperature 30 60 1 Temperature

climate/humidity 30 60 1 Humidity, %

passengers_count 30
60 seconds 

after the 
Stop event

Max. 1
Number of 
passengers

Table 3 [13] shows the accessibility requirements of mod-
ern cloud systems according to the type of system.

Table 3

Accessibility requirements

Availability
Unavailability 

(hours per year)
System type

99 % 3 days 15 hours
Batch processing, data transfer 

and download

99.9 % 8 days 45 minutes Monitoring

99.95 % 4 hours 22 minutes E-commerce platforms

99.99 % 52 minutes Video services

99.999 % 5 minutes
Payment transactions, 

telecommunications loads

Since the system generates dynamic and non-determinis-
tic data flows, the cloud part must provide the highest class 
of availability – 99.999 %.

The number of connected (active) devices/clients 
can constantly change, so the system must scale ac-
cording to the load.

Data transmitted between the device and the cloud 
must be securely protected. In addition, it is necessary to 
limit user access to the system by roles and access level.

The system must provide a cost-effective way 
to store and process data generated by IoT devices. 
Traditional server architectures require dedicated 
servers even during periods of low usage. Serverless 
computing makes it possible to pay only for the actual 
use of resources since the cloud provider manages the 
infrastructure and dynamically allocates resources. 
This pay-as-you-go model can lead to cost savings, 
especially in IoT systems where the load can vary 
greatly at different points in time.

4. 3. Research methodology
The methodology of test development (TDD – 

test driven development) was used to conduct the re-

search. TDD is a software development process that involves 
creating software requirements through the description of 
software tests before the software is fully developed. This 
approach differs from the conventional method of developing 
the software first and then describing the tests.

According to the TDD methodology (Fig. 1), an emula-
tor of the IoT module was designed.

The developed emulator repeats the algorithms of the car 
module (Fig. 2) as well as the data structure transmitted to 
the server.

Fig. 1. Algorithm of the study

Fig. 2. The algorithm of the automotive module



9

Information and controlling system

5. 2. Design of a device prototype and emulator to 
analyze and evaluate the performance of the proposed 
architecture

A group of automotive modules is a group of Internet 
of Things devices that are installed in transport units and 
transmit sensor data to a server. Each device consists of 
a controller, an LTE modem, and connected sensors. The 
device controller reads data from sensors and forms packets 
for transmission. Data is transmitted using NB-IoT (Narrow 
Band Internet of Things) technology via an LTE channel. 
MQTT is used as a software layer protocol.

Fig. 4 shows a prototype of a car module based on a Rasp-
berry PI microcomputer and a Teltonika TRM250 modem.

The emulator can be run programmatically with any 
level of parallelism, which makes it possible to define system 
limits on the number of connected devices.

5. Results of research into the application of cloud 
computing for the intelligent system 

of public transport

5. 1. Development of the general system architecture 
for data processing

Based on the analysis of existing cloud platforms for 
Internet of Things systems, AWS IoT Core was taken as 
a basis. This platform fully meets the 
set technical requirements, communi-
cation security requirements, and also 
has the most distributed infrastruc-
ture.

Fig. 3 shows the general archi-
tecture of the system, which is con-
ventionally divided into the follow-
ing components (groups): a group of 
automotive modules, an Internet of 
Things gateway, data processing and 
storage.

An additional advantage of the 
AWS IoT platform is the pay-per-sec-
ond computing model, which makes 
this approach cost-effective, as only the 
resources used (computing hours) are 
paid for.

Fig. 3. General system architecture

a                                                         b 

Fig. 4. Automotive module prototype: a – Raspberry Pi [14]; 

b – Teltonika TRM 250 [15]
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Fig. 5 shows the diagram of information flows between the 
client (automotive module) and the server (AWS IoT Core).

In this case, the automotive module is both a subscriber 
and a publisher, according to the concept of the MQTT 
protocol.

5. 3. Investigating the possibilities of scaling and the 
efficiency of the data storage and processing system

In the proposed architecture, all received data via the 
MQTT protocol is distributed on special topics according to 
routing rules. Routing rules define filtering criteria based on 
the content of an incoming message and perform the distri-
bution of incoming messages between AWS services. In this 
case, routing of incoming messages between AWS IoT Core 
and AWS Lambda will be considered for further processing, 
analysis, and evaluation of system performance.

AWS Lambda functions are stateless functions for exe-
cuting software code. In this case, lambda functions are used 
as the first level of data processing. The Lambda function 
code is responsible for receiving a message from the device 
and forming a structure for further storage or transmission 
to another service. For the proposed system, two cases of 
using the lambda function are considered:

– forming a data structure and saving it in a database 
based on time series (geolocation, climate data, fuel level, 
number of passengers);

– forming the data structure and sending it to the lo-
cation monitoring service. Lambda functions receive data 

via the HTTP protocol. Processing 
functions (Fig. 6) are written using 
the Python programming language.

The proposed architecture uses 
three services for data storage: AWS 
Dynamo DB, AWS S3, and AWS 
Timestream.

As IoT modules generate large 
amounts of data in real time, it is 

necessary to provide time-series-based retention. AWS 
Timestream is designed to collect, store, and analyze time se-
ries data from devices that emit a sequence of time-stamped 
data [16]. The database allows recording in two different 
formats: multidimensional, which allows multiple measure-
ments per record, and unidimensional, which allows only one 
measurement per record. Since the devices of the automotive 
module transmit different indicators in different periods of 
time (Table 1), a one-dimensional format was used (Table 4).

Table 4

Unidimensional recordings Timestream

Device ID Module
Measurement 

name
Time Value

auto-1127 kyiv-west fuel_level 2023-04-15 19:00:01 66.14

auto-2448 kyiv-west fuel_level 2023-04-15 19:00:01 100

auto-1127 kyiv-west fuel_level 2023-04-15 19:00:12 66.14

auto-2331 kyiv-west fuel_level 2023-04-15 19:00:24 42.29

auto-1127 kyiv-west fuel_level 2023-04-15 19:00:26 66.13

AWS Dynamodb and AWS S3 are used as additional 
databases to store user preferences, configurations, and 
artifacts.

Fig. 5. Scheme of information flows of the automotive module

Fig. 6. Example of a lambda function
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The purpose of testing is to reproduce the load that 
will be created by the intelligent public transport system 
of Kyiv (Table 4). It is assumed that each transport unit is 
equipped with an automotive module that transmits data 
to the server via the NB-IoT connection, and that all trans-
port units are on the route at the same time. It is necessary 
to evaluate the performance and scalability of the system 
according to the change in load: the number of connected 
devices and the amount of data they generate.

An automotive module emulator was designed for test-
ing. The emulator reproduces the algorithm (Fig. 2), as well 
as data types and structures (Table 1). For simulation data, 
the emulator uses a set of geolocation points of the trolley-
bus route in Kyiv, as well as randomly generated data on 
temperature, humidity, fuel level, and number of passengers.

Below are the main results and key indicators of the con-
ducted tests. The load was generated for 45 minutes.

The ratio of successful requests – this indicator rep-
resents the percentage of successful calls (Fig. 7) of the 
lambda function during the testing period.

The ratio is calculated by dividing the number of suc-
cessful calls by the total number of calls (events).

The frequency of function calls is a call indicator that 
shows the number of calls to the lambda function (Fig. 8) 
over a certain period of time.

In the context of the proposed system, this means the 
number of received messages from the IoT Core. This indi-
cator makes it possible to evaluate the volume of incoming 
messages, as well as their dynamics.

Function execution time – this indicator makes it possible 
to estimate the amount of time required to execute the logic 
described in the lambda function (Fig. 9). In this case, it is es-
timated how much time is spent on receiving messages, build-
ing a data structure, and saving information in the database.

Fig. 9. Function execution time

Fig. 7. Success rate of lambda function queries

Fig. 8. Lambda function calls
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The number of parallel launches makes it possible 
to estimate the number of parallel launches of the func-
tion (Fig. 10).

 Since the load is dynamic, there is a need for parallel 
function calls.

6. Discussion of results of investigating the effectiveness 
of cloud computing for intelligent public transport 

systems

Our results demonstrate and confirm the feasibility of 
using serverless cloud computing for data processing and 
storage in Internet of Things systems, in particular in the 
context of intelligent transport systems.

To conduct the experiment, a general cloud system 
architecture (Fig. 3) is proposed, which allows receiving 
data from IoT devices in real time, as well as processing and 
saving them. The system is built on the basis of the concept 
of microservice architecture, where each logical element is 
a separate microservice. This approach made it possible to 
scale each individual microservice according to the load 
on it, without affecting other components. In the proposed 
MQTT system, the server is the input gateway for connect-
ing IoT devices.

To reproduce the workload of the system, a prototype 
of a connected automotive module (Fig. 4) was designed, 
which transmits data to the server, as well as its software 
emulator, which fully reproduces the work algorithm and 
data structures of the IoT device. Effective load testing of 
the system architecture was carried out on the basis of the 
proposed IoT controller software emulator. The method of 
emulating connected devices is extremely effective because 
it allows one to reduce costs and simplify the validation 
and testing of the system before its implementation in the 
real environment, and it also allows the system to be test-
ed at different scales and configurations. In this study, a 
simulation of the transport system of the city of Kyiv was 
carried out.

Based on our experiment, the possibilities of scaling the 
system according to the input load were evaluated. During 
the entire testing period (Fig. 7), no performance errors 
were detected. This means that all messages have been 
delivered and the following data storage and processing 
logic has been executed successfully. From the plot (Fig. 8) 
it can be seen that the system simultaneously executed 

~6 thousand functions. In addition, it can be seen that 
changing the number of function calls does not affect the 
overall rate of successful requests (Fig. 7). Also, the plot 

(Fig. 9) shows that with 
an increase in the number 
of messages, the maximum 
execution time increas-
es (to 2 seconds) but the 
average indicator remains 
unchanged. The lambda 
function automatically 
scales resources (Fig. 10) 
to process incoming re-
quests and messages. As 
demand grows, addition-
al containers are created, 
which are automatically 
removed when the load de-
creases. The results of per-
formance tests show that 

the change in load does not significantly affect the main 
indicators of processing speed and data retention. These 
results are due to the principles of dynamic management 
of computing resources inherent in cloud systems, and are 
the main advantage over traditional infrastructures with 
dedicated servers.

The proposed system development methodology, as 
well as the software architecture, can be used to build and 
modernize modern Internet of Things systems, in partic-
ular, intelligent transport systems. Unlike systems with a 
static server infrastructure [17], the proposed architecture 
is scalable and can dynamically respond to changes in the 
input load.

The disadvantages of the proposed technique include:
– dependence on the communication network: to use 

cloud systems, constant access to a fast and reliable Internet 
connection is necessary. In the case of failure of the commu-
nication network or unavailability of the Internet, there may 
be a problem with the functioning of the system;

– complexity of development and support.
The limitation of this study is that the construction 

and analysis of the data processing and storage system 
was carried out only on the basis of one platform – 
AWS IoT. Further development could be to analyze and 
build similar systems on cloud platforms such as GCP, 
IBM, and Azure to assess differences in performance and 
architecture.

7. Conclusions 

1. In the course of executing the task set, a general 
software architecture was developed for processing and 
saving data of an intelligent transport system based on 
cloud computing. A microservice architecture was used 
to build the system, where each module is a separate 
microservice. This approach makes it possible to dynami-
cally manage computing resources (increase or decrease) 
according to the load. Also, the advantage of this architec-
ture is that if one of the services is unavailable, the system 
will continue to work.

2. To perform simulation experiments, prototypes of 
automotive modules (IoT controllers) were designed, as 

Fig. 10. Number of parallel launches of lambda functions
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well as corresponding software emulators that fully repro-
duce the algorithm and data structures of a real device. 
This approach made it possible to test the system under 
conditions close to actual ones, as well as evaluate the abil-
ity to scale and the efficiency of using computing resources. 
In the course of the experiment, a simulation of the intelli-
gent transport system of the city of Kyiv was carried out.

3. The results of our experiments confirm that the pro-
posed architecture is dynamic and scalable since the change 
in the number of connected devices and the volume of input 
data do not significantly affect the stability and speed of 
processing. Based on the research, it can be concluded that 
cloud computing could be used in intelligent public trans-
port systems as the main server infrastructure. In addition, 
this approach is flexible and cost-effective compared to tra-
ditional dedicated servers.

 Conflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial, 
personal, authorship, or any other, that could affect the study 
and the results reported in this paper.

Funding

The study was conducted without financial support.

Data availability

All data are available in the main text of the manuscript.

References

1. Future Of Industry Ecosystems: Shared Data And Insights. IDC. URL: https://blogs.idc.com/2021/01/06/future-of-industry-

ecosystems-shared-data-and-insights/

2. Mchergui, A., Hajlaoui, R., Moulahi, T., Alabdulatif, A., Lorenz, P. (2023). Steam computing paradigm: Cross‐layer solutions over 

cloud, fog, and edge computing. IET Wireless Sensor Systems. doi: https://doi.org/10.1049/wss2.12051 

3. Porru, S., Misso, F. E., Pani, F. E., Repetto, C. (2020). Smart mobility and public transport: Opportunities and challenges in rural 

and urban areas. Journal of Traffic and Transportation Engineering (English Edition), 7 (1), 88–97. doi: https://doi.org/10.1016/

j.jtte.2019.10.002 

4. Farkas, K., Feher, G., Benczur, A., Sidlo, C. (2015). Crowdsending based public transport information service in smart cities. IEEE 

Communications Magazine, 53 (8), 158–165. doi: https://doi.org/10.1109/mcom.2015.7180523 

5. Vieira, E., Almeida, J., Ferreira, J., Dias, T., Vieira Silva, A., Moura, L. (2023). A Roadside and Cloud-Based Vehicular Communications 

Framework for the Provision of C-ITS Services. Information, 14 (3), 153. doi: https://doi.org/10.3390/info14030153 

6. Metzger, F., Hobfeld, T., Bauer, A., Kounev, S., Heegaard, P. E. (2019). Modeling of Aggregated IoT Traffic and Its Application to an 

IoT Cloud. Proceedings of the IEEE, 107 (4), 679–694. doi: https://doi.org/10.1109/jproc.2019.2901578 

7. Khan, M. A., Nawaz, T., Khan, U. S., Hamza, A., Rashid, N. (2023). IoT-Based Non-Intrusive Automated Driver Drowsiness 

Monitoring Framework for Logistics and Public Transport Applications to Enhance Road Safety. IEEE Access, 11, 14385–14397. 

doi: https://doi.org/10.1109/access.2023.3244008 

8. Hind, M., Noura, O., Sanae, M., Abraham, A. (2023). A Comparative Study for Modeling IoT Security Systems. Lecture Notes in 

Networks and Systems, 258–269. doi: https://doi.org/10.1007/978-3-031-35510-3_25 

9. Ahmad, W., Rasool, A., Javed, A. R., Baker, T., Jalil, Z. (2021). Cyber Security in IoT-Based Cloud Computing: A Comprehensive 

Survey. Electronics, 11 (1), 16. doi: https://doi.org/10.3390/electronics11010016 

10. Siwakoti, Y. R., Bhurtel, M., Rawat, D. B., Oest, A., Johnson, R. C. (2023). Advances in IoT Security: Vulnerabilities, Enabled 

Criminal Services, Attacks, and Countermeasures. IEEE Internet of Things Journal, 10 (13), 11224–11239. doi: https://

doi.org/10.1109/jiot.2023.3252594 

11. Zakutynskyi, I., Sibruk, L., Kokarieva, A. (2023). IoT System for Monitoring and Managing Public Transport Data. WSEAS 

TRANSACTIONS ON SYSTEMS, 22, 242–248. doi: https://doi.org/10.37394/23202.2023.22.25 

12. Kyivpastrans. Wikipedia. URL: https://en.wikipedia.org/wiki/Kyivpastrans

13. Availability. Amazon. URL: https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/availability.html

14. Image "RaspberryPi B3 +". URL: https://media.distrelec.com/Web/WebShopImages/landscape_large/8-/01/RaspberryPi_B3_

plus_30109158-01.jpg

15. Image "Teltonika TRM 250". URL: https://wiki.teltonika-networks.com/images/3/3f/Trm250_hd_1.png

16. Data modeling. Amazon. URL: https://docs.aws.amazon.com/timestream/latest/developerguide/data-modeling.html

17. Massaro, A., Selicato, S., Galiano, A. (2020). Predictive Maintenance of Bus Fleet by Intelligent Smart Electronic Board 

Implementing Artificial Intelligence. IoT, 1 (2), 180–197. doi: https://doi.org/10.3390/iot1020012 


