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Oncology patients are at a higher risk (up to 6 times) of developing pulmonary em-
bolism (PE) and deep venous thrombosis (DVT) (1). Cancer accounts for 20% of new 
thromboembolic events (2). This risk of PE is higher in specific cancers (brain, ova-

ry, stomach, pancreas) (3), particularly in advanced stages, more common in the first few 
months of diagnosis and during active chemo- or radiotherapy (4). Computed tomography 
pulmonary angiography (CTPA) is the primary imaging modality utilized in the diagnosis 
of PE due to its high accuracy, wide availability and rapid turnaround time. The PIOPED II 
study identified sensitivity of 83%, specificity of 96%, negative predictive value of 95% and 
positive predictive value of 86% in the diagnosis of PE (5), with only <10% of studies being 
positive for PE in CTPA (6). Some disadvantages of CT include the use of ionizing radia-
tion and iodinated contrast media. Although there is no direct epidemiologic data, a linear 
no-threshold theory model predicts higher cancer risks with radiation, directly proportional 
to the dose (7). CT radiation dose can be minimized by using strategies such as low tube 
current (mAs), automatic tube current modulation, low tube voltage (kVp), automatic tube 
potential selection, and iterative reconstruction algorithms (8).

Contrast-induced nephropathy (CIN) is an important disadvantage of using iodinated 
contrast (9). Oncology patients are vulnerable to CIN due to higher prevalence of renal in-
sufficiency, nephrotoxicity of some chemotherapy agents and dehydration due to old age, 

PURPOSE 
We aimed to determine if the image quality and vascular enhancement are preserved in com-
puted tomography pulmonary angiography (CTPA) studies performed with ultra-low contrast 
and optimized radiation dose using high-pitch helical mode of a second generation dual source 
scanner.

METHODS
We retrospectively evaluated oncology patients who had CTPA on a 128-slice dual-source scan-
ner, with a high-pitch helical mode (3.0), following injection of 30 mL of Ioversal at 4 mL/s with 
body mass index (BMI) dependent tube potential (80–120 kVp) and current (130–150 mAs). At-
tenuation, noise, and signal-to-noise ratio (SNR) were measured in multiple pulmonary arteries. 
Three independent readers graded the images on a 5-point Likert scale for central vascular en-
hancement (CVE), peripheral vascular enhancement (PVE), and overall quality. 

RESULTS
There were 50 males and 101 females in our study. BMI ranged from 13 to 38 kg/m2 (22.8±4.4 
kg/m2). Pulmonary embolism was present in 29 patients (18.9%). Contrast enhancement and 
SNR were excellent in all the pulmonary arteries (395.3±131.1 and 18.3±5.7, respectively). Image 
quality was considered excellent by all the readers, with average reader scores near the highest 
possible score of 5.0 (CVE, 4.83±0.48; PVE, 4.68±0.65; noise/quality, 4.78±0.47). The average radi-
ation dose length product (DLP) was 161±60 mGy.cm. 

CONCLUSION
Using a helical high-pitch acquisition technique, CTPA images of excellent diagnostic quality, 
including visualization of peripheral segmental/sub-segmental branches can be obtained using 
an ultra-low dose of iodinated contrast and low radiation dose. 
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cachexia, nausea, and vomiting (10). Recent 
literature also suggests that iodinated con-
trast agents amplify DNA radiation dam-
age in CT (11–13). Although recent studies 
have shown overall lower prevalence and 
incidence of CIN (14–16), the potentially 
reduced renal capacity of cancer patients 
suggest that it would be worthwhile to 
use low doses of contrast media, especial-
ly since they require frequent CT exam-
inations. Several techniques are currently 
available for decreasing the contrast dose 
for CTPA. Scanning at a lower tube potential 
(i.e. <120 kVp) facilitates low contrast dose 
due to higher attenuation of iodine at lower 
energies. CTPAs done at 70 and 80 kVp with 
low contrast dose have shown good image 
quality (17–23), with additional benefit of 
low radiation dose (23, 24). Sub-millisievert 
doses are now possible (23), with the use 
of iterative reconstruction algorithms that 
minimize noise (25–29). The tube potential 
can now be automatically selected based 
on patient size, with corresponding increas-
es in tube current to maintain image qual-
ity (28, 29). With dual-energy scanners the 
patient can be scanned at normal tube po-
tentials, but virtual monoenergetic images 
(VMI) reconstructed at low energies (50–70 
keV) enhance the contrast attenuation, al-
lowing the use of low contrast dose (30–33). 
Alterations in contrast injection protocol, 
such as injecting at an exponentially decel-
erating rate (34) also allows the use of a low 
contrast dose, but this may involve complex 
calculations, which are too complicated for 
routine patient care (35). 

Another novel technology involves the 
use of a high-pitch helical (Flash) mode in 
a second or third-generation dual source 
scanner. For multislice CT, pitch is defined 
as the table distance travelled in one 360° 
rotation divided by total thickness of all the 
simultaneously acquired slices. Normal heli-

cal CT is done at a pitch of <1.5, since values 
higher than this will result in gaps in data. 
However, with dual-source CT, pitch of up to 
3.4 can be achieved, since the gaps in data 
are filled using data sampled from a sec-
ond detector which is offset by 95 degrees. 
The entire chest can be scanned under 1 
second, with no motion artifacts. Since the 
contrast enhancement is required only for 
a short period of time, a low dose of con-
trast can be used. The radiation dose is also 
lower due to lower overlapping sections 
for imaging volumes (36). There has been 
only limited evaluation of this technique in 
PE (37, 38) and there has been no previous 
study in an oncology patient population. 

The purpose of our study was to deter-
mine if the image quality and vascular en-
hancement are preserved in CTPA studies 
performed with ultra-low contrast and 
optimized radiation dose using high-pitch 
helical mode of a second generation dual 
source scanner. 

Methods
This is an IRB-approved (IRB protocol # 02-

13-08) HIPAA compliant single center retro-
spective study. Informed consent was waived 
by IRB since this was a retrospective study. 

Study population
The study population comprised of all 

adult oncology patients who were scanned 
using an ultra-low contrast dose CT pul-
monary angiography protocol described 
below. Exclusion criteria included age <18 
years, history of severe allergy to contrast 
media, and severe renal dysfunction (eGFR 
<30 mL/min) not on dialysis.

Scanning technique
All the patients were scanned on a 

128-slice dual-source Siemens Definition 
Flash scanner (Siemens Healthcare). Images 
were acquired in a high-pitch helical mode, 
with a pitch of 3.0, gantry rotation time of 
0.28 seconds, and collimation of 64 × 2 × 0.6 
mm. Scanning parameters were dependent 
on BMI, with kVp of 80 to 120 and mAs of 
130–150 as listed in Table 1. The tube cur-
rent was chosen based on initial experience 
with the scanner to produce diagnostic 
quality image sets. Scanning was acquired 
following the administration of 30 mL of Io-
versol (Optiray 350, Mallinckrodt) at 4 mL/s. 
A bolus-trigger technique was used by 
placing a ROI in the main pulmonary artery, 
monitoring scans every second after con-

trast administration and triggering acquisi-
tion of the scan 5 seconds after a threshold 
of 150 HU was reached in the main pulmo-
nary artery. All scans were obtained in cau-
do-cranial direction at expiration. 

Image reconstruction and analysis
Axial CT images were reconstructed at 1 

mm thickness at 0.5 mm increments with 
filtered-back projection algorithm. Medium 
to soft convolution kernel (B26f ) was used. 
Coronal and sagittal reconstructions at 2 × 
1 mm were also obtained. Images were re-
viewed in the PACS (Sectra, Sectra AB) at a 
window level of 60 HU and width of 360 HU. 
Quantitative and qualitative image anal-
ysis was performed. ROIs were placed in 
eleven locations in the pulmonary arterial 
tree, namely main pulmonary artery, right 
pulmonary artery, left pulmonary artery, 
right upper lobar artery right interlobar 
pulmonary artery, left upper lobar artery, 
left lower lobar artery, right upper lobe 
anterior segmental artery, right lower lobe 
medial segmental artery, left upper lobe 
anterior segment and left lower lobe medi-
al segmental artery. The ROIs were sized to 
occupy two thirds of the artery of interest 
(Fig. 1). The mean attenuation (signal) and 
standard deviation (noise) were measured 
at these ROIs. The signal-to-noise ratio was 
calculated using the formula, SNR= mean 
attenuation of pulmonary artery/noise. 
Averaged values were also obtained for all 
segmental branches, lobar branches and 
the entire pulmonary tree. 

Qualitative analysis of the images was 
performed by three independent reviewers 
with 20, 16, 10 years’ experience in radiolo-
gy (Readers 1 through 3, respectively), who 
were blinded to the results of one another. 
The images were graded using a 5-point 
Likert scale for central vascular enhance-
ment (CVE), peripheral vascular enhance-

Main points

•	 Oncology patients are at a higher risk of de-
veloping pulmonary embolism (PE) and deep 
venous thrombosis (DVT). 

•	 High quality CT pulmonary angiography 
(CTPA) studies can be obtained in oncology 
patients with ultra-low dose of intravenous 
contrast using high-pitch dual source acqui-
sition. 

•	 This technique is able to obtain good quali-
ty in central as well as peripheral pulmonary 
vessels.

Table 1. Scan technique of the patients in the 
study group

BMI (kg/m²) kVp mAs

>35 120 150

30–35 100 150

25–30 100 130

<25 80 130

BMI, body mass index; kVp, peak tube kilovoltage 
(tube potential); mAs, milliampere-second (tube 
current).



ment (PVE), and image noise (1, least; 5, best) 
as shown in Table 2 (39). The entire lungs 
including all lobes and segmental and sub-
segmental branches were visually evaluated 
to generate these scores. Average scores of 
subjective image quality were compared to 
results previously in the literature. The pres-
ence of artifacts was also noted. 

The presence of pulmonary emboli was 
noted by one chest radiologist with 16 
years’ experience (PR), who was blinded to 
patient history and clinical findings. PE was 
defined as an occlusive/nonocclusive filling 
defect or nonvisualization of segmental/
subsegmental branches (37). Artifacts were 
carefully excluded. The number and loca-
tion of PE was noted. 

Radiation dose metrics were also noted. 
The dose length product (DLP) was noted 
and the effective radiation dose in milli-
seiverts was obtained by multiplying the 
DLP with conversion factor of 0.014 mSv/
mGy*cm (40). Radiation dose was com-
pared to previous published results in the 
literature to determine if potential dose dif-
ferences exist.

Statistical analysis
Statistical analysis was performed using 

SPSS (Version 11.5, SPSS Inc) and MedCalc 
(Version 18.5 MedCalc Software). The nor-
mality of distribution of the data was eval-
uated using Shapiro-Wilk test (41, 42). The 
differences in image quality as determined 
by the 3 blinded readers was evaluated using 
the Friedman test, which is the nonparamet-
ric equivalent of repeated measures ANOVA. 
The intraclass correlation coefficient (ICC) 
was measured using ICC (3,1) type (43) to 
evaluate the degree of consistency among 
the qualitative measurements of central vas-
cular enhancement, peripheral vascular en-
hancement, and noise. Student’s t-test (for in-
dependent samples) and the chi-square test 
for the difference between two proportions 
(44–47) were used to compare study values 
with previously published data (5, 40, 48–53), 
using sample size, means, and standard de-
viation. The robustness due to sample size 
was a factor in selecting parametric methods, 
when the normal distribution could not be 
assessed for external data (54–56). A P value 
< 0.05 was considered statistically significant. 

Results
There were 151 patients in the study, 50 

males (33%), 101 females (67%), with age 
range of 20–93 years (mean±SD, 62.4±14.6 
years). BMI ranged from 13 to 38 kg/m2 
(22.8±4.4 kg/m2). The most common can-
cers were lung (n=42, 27%), breast, (n=28, 
18%), hematological (n=19, 13%), and head 
and neck (n=13, 9%). The distribution of dif-
ferent cancers is shown in Table 3. In terms 
of scanning parameters, 120 kVp was used 
in 140 patients, 100 kVp in 10 patients, and 
80 kVp in 1 patient. The average scan time 
was 0.64±0.8 seconds. 

Contrast enhancement was excellent in 
all the pulmonary arteries. Previous stud-
ies have shown that the minimum atten-
uation required for the diagnosis of acute 
embolism is 93 HU and for chronic embo-
lism is 211 HU (40, 48, 57). The attenuation 
values in our study were: 372±129 HU for 
main pulmonary artery, 367±128 HU for 
left pulmonary artery, 368±124 HU for right 
pulmonary artery, 390.0±137.9 HU for lo-
bar artery, 420.1±136.7 HU for segmental 
artery, 395.3±131.1 HU for all pulmonary 
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Figure 1. a–c. Quantitative analysis of the attenuation and noise in the pulmonary arteries. ROIs (red) are placed in the (a) main pulmonary artery, (b) right 
pulmonary artery, and (c) left pulmonary artery (LPA). The attenuation and standard deviation (noise) were calculated in these ROIs.

a b c

Table 2. Qualitative scoring in the evaluation of CTPA studies

Central vascular enhancement Peripheral vascular enhancement Image noise and overall image quality

1 None No opacification of segmental/subsegmental arteries Major noise, no diagnosis possible

2 Slight, low confidence in  
making diagnosis

<25% of segmental/subsegmental arteries are opacified Major noise, diagnosis of PE possible,  
but with low confidence

3 Moderate, sufficient for diagnosis 25%–50% of segmental/subsegmental arteries are opacified Moderate, but sufficient for PE diagnosis

4 Good 50%–75% of segmental/subsegmental arteries are opacified Minor, diagnosis not influenced

5 Excellent >75% of segmental/subsegmental arteries are opacified No noise; excellent image quality

CTPA, computed tomography pulmonary angiography; PE, pulmonary embolism.
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arteries. SNR was also good in all the pul-
monary arteries, with 17.6±7.0 for main 
pulmonary artery, 16.8±6.4 for left pulmo-
nary artery, 15.3±6.3 for right pulmonary 
artery, 18.2±6.9 for lobar artery, 19.7±6.5 

for segmental artery, and 18.3±5.7 for all 
pulmonary arteries (Figs. 2, 3, Table 4). The 
mean attenuation values from this study 
(395.3 HU), were compared to the results 
of published studies from Zordo et al. (49) 

and Yilmaz et al. (50). The mean attenuation 
values were higher than 5 of 8 study groups 
in the literature and were not found to be 
significantly different (P > 0.05) for 5 of 8 
CT scan parameters in the literature (Table 
5). Specifically, the mean attenuation value 
from our study was higher than the 120 kVp 
group of Yilmaz et al. (309.5 HU, P = 0.11), 
while the attenuation value from our study 
is significantly higher than that of single 
source 120 kVp (313 HU, P = 0.001) and 
DSCT 120 kVp groups of Zordo et al. (342 
HU, P = 0.040) (49, 50) (Table 5). 

Similarly, the proportion of suboptimal 
studies using the ULDCT procedure were 
not significantly different than those pro-
vided in the literature. Suboptimal studies, 
i.e., studies with attenuation <210 HU in 
the main pulmonary artery, were seen in 
10 of our patients (6%), which is similar to 
the rate of 6.1% reported in literature (51) 
(P = 0.997, χ2 difference in proportion test). 
This is also significantly lower than the 11%, 
which has been established as a guideline 
by some societies such as the Royal College 
of Radiology (52). 

Image quality was considered excellent 
by all the readers. The average reader scores 
were near the highest possible score of 5.0 
(CVE, 4.83±0.48; PVE, 4,68±0.65; noise/qual-
ity, 4.78±0.47). The scores for Reader 1 were: 
CVE 4.8±0.5, PVE 4.6±0.7, noise 4.7±0.5; for 
Reader 2, CVE 4.9±0.5; PVE 4.7±0.6, noise 
4.8±0.4; for Reader 3, CVE 4.9±0.4, PVE 
4.7±0.6, noise 4.8±0.4. The overall correla-

Figure 2. a, b. Charts showing the attenuation (a), noise and signal-to-noise ratio (SNR) (b) at 
different pulmonary artery (PA) levels. Attenuation and noise are measured in Hounsfield units and 
SNR is a ratio. Note that the attenuation and SNR are excellent at all PA levels. 
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Table 3. Frequencies of different neoplasms 
in our study

Neoplasm n (%)

Lung 42 (27)

Breast 28 (18)

Hematological 19 (13)

Head and neck 13 (9)

Melanoma 1 (0.5)

Genitourinary- male 5 (3)

Genitourinary-female 16 (10)

Gastrointestinal 15 (9)

Hepatobiliary 4 (3)

Pancreas 4 (3)

Sarcoma 3 (2)

Unspecified 1 (0.5)



tion between the readers was evaluated 
as excellent. Specifically, the ICC between 
the readers was 0.85 for CVE (95% CI, 0.80–
0.89), 0.90 for PVE, (95% CI, 0.87–0.93), and 
0.80 for noise (95% CI, 0.75–0.86). For CVE, 
Reader 1 scored significantly differently 
than Readers 2 and 3 (P < 0.001). The read-
ers did not score significantly differently for 
PVE (P = 0.21, Friedman test). For perceived 
noise, Readers 1 and 2 scored it significant-
ly differently than did Reader 3 (P = 0.032). 
Our mean score of image quality (4.8) was 
also comparable to other studies in the lit-

erature including the study by Yilmaz et al. 
(50) on a dual-source normal pitch proto-
col, where the mean score for the 120 kVp 
group was 4.8 (P = 0.77) and for 100 kVp 
group was 4.7 (P = 0.42). 

Only 3 studies were considered non-
diagnostic. Motion artifacts were seen in 
5 patients and interruption of contrast 
column was not seen in any patient. Our 
nondiagnostic rate of 1.98% is significant-
ly lower than the PIOPED study (5) (6.2%,  
P = 0.038) and comparable to Lou et al. (53) 
(4%, P = 0.22).

Pulmonary embolism was present in 29 
patients (19%). There were 19 clots in the 
central pulmonary vasculature and 43 clots in 
the peripheral pulmonary vasculature (Fig. 4). 

The average DLP was 161±60 mGy.cm, 
which corresponds to an effective radiation 
dose of 2.3±0.8 mSv (Table 5). This is compa-
rable to literature doses of 2.2 to 7.0 mSv (P 
= 0.18) for single source and lower than the 
reported 3.2 to 4.7 mSv for dual energy CT (P 
< 0.001) (40, 48). The average radiation dose 
in our study is lower than the 120 kVp group 
used in a dual-source regular pitch scanner 
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Table 4. Attenuation, noise and signal-to-noise ratio at different pulmonary arterial levels

Vessel

Signal Noise SNR

Mean±SD Median IQR Mean±SD Median IQR Mean±SD Median IQR

Main pulmonary artery 372±129 350 158.5 22.4±7.1 21 8 17.6±7.0 16.3 7.9

Right pulmonary artery 368±124 342 135.5 28.1±29.6 24 9 15.3±6.3 14.0 6.8

Left pulmonary artery 367±128 338 143.5 23.1±7.0 22 6.5 16.8±6.4 15.8 8.7

Lobar artery, averaged 390.0±137.9 363 147 23.7±6.6 22 7.3 18.2±6.9 16.7 9.6

Right upper lobe 398.9±145.8 372 151 22.8±10.0 20 11 20.0±10.1 17 12.6

Right interlobar 370.8±129.8 344 136.5 25.1±8.1 23 8 15.6±5.7 14.6 8.23

Left upper lobe 394.4±145.7 371 154.5 22.7±9.2 22 8 19.4±10.0 16.7 10.4

Left lower lobe 395.8±141.5 366 148.5 24.2±8.2 23 9 17.9±8.3 15.8 9.1

Segmental artery, averaged 420.1±136.7 399 136.4 26.5±9.4 24.5 10.5 19.7±6.5 19.1 7.4

RUL, anterior seg. 425.9±145.5 407 147 25.9± 15.9 22 18.8 20.7±11.0 18.6 12.8

RLL, medial seg. 406.8±138.8 387 137 24.9±13.0 21 14 20.1±12.4 17.3 11.3

LUL, anterior seg. 428.6±148.7 400 176 27.5±17.0 23 17 19.9±12.2 17.2 12.4

LLL, medial seg. 419.53±147.4 398 139 27.5±13.6 25 15 18.1±9.5 15.6 10.5

Average all pulmonary arteries 395.3±131.1 376.7 133.9 24.9±6.7 23.7 6.8 18.3±5.7 17. 6.9

SD, standard deviation; IQR, interquartile range; SNR, signal-to-noise ratio; RUL, right upper lobe; seg., segment; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe.

Table 5. Comparison of the mean attenuation values in our study compared with studies in the literature

Value
Our study 
ULDCT

Zordo  
et al. (49)  
DSCT 100 kV

Zordo  
et al. (49)  
DSCT 120 kV

Zordo  
et al. (49)  
DECT 100/140 kV

Zordo  
et al. (49)  
SCT 100 kV

Zordo  
et al. (49)  
SCT 120 kV

Yilmaz  
et al. (50)  
120 kV

Yilmaz  
et al. (50)  
100 kV

Yilmaz  
et al. (50)  
80 kV

Mean (HU) 395.3 424.0 342.0 348.0 401.0 313.0 309.5 381.7 477.3

SD (HU) 131.1 110.0 121.0 106.0 159.0 62.0 79.1 124.0 193.3

Comparison ULDCT vs. 
DSCT 100 kV

ULDCT vs. 
DSCT 120 kV

ULDCT vs. DECT 
100/140 kV

ULDCT vs. 
SCT 100 kV

ULDCT vs. 
SCT 120 kV

ULDCT vs.  
120 kV

ULDCT vs.  
100 kV

ULDCT vs.  
80 kV

t-value 1.11 -2.06 -1.86 0.20 -3.36 1.11 0.38 3.73

P 0.26 0.040* 0.070 0.83 0.001* 0.11 0.71 <0.001*

ULDCT, ultra-low dose CT (our study); DSCT, dual-source CT; kV, kilovoltage; DECT, dual-energy CT; SCT, single-source CT. 
*P < 0.05.
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by Yilmaz et al. (50) (4.7 mSv, P < 0.001) and 
comparable to the 100 kVp group in that 
study (2.5 msV, P = 0.18). Our radiation dose 
was lower than the normal pitch 120 kVp 
group in the study by Zordo et al. (49) (mean 
4.52, P < 0.001) as well as high pitch 120 kVp 

group (mean 4.1 mSv, P < 0.001) and normal 
pitch 100 kVp group (2.8, P = 0.016) (49).

Discussion
Our study demonstrates the feasibility 

of obtaining high quality CTPA studies in 

oncology patients using a protocol with ul-
tra-low dose of intravenous contrast media 
(Table 6). To our knowledge, this is the first 
study to demonstrate low contrast CTPA us-
ing high-pitch dual-source acquisition in a 
large oncology patient cohort. 

Dual-source CT scanners have two x-ray 
tube/detector units, which can be oper-
ated in three modes, namely dual-energy, 
single-energy with standard pitch and sin-
gle-energy with high-pitch, all of which can 
be done either with or without electrocar-
diography (ECG)-gating. In the dual-en-
ergy mode, the two tubes are operated at 
different energies, which allows genera-
tion of additional images, including iodine 
perfusion maps (58) and VMI, which can 
enhance contrast signal in suboptimal en-
hanced studies (31, 32). In the conventional 
single-energy, standard pitch mode, both 
tubes are operated at the same energy (36). 
Lower contrast (i.e., 40 mL) and radiation 
doses (50%) can be achieved by using low-
er tube potential (e.g., 70 kVp) (29). In the 
single-energy high-pitch mode, both x-ray 
tubes are operated at the same tube poten-

Figure 3. a–c. Axial standard (a), axial MIP (b) and coronal MIP (c) CT images of a normal study in a patient with lung cancer. Body mass index (BMI) was 
32 kg/m2. The study was performed with 30 mL of intravenous contrast, at 100 kvp, 150 mAs and pitch of 3.2. Note the excellent contrast attenuation in all 
the pulmonary arteries, both central and peripheral. 

a b c

Figure 4. a–c. Axial standard (a), coronal standard (b) and coronal MIP (c) CT images in a CTPA study performed with 30 mL of intravenous contrast shows 
a nonocclusive pulmonary embolism (arrow) in the right interlobar pulmonary artery extending to a segmental branch. The patient had a BMI of 29 kg/
m2, and hence 100 kVp, 130 mAs and pitch of 3.2 were used. 

a b c

Table 6. Ultra-low dose contrast CTPA protocol and radiation dose evaluation

Parameter Protocol

Acquisition mode Dual source, high pitch

Detector collimation (mm) 64 × 2 × 0.6

Pitch 3.2

Gantry rotation time (ms) 280

Tube voltage (kVp) 80–120 

Reference tube current time product (mAs eff) 130–150

Contrast medium volume (mL) 30

Mean DLP (mGy.cm) 161±60

Estimated effective radiation dose (mSv) 2.3±0.8

DLP, dose-length product.



tial, but at high pitch values of up to 3.4. Al-
though a high-pitch mode generally results 
in suboptimal angiographic studies due to 
gaps in data, the presence of second tube 
in dual-source CT fills the gaps, maintaining 
image quality.

Radiation dose is lower (up to 35%) in 
high-pitch mode than conventional CTA at 
100 kVp due to rapid scanning and lower 
imaging volume (49, 59). With appropriate 
timing, an ultra-low contrast dose study 
can be performed since contrast is required 
to be present in pulmonary arterial system 
only for a short period. There have been 
few previous CTPA studies used with this 
mode (37, 38, 60), but none in an oncolo-
gy patient population. One study used 40 
mL of contrast, 70 kVp and iterative recon-
struction (IR) algorithm to lower radiation 
dose by 80% and preserve image quality 
as compared to standard-pitch, 60 mL con-
trast study (38). Another study with 30 mL 
of contrast at 80 kVp and IR showed similar 
results with half the radiation dose of a 100 
kVp standard pitch scanner with 60 mL of 
contrast (37). However, in both these stud-
ies, the BMI, height and weight were not 
reported. The low kVp techniques would 
not be suitable for large patients, since it 
is not possible to generate a higher tube 
current-time product (mAs) to maintain 
image quality in these patients because 
only a single x-ray tube is collecting data in 
gaps, short acquisition time and poor per-
formance of automatic tube current mod-
ulation (29). The third generation of these 
scanners have higher x-ray tube power and 
IR algorithms, but reconstruction is limited 
to central 33 cm of field-of-view. 

In our study, we utilized BMI-dependent 
tube potential and the image quality was 
excellent in all the patients. We did not use 
70 kVp, since we believed the image quali-
ty would not be appropriate for diagnosing 
PE. We were able to obtain good quality 
in the peripheral vessels as well, indicat-
ing our ability to detect small peripheral 
pulmonary emboli. The high-pitch mode 
has higher temporal resolution and lower 
motion not only in pulmonary arteries, but 
also in other cardiovascular structures, in-
cluding heart and coronary arteries as well 
as the lungs, thus improving the image 
quality and ability to evaluate adjoining 
structures (61). This scan mode can also be 
performed with ECG-gating, which further 
decreases motion artifacts with lower ra-
diation dose than conventional CTA (62). 

Overall, our results for subjective image 
quality, proportion of suboptimal studies 
and mean attenuation values were not sig-
nificantly different than those previously 
published in the literature in non-oncolo-
gy patients using various scanning modes 
and regimens (49–53). 

 Our study has several limitations. This is 
a single-center retrospective study, with no 
control group of patients scanned at stan-
dard-pitch mode. However, we wanted to 
demonstrate that the image quality of our 
protocol is sufficient to make a diagnosis of 
PE. Based on previously published contrast 
attenuation cutoff required for demonstrate 
emboli (48, 49), we suggest that the image 
quality of our scans is high. We have also 
compared our results with the previously 
published data in the literature. We did not 
use an IR in our protocol due to nonavailabil-
ity in our institution, which would have facil-
itated even further radiation dose reduction. 
We were able to achieve such low radiation 
doses without IR algorithm due to optimal 
timing of the low contrast bolus, which was 
needed to be present in the pulmonary cir-
culation only for a short period of time. Due 
to absence of control group, we could not 
directly estimate the radiation dose savings, 
but we used data from the literature (59, 63) 
to suggest reduced radiation dose. Although 
motion artifacts were low and cardiovascular 
structures including coronary arteries were 
seen better with this technology, we did 
not evaluate these advantages in our study, 
since it was not our focus. 

In conclusion, high quality CTPA with 
excellent diagnostic quality is feasible in 
oncology patients with a low dose of iodin-
ated contrast media and radiation dose us-
ing a high-pitch helical acquisition mode in 
a second generation dual-source scanner. 
The quality was good even for visualization 
of small, peripheral segmental/subsegmen-
tal branches, which makes it suitable for 
detection of small peripheral emboli. This 
technique is useful in oncology patients 
who require repeated scans by reducing 
toxicities associated with administration of 
iodinated contrast. There is also potential 
for further reduction of contrast and radia-
tion dose. 
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