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For the past two decades, using Digital Therapeutics (DTx) to counter painful
symptoms has emerged as a novel pain relief strategy. Several studies report that
DTx significantly diminish pain while compensating for the limitations of
pharmacological analgesics (e.g., addiction, side effects). Virtual reality (VR) is a
major component of the most effective DTx for pain reduction. Notably, various
stimuli (e.g., auditory, visual) appear to be frequently associated with VR in DTx.
This review aims to compare the hypoalgesic power of specific stimuli with or
without a VR environment. First, this review will briefly describe VR technology
and known elements related to its hypoalgesic effect. Second, it will non-
exhaustively list various stimuli known to have a hypoalgesic effect on pain
independent of the immersive environment. Finally, this review will focus on
studies that investigate a possible potentialized effect on pain reduction of these
stimuli in a VR environment.
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1. Virtual reality

Many virtual reality (VR) definitions have been proposed in the past few decades, from

short straightforward to more complex explanations. Honzel et al. elegantly summarized it as

follows: an immersive computer-generated environment designed to be perceived as real by

the user (56). Meanwhile, Digital Therapeutics (DTx) has been defined as an “evidence-based

therapeutic interventions that are driven by high-quality software to treat, manage, or prevent

a disease or disorder […] used independently or in concert with medications, devices, or other

therapies to optimize patient care and health outcomes” (138). Interestingly, DTx benefit

from VR technologies in the healthcare system (21), particularly since the COVID-19

pandemic, which led to a more digitalized model (22). Thus, VR has been increasingly

studied, notably in acute or chronic pain analgesia situations (128).

The hypoalgesic power of VR has been extensively highlighted in recent meta-analysis

and reviews not only in the adult population (1, 9, 16, 17, 25, 47, 72, 76, 78, 102) but

also in pediatric patients (28). In addition, benefits affecting several modalities of quality

of life have been reported (e.g., stress, anxiety), suggesting VR as a good non-

pharmacological therapeutic tool (95, 76, 150). The goal of this review is to verify if the

addition of different auditory and visual stimulations frequencies [e.g., binaural beats

(BBs), hypnosis] have additive effects on VR efficacy. The first part of this review will

exclusively focus on pain studies that investigated the hypoalgesic effects of VR in acute

or chronic pain conditions, followed by the physiological evidence supporting this effect.
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TABLE 1 List of the articles that refer to the different stimulations with and
without VR for acute and chronic pain.

Stimulation modalities Acute pain Chronic pain
VR (2, 3, 5, 7, 15, 38,

45, 50, 51, 53,
54, 55, 118)

(10, 40, 63, 65, 92,
97, 113, 120, 135,

148)

Sensory stimuli
alone

Hypnosis (32, 33, 35; 60,
62, 142)

(127)

Binaural beats (6, 27, 87, 98,
101)

(151)

Colored noise (11, 67, 71) (12, 41)

Bilateral alternative
stimulation

(48, 79) (42, 44, 80)

VR + sensory
stimuli

VR +Hypnosis (20, 110, 111) (96)

VR + Binaural beats (N/A) (99, 100, 109)

VR + Collared noise (64) (N/A)

VR + Bilateral alternative
stimulation

(66) (66)

FIGURE 1

SnowWorld, a 3D virtual reality environment designed in the early 2000s
for analgesia purposes in burnt victims [adapted from Honzel et al. (56)].
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The second part will non-exhaustively list several sensory stimuli

used to promote analgesia as stand-alone treatments. Finally, the

third part of this review will aim to investigate studies combining

one or many of the sensory stimuli previously described in a VR

environment (Table 1).
1.1. Analgesic power of virtual reality

1.1.1. Acute pain
Pain is a perception mechanism aiming to alert the organism

of nociceptive stimuli potentially compromising its survival. Since

2020, its definition has been revised by the International

Association for the Study of Pain (IASP) as follows: “An

unpleasant sensory and emotional experience associated with, or

resembling that associated with, actual or potential tissue

damage” (106).

To our knowledge, the first evidence of VR analgesia on acute

pain came from the work of Hoffman et al. in the early 2000s. First,

they reported a decrease of the perceived pain following a VR

session in two adolescent patients during burn wound care

(Figure 1) (50). Second, using magnetic resonance imaging

(MRI), they highlighted that VR effectively lowered brain activity

in areas related to pain (i.e., anterior cingulate cortex, primary

and secondary cortex, insula, and thalamus) in 14 healthy

participants (51). Third, they reported the importance of

choosing a good quality VR headset to improve the efficiency of

the device (52). Fourth, they have shown that VR significantly

reduces pain compared to opioids, with a potentialized effect

when both are being coupled (53). Following these results, they

continued to provide significant evidence concerning the

hypoalgesic power of VR through pain measurements and

cerebral imaging, mainly in burn victims or children receiving

painful procedures (2, 3, 5, 7, 54, 55). Following the release of

these pioneer studies performed by Hoffman et al., many teams

have now shown a hypoalgesic effect of VR in acute pain

situations, such as venipuncture, lumbar puncture, women

during labor, or dental surgery (15, 45, 38, 118).
Frontiers in Pain Research 02
In accordance with these results, recent reviews are increasingly

reporting the benefits of VR for acute pain analgesia (1, 25, 47, 58,

72, 76, 78, 102). For instance, it has been shown that VR is able to

significantly increase thermal pain tolerance (46) or significantly

decrease experimental pain intensity using electrical- and

thermal-induced stimuli (119). Moreover, it has been highlighted

that three sessions a day of 30 min of VR is also efficient to

reduce pain during a rehabilitation protocol after knee surgery

(63). Interestingly, the addition of VR with local anesthesia in

patients undergoing dental surgery can significantly reduce

oxygen saturation, intraoperative pulse rate, and postoperative

visual analog pain scale results (126).

However, it is important to notice that some studies did not

find significant results regarding a hypoalgesic effect of VR on

some acute pain stimulation. Indeed, Walker et al. investigated

the efficacy of VR distraction during a cystoscopy, without a

significant decrease of pain questionnaire scores between the VR

and control groups (145). The authors suggested that these

results could likely be due to a lack of immersion, which is the

main mechanism of action during a VR experience (see Section

1.2). In addition, Smith et al. tested the pressure pain during

various contextual conditions and did not show statistical

differences on participants’ pain thresholds (121). However, the

authors mentioned that they investigated pain sensitivity instead

of pain intensity, which could explain their results. Importantly,

these disparate results also highlight the difficulty for VR studies

to properly choose the best methods (e.g., protocol of

administration, VR apparatus), thus leading to difficulties to

compare the results between studies.

Interestingly, the VR hypoalgesic effects observed on acute pain

are not limited to the duration of the application. It has been

reported that this effect can last up to 1 h post-VR application

following either a cardiac surgical or an episiotomy repair

procedure (59, 86). Further investigations are required to evaluate

this lasting hypoalgesic effect of VR on acute pain (Table 1).
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1.1.2. Chronic pain
Chronic pain can be defined as a persistent or recurrent pain,

lasting for at least 3 months (136, 137). Chronic pain can lead to

critical dysfunctions in both peripheral and central nervous

systems, such as gray and white matter loss, increase or decrease

of the activity in major cerebral areas, or alterations of synaptic

neurotransmission (124, 108). In addition, chronic pain may

severely affect the quality of life of patients living with it, from

nutrition and physical activity to sleep disorders and mental

wellbeing (91, 85). Importantly, chronic pain can appear through

aging and in patients presenting specific diseases (77).

While current results are converging toward the efficacy of VR

to diminish acute pain, reviews are also looking to the potential

hypoalgesic power of VR on chronic pain (47, 78, 102).

Interestingly, major significant VR benefits on pain ratings or

pain relief have been reported in various chronic conditions,

such as musculoskeletal pain, neuropathic pain, cervical/thoracic/

lumbar spine pain, hip pain, pervasive pain, or interstitial cystitis

(63, 65).

A study on six fibromyalgia patients has shown that pain

reduction was significantly greater in the VR group compared to

the control group (10). Another study has highlighted that VR

immersion can significantly reduce pain perceived in patients

living with chronic migraines in a hospital waiting room (135).

Similarly, VR benefits have been found in children with chronic

headaches (120). Another one has shown a major decrease of

pain intensity in patients suffering from chronic pain (148). Also,

an improvement of pain intensity, frequency, duration, and

intrusion in patients living with phantom limb pain after 12 VR

sessions has been reported (92). In addition, pain intensity was

significantly decreased after a 6-week VR session in patients with

subacromial impingement syndrome (97). Recently, a 56-day

study has highlighted a significant decrease of pain intensity in

patients living with chronic low back pain (40).

The duration of the hypoalgesic effect of VR on chronic pain

varies across the studies (78). The benefits have been

demonstrated to last up to (i) 1 month (97); (ii) 1 to 3 months

(120, 135); (iii) 1, 3, and 6 months (92); or even (iv) 6 months

(10) post-treatment, potentially suggesting a long-term efficacy of

VR on chronic pain. Finally, it is important to notice that some

studies did not find significant results regarding the hypoalgesic

effects of VR, or at least sustainable ones (113), on unspecified

chronic pain conditions (63, 148).

In conclusion, ample evidence attests to the many benefits of

VR on acute and chronic pain analgesia, while some pointed out

the lack of an effect. Nevertheless, the study of this technology in

these pain conditions is still under investigation in various

pathologies, allowing us to better understand the limits of its

hypoalgesic power (Table 1).
1.2. Physiological evidence supporting the
analgesic efficacy of VR

The exact mechanisms through which VR is procuring the

hypoalgesic effects previously mentioned on acute and chronic
Frontiers in Pain Research 03
pain are still unclear, although it seems that the main one is

immersion (18, 74). This concept needs to be differentiated from

distraction. Indeed, it has recently been shown that immersive

VR significantly increases heat-pain tolerance limits, as well as

improves mood, situation anxiety, and pain unpleasantness, while

a distraction control only increased the pain tolerance limits

without affecting the other modalities (18). In addition, the

authors highlighted that the increase of the heat-pain tolerance

limits by VR was related to an increase of sympathetic and

parasympathetic responses (e.g., heart rate variability standard

deviation from normal to normal, galvanic skin responses).

Interestingly, it has also been shown that VR cues related to

“virtual water temperature” (i.e., color red for hot and blue for

cold) can significantly influence the pain perception of thermal

stimuli (68). Using the same nociceptive thermal stimulation, a

virtual hot water signal was perceived as significantly more

painful than a virtual cold signal, likely through top-down

endogenous mechanisms.

This hypoalgesic ability of VR leads us to compare it to

traditional medication. To date, the most common analgesics

prescribed for pain are opioids (89). Notably, repetitive opioid

use can lead to an increase of postoperative acute pain episodes

(37) as well as major aversive effects, such as addiction or

overdose death (112). Thus, the current worldwide opioid crisis

has led to an urgency to find new non-pharmacological

hypoalgesic solutions, in which VR appears to be effective (132).

As previously mentioned, VR can be as efficient as opioids to

reduce pain, with a potentialized efficiency when used

adjunctively (53). In addition, VR can effectively reduce opioid

administration during painful wound care procedures (82). Thus,

the current emergence of various DTx using VR is very

interesting in terms of novel hypoalgesic strategies.

One of the main counter-indications of VR is the adverse effect

known as “cybersickness,” mainly causing nausea symptoms in VR

users (70, 81, 144, 146). It seems that this motion sickness could be

due to a conflict between the sensory stimuli or autonomic

responses (e.g., visual system, vestibular system) (70).

Interestingly, a recent review highlighted a close relationship

between cybersickness and the feeling of presence in a VR

environment: the more the cybersickness experienced, the less

immersed the VR user will be (146), which could prevent any

hypoalgesic effects of DTx using VR.

Several sensory (i.e., auditory, visual, olfactory, gustatory,

tactile) stimuli can be transmitted to users through a VR

apparatus in order to increase immersion within the virtual

environment (1, 68), allowing the transmission of various

stimulations [e.g., hypnosis, binaural beats, colored noise,

bilateral alternative stimulation (BAS)], thus potentially being

able to increase the VR hypoalgesic power.
2. Sensory stimuli

Among the various sensory stimuli that DTx may use to induce

a hypoalgesic effect, VR technologies for pain treatment frequently

include therapeutic scripts as well as sound and light frequencies in
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the virtual environment (83). It is difficult to separate the efficacy

of VR from the effects of some visual or auditory stimuli since they

are presented together in most of the studies. We will introduce a

non-exhaustive description of psychological (i.e., hypnosis),

auditory (i.e., binaural beats, colored noise), and visual (i.e.,

bilateral alternative stimulation) stimuli that are the most used in

VR, but can be used as a stand-alone treatment (Table 1).
2.1. Hypnosis

The definition of hypnosis has frequently evolved throughout

the years, mainly to increase its comprehension, in order to allow

its use, notably, in scientific studies (29). One of the more recent

is the following: “A state of consciousness involving focused

attention and reduced peripheral awareness characterized by an

enhanced capacity for response to suggestions” (29). Several

clinical studies have highlighted the benefits of hypnosis in

several situations (e.g., pain, depression, motor paralysis, phobia)

(8, 103, 105, 129, 142).

Analgesia through hypnosis has majorly been investigated

during surgeries for “hypnosedation” (35, 69, 142). A pioneer

retrospective study has shown that adding hypnosedation to a

conscious intravenous sedation coupled with a local anesthesia

improves both perioperative pain and anxiety relief during

various plastic surgery (e.g., breast augmentation, correction of

mammary ptosis, liposuction) compared to medical sedation

alone (32). These results were confirmed a few years later during

a prospective study (33). More recently, a critical review of

nearly 30 randomized controlled clinical trials (RCTs)

highlighted that hypnosis was consistently able to decrease pain

in acute painful conditions compared to standard care and

attention control groups (69). The authors also mentioned that

hypnosis was at least as efficient to comparable adjunct

psychological or behavioral therapies in the same context.

Importantly, it has been shown that hypnosis was able to

significantly reduce pain intensity in patients suffering from

chronic pain following a spinal cord injury, compared to non-

invasive electrical stimulation (60, 62). Hypnosis has been

reported to more effectively reduce the pain intensity in chronic

low back pain participants using self-hypnosis training

compared to biofeedback (127). Finally, a recent review and

meta-analysis reported that hypnosis was moderately able to

manage pain in musculoskeletal and neuropathic pain patients,

suggesting that deeper investigations were necessary to conclude

on the hypoalgesic power of hypnosis on chronic pain

conditions (73).

In addition to its hypoalgesic power, hypnosis can effectively

impact the patient’s quality of life, as well as multiple medical

spheres (e.g., pain, medication consumption, physiological

parameters, recovery and professional activity restart latency,

emotional distress) (8, 61, 73, 110, 111, 125, 129, 134, 142),

suggesting a cerebral effect across various brain areas.

Importantly, it has been reported that hypnosedation was able to

reduce both the affective and sensory components of pain (i.e.,

unpleasantness, intensity) compared to control conditions (33,
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34, 36, 103, 105). Several studies focusing on brain electrical

signals have highlighted changes in brain activity due to

hypnosis-induced states (60, 62, 104, 149). Functional MRI

(fMRI), positron emission tomography (PET), and laser-evoked

potential (LEP) studies reported various changes in functional

brain connectivity in participants during ongoing hypnosis (8).

Interestingly, these changes mainly occurred in brain areas

related to consciousness (e.g., anterior and posterior cingulate

cortex, medial frontal cortex, precuneus) (8, 61, 140). Another

study using hypnosis suggested that experimental pain will

become less unpleasant even if the intensity stayed the same and

was able to demonstrate the possibility to reduce brain imaging

activity in regions related to affective components of pain (e.g.,

cingulate cortex and insula) without affecting the sensory-

discriminative regions (e.g., somatosensory cortices) (103).

However, we must notice that there are some limits

surrounding the clinical use of hypnosis. First, protocols using

hypnosis frequently take a long time to administer to

participants, and measurements are often limited to solely

behavioral responses, without considering the subjective

experience of the participants, especially to assess their

hypnotizability (61, 141). This limit can lead to another

constraint, which is that the number of participants often quite

small (141, 143). In addition, methods can be subject to

limitations, as some variations can occur across most studies,

notably on the number of hypnosis sessions and intervention

length or timing (especially regarding the induction phase),

thus complicating interpretations and comparisons between the

studies of this field (69). Although hypoalgesic benefits

previously reported are promising, further studies will help

expand these results in various acute and chronic pain

conditions (Table 1).
2.2. Binaural beats

BBs can be defined as a perceived third frequency resulting

from the difference between two different frequencies applied in

each ear (e.g., a frequency of 253 Hz in the right ear and a

250 Hz one in the left ear will result in a third frequency of 3 Hz

perceived in the brain) (19). Interestingly, it has been shown that

this auditory stimulus can elicit an evoked synchronous response

reproducing the same frequency and waveform of the stimulus

entering the central auditory pathway as a brain oscillation (19).

Thus, five different types of BBs have been listed, depending on

their frequency: delta (i.e., 0.1–4 Hz), theta (i.e., 4–8 Hz), alpha

(i.e., 8–13 Hz), beta (i.e., 13–30 Hz), and gamma (i.e., >30 Hz).

To our knowledge, only theta- and alpha-BBs have been reported

being able to elicit a hypoalgesic effect.

Theta-BB (i.e., 4–8 Hz) can significantly decrease the severity

of perceived chronic pain compared to neutral sound (151). In

this study, 36 patients suffering from different types of chronic

pain had to listen to a 6 Hz BB tone for 20 min during 14

successive days, while a sham intervention group listened to a

non-BB tone of 300 Hz. The results indicated reduced perceived

pain severity exclusively in the theta-BB group. Although the
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pain scores were reduced in both groups, the authors observed a

77% larger reduction of the mean pain scores in favor of the

theta-BB group (151).

Concerning alpha rhythms (i.e., 8–13 Hz), several studies

indicate that a global suppression of alpha oscillations in

somatosensory, motor, and visual areas are observed in response

to both transient and tonic painful stimuli (98, 101). In some

studies, pain intensity ratings were correlated with a decrease in

alpha power (6, 87). More recently, a study has shown that

listening to alpha-BB for 10 min significantly decreased the

ratings of experimentally induced pain, compared to a control

group (27). The authors also discovered that this effect was

maximized for 10 Hz frequencies, compared to 8 and 12 Hz.

However, the same study found no statistically significant

differences with the control group for several aspects of the

quality of life (e.g., anxiety, wellbeing, drowsiness), although

these results contradict another study that found that alpha

rhythm stimulation reduces both stress and anxiety (13).

Interestingly, they also noted an improvement in heart rate

variability via parasympathetic reinforcement, highlighting the

ability of BBs to act on physiological variables as well. Thus, by

reducing stress, anxiety, and physiological parameters, alpha

rhythm stimulation could potentially decrease pain perception.

In addition to their involvement in pain, a recent study pointed

out the link between alpha rhythm and memory, by showing

that listening to alpha-BB for 15 min can enhance memory

recall (88).

However, it is important to notice that we found three studies

that failed to promote brain oscillations following theta-, alpha-,

beta-, or gamma-BBs, listening for durations of (i) 2 min (43),

(ii) 3 min (75), or (iii) 5 min (39). Based on these findings, more

studies are needed to investigate the potential hypoalgesic power

of all types of BB in order to choose protocols adequately for

brain oscillation-induced states (Table 1).
2.3. Colored noise

The “color” of a noise is a terminology used to classify different

noises according to their power spectrum density (i.e., frequency of

a sound), similar to light waves classification (26). For instance, if

we decide to draw the sound wave diagram for “pink noise” by

transposing it into a diagram of light waves, it would correspond

to a pink light. As such, warm colors are assigned to low-

frequency sounds, while cold colors are related to high-frequency

sounds. To our knowledge, only white and pink noises have been

related to pain analgesia studies (Table 1).

White noise has been extensively studied on sleep, mainly in

infants and children (122), as well as intensive care unit patients

(31, 123), although, at high intensity, it has been revealed in

rodents that white noises can be harmful to the organism,

creating anxiety-like behaviors as well as inducing apoptosis,

chromatolysis, cytoplasmic organelle destruction, and glial

activation brain structures (153). Concerning studies on pain, a

team compared the effect of an MRI scanner noise to white
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noises on the sensory-discriminative (i.e., intensity, localization)

and the motivational-affective (i.e., unpleasantness) components

of pain (11). They showed that both the MRI scanner noise and

white noises significantly reduced unpleasantness ratings, whereas

the ability to locate pain was not significantly affected.

Interestingly, they assume that, by acting solely on the

motivational-affective component of pain, without affecting the

sensory-discriminative one, noises may have therapeutic

implications by diminishing the distress associated with the pain

unpleasantness, while maintaining the capacity to localize the

pain to avoid further injury. Another study demonstrated that

the pain score was lowered with white noises in newborns (i.e.,

38–42 weeks old) during an acute painful procedure (i.e., blood

draw), compared to control conditions (67). Similar results were

discovered to relieve procedural pain caused by vaccination in

premature infants compared to a control group (71).

Unfortunately, the impact of white noise in adults has mostly

been studied regarding higher cognitive functions, such as

semantic priming (4) or recognition memory tasks (107), and

not pain.

Pink noise has been studied extensively in relation to sleep (12,

90, 93, 94, 152). A study recently investigated the effects of pink

noise on pain in a rat model of chronic pain (12). They

measured mechanical allodynia responses before and after

exposure to pink noise and observed a statistically significant

decrease in behavioral pain response in rats exposed to pink

noise. It is important to notice that pink noise has also been

used as a control stimulation, compared to music, in a study

aiming to investigate the hypoalgesic effect of music on

fibromyalgia pain (41). The results indicated a reduction in pain

and an increased functional mobility in the music group,

whereas there was no change in the pink noise control group.

Consecutively, it is difficult to conclude the hypoalgesic power of

pink noises.

To our knowledge, no scientific data have been published in

order to highlight the potential hypoalgesic power on acute or

chronic pain for other types of noise, including red, black, gray,

green, blue, and purple noise (26). Concerning brown noise, we

found only one study that has been published with stimulation

close enough to brown noise, but relative to consciousness and

not pain (115). They showed high stability of a Ganzfeld-induced

state (i.e., altered state of consciousness through visual and

auditory perceptual field homogenization following an

unstructured sensory input), white noise displaying the highest

overall global scores. Interestingly, the authors suggest that, based

on their results, white noise could be very effective to

homogenize the auditory field while ignoring potential

environment distraction (115).
2.4. Bilateral alternative stimulation

Bilateral alternative stimulation (BAS) is a visual technique

mainly applied during a psychotherapeutic approach called

eye movement desensitization and reprocessing (EMDR) for
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post-traumatic stress disorder (PTSD) treatment (139, 147),

although growing evidence tends to highlight possible

applications of EMDR to relieve pain in patients living with

acute or chronic painful conditions (44, 80, 130, 131, 42, 114).

We found a recent review of two RCTs related to acute pain

and EMDR (114). The first one found that one session of EMDR

was efficient to diminish acute experimental pain intensity (i.e.,

cold pain pressor), as well as to improve the pain threshold,

bettering pain tolerance and reducing anxiety (48). The second

one highlighted that one 60-min session 2 h post-abdominal

surgery in an emergency service effectively decreased pain

intensity (79).

A systematic review reported that EMDR has been efficient in

decreasing pain intensity in several studies with patients suffering

from various chronic pain conditions (e.g., phantom limb pain,

headache, musculoskeletal pain, fibromyalgia) (130). An RCT

pilot study also highlighted that EMDR effectively diminished

pain intensity, sometimes for up to 6 months, in patients

suffering from non-specific chronic back pain after 10 sessions of

EMDR (42). In addition, nine weekly sessions of 1 h of EMDR

can effectively decrease pain levels and their affect, as well as

increase pain control in patients suffering from chronic pain for

at least 6 months (44). In 38 patients living with chronic pain, it

has been shown that 12 weekly EMDR sessions of 90 min were

able to significantly decrease the amount of medication needed

and to improve the quality of life (e.g., pain, physical activity,

vitality, social interaction, emotional management) (80).

Little is known concerning the possible mechanisms through

which EMDR might diminish pain. Pioneer EMDR protocols

from Shapiro highlight eight phases to optimize the efficacy of

the technique: (i) history and treatment plan, (ii) introduction to

EMDR protocol and development of coping strategies, (iii)

evaluation of the treatment targets, (iv) desensitization and

reprocessing, (v) incorporation of positive cognitions, (vi) body

scan (and the reprocessing of any remaining negative bodily

sensations), (vii) relaxation (i.e., re-establishing emotional

stability if distress has been experienced, and for use between

sessions), and, finally, (viii) re-evaluation (116, 117, 114, 139).

Interestingly, Grant and Threlfo specified that to facilitate

relaxation and to change pain sensations, EMDR was usually

accompanied by suggestions to ask the patient to shift their

attention from the pain to the BAS (44). An fMRI study

reported that BAS can either increase or decrease the activation

of limbic structures (i.e., right amygdala, left dorsolateral

prefrontal), thus highlighting the effect of EMDR on emotion

processing in healthy participants (49). Interestingly, it seems

that visual BAS are more effective than auditive BAS on

memory tasks (57).

Finally, it is important to note that, despite an increased

amount of evidence showing the benefits of EMDR on pain,

studies usually do not use an active control group to address

the results, and their monocentric design leads to small

sample sizes (131). These results thus need to be extended in

future investigations to confirm the potential hypoalgesic power

of BAS (Table 1).
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3. Sensory stimuli associated with
virtual reality

In this review, we previously highlighted how VR or isolated

sensory stimuli (i.e., hypnosis, binaural beats, colored noise,

bilateral alternative stimulation) can elicit a hypoalgesic effect.

This section aims to investigate the hypoalgesic power of

combining these stimuli in a VR environment (Table 1).
3.1. Virtual reality and hypnosis

As hypnosis has been used for many decades, since the 21st

century, its use in a 3D environment following the emergence of

VR was rapidly tested in the early 2000s (78, 110, 111, 134). In

2010, Patterson et al. investigated how a hypnotic induction and

hypoalgesic suggestions delivered by a customized VR hardware/

software would be able to assess analgesia in patients with

physical trauma at the hospital (96). They showed that pain

intensity ratings, as well as pain unpleasantness, were

significantly lowered in the group with VR and hypnosis

compared to the groups with only VR or standard care alone, up

to 8 hours post-treatment. Interestingly, a recent review and

meta-analysis on hypnosis suggests that VR could potentiate the

efficacy of hypnosis, especially in low hypnotic suggestibility

patients (73). This observation is partially based on an RCT that

highlighted that hypnosis with 3D VR animation can improve

the user’s mood, as well as reduce both the tiredness and the

level of cortisol, measured through a salivary test (133).

Meanwhile, it has recently been shown that hypnosis added with

VR can effectively reduce pain, as well as anxiety and fatigue, in

patients undergoing cardiac surgery (110, 111). However, it is

important to notice that a study recently showed that human

care was preferable to hypnosis through VR in patients

undergoing electrophysiology and pacing procedures to improve

their comfort (20).

Nevertheless, authors have highlighted some limits

surrounding VR hypnosis induction, notably in case-series

designs, such as an absence of a randomized distribution and a

control group as well as possibly a small sample size (30). The

methods can also be affected, since choosing the proper amount

of VR sessions to induce hypnosis can often be limited across

studies (110, 111). Further studies are needed to clarify all the

possibilities of VR hypnotic induction on pain analgesia, but

recent findings tend to encourage its use for alleviating patient’s

pain (14) (Table 1).
3.2. Virtual reality and binaural beats

To our knowledge, only a few studies recently investigated the

potentializing effect of BB through VR (Table 1). In 2019, Perales

et al. reported that some BBs (i.e., delta, theta, alpha) coupled with

a VR environment can act on the sympathetic nervous system
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modalities (e.g., electrodermal activity) in healthy participants, in

addition to other physiological parameters (e.g., temperature,

heart rate) for children living with chronic pain (99, 100). The

authors mention that these changes could introduce the user into

an effective relaxation mood, potentially leading to an

improvement in the perception of pain. More recently, they

confirmed these results by showing a potentialized effect of VR

with BB for chronic pain in children, but surprisingly not on the

physiological modalities (i.e., heart rate, galvanic skin response),

possibly due to study design limitations (109). Interestingly, it

has recently been highlighted that BB in a VR environment can

also drastically decrease the main aversive event of VR use,

cybersickness, suggesting a potentially better efficacy of DTx

using VR and BB (23).
3.3. Virtual reality and colored noise

As mentioned above, VR greatly benefits from immersion to

generate its efficacy (18, 74). To our knowledge, studies that

specifically investigated a potentialized effect of colored noise on

VR analgesia are quite rare (Table 1), although we found one

study that showed that adding sounds to a VR game can

significantly increase pain tolerance for experimental thermal

pain compared to the sounds or the VR game separately (64).

However, the authors specified that “sounds” cited referred to the

game’s music, thus preventing us from concluding the specific

hypoalgesic effect of white or pink noise when incorporated into

a VR environment. Interestingly, it has recently been shown that

shifting a music volume to the same frequency (i.e., 0.1 Hz) as

the VR environment motion does not influence the body sway

assessed by position measurements, suggesting a lack of effect of

colored noise on cybersickness (24).
3.4. Virtual reality and bilateral alternative
stimulation

To our knowledge, only one study has investigated more

specifically the effect of transmitting EMDR techniques through

a VR environment (Table 1). Kaminska et al. reported in 2020

that BAS in VR can significantly reduce the acute stress level as

well as mood improvements in healthy adult volunteers, leading

to be considered a great tool when added to a relaxation training

program (66). Even if it is difficult to conclude with only one

study, it seems that BAS through VR could benefit analgesia.
4. Conclusion

In this review, we highlighted (i) the hypoalgesic power of VR

only, (ii) the hypoalgesic power of various sensory stimuli only (i.e.,

hypnosis, binaural beats, colored noise, bilateral alternative

stimulation), and (iii) the potentialized hypoalgesic power of

these sensory stimuli in a VR environment. In the first part, we

have summarized many studies that showed with self-reported
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scales scores and cerebral imaging that VR can effectively reduce

pain perception, both in healthy participants and during acute

and chronic pain conditions, likely through the immersive

capacity of VR. In addition, we found that the hypoalgesic effect

of VR is sometimes as powerful as strong pharmacological

analgesics (i.e., opioids). In the second part, we highlighted (i)

how hypnosis can elicit an hypoalgesic effect as well as an

improvement of the quality of life of participants, (ii) that some

BB (i.e., theta, alpha) can effectively produce an hypoalgesic

effect, likely by acting on cerebral oscillations, (iii) the low but

existing hypoalgesic power of some colored noise (i.e., white,

pink), and (iv) how an EMDR technique (i.e., BAS) may both

decrease pain and improve the quality of life of some patients

suffering from acute or chronic pain. In the final part, we

reported the short but emerging scientific literature investigating

the potentialized hypoalgesic effect of combining previous

sensory stimuli evoked with a VR environment.

A potential limit to our review is the difficulty to compare all

these modalities (i.e., VR only, stimuli only, VR and stimuli) as

the methods are different across studies, even in the same fields

of research. Moreover, the small sample size and the lack of

information on the effect size in several studies are limiting a

final conclusion on the clinical relevance of these studies.

Another limit could be the non-exhaustivity of the sensory

stimuli chosen in this review. Further reviews should investigate

the hypoalgesic power of a plethora of other sensory stimuli (e.g.,

odors, textures, biofeedback) or cognitive approaches (e.g.,

cardiac coherence, mindfulness breathing) and their probable

potentialized effect while being coupled with VR technologies.

The fact that some studies report a hypoalgesic effect of the VR

session outlasting hours and even months may be explainable by

several mechanisms. For instance, the activation of endogenous

pain modulation may outlast the effect by minutes or even

hours. However, the longer effects may be explained by some life

habit changes such as moving more freely and more frequently

after the positive effect of VR. More studies are needed to

characterize the different variables that may contribute to the

long-term effect of VR.

We recently published an RCT (NCT04650516) where we

highlighted that a VR treatment comprised of some sensory

stimuli mentioned above (e.g., BB, BAS) effectively diminished

the mean pain intensity in 45 patients diagnosed with moderate-

to-severe endometriosis-related chronic pelvic pain, up to 4 h

post-treatment, as well as reducing the mean perceived pain,

compared to a 2D digital control (84). These results encourage

us to conclude that VR with added sensory stimuli can be a

good addition to an arsenal for alleviating pain. However, since

the control was with the same 2D environment without the

additional stimuli, we can only conclude the potential effects of

the combination of these stimuli. Future studies are needed to

better characterize the potentializing effect of adding BB, BAS,

EMDR, or different sound frequencies on the hypoalgesic effect

of VR.

In conclusion, our review suggests that adding sensory stimuli

to VR can be a great opportunity for a plethora of DTx in order to

alleviate patients from painful symptoms. It suggests that we can
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increase the efficacy of DTx analgesia with the addition of different

sensory stimuli combined with VR.
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