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A B S T R A C T 

Mass customization is becoming the more and more of emphasis on the 

production optimization. In many manufacturing and service organizations, 

production planning and scheduling are characterized as the daily decision-

making procedures. The significance of the choices made is therefore to 

shown in the areas of work orders, manufacturing, transportation, and 

distribution of the finished goods. Production scheduling is the process of 

regulating, determining, and maximizing the restricted resources of the 

production system. In this study, a novel Hybrid Dynamic Genetic-Adaptive 

Improved Gravitational Optimization Algorithm (HDG-AIGOA) approach is 

introduced to optimize the production schedule. In this case, the AIGOA 

classification effectiveness is increased by using the HDG method. The small 

and benchmark iMOPSE dataset has been used to assess the success of 

suggested approach. The noisy data from raw data samples are removed 

using the Adaptive Median Filter (AMF) filter. To extract the properties from 

the segmented data, a Kernel Principal Component Analysis (KPCA) is 

performed. The results of the research show that the recommended 

methodology beats earlier approaches in terms of the accuracy, Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), and Square Error 

(MSE). Our proposed method might consider to improve the production 

scheduling in an dynamic environment. 

© 2023 Published by Faculty of Engineeringg  

 

 

 

1. INTRODUCTION  

 

In manufacturing and production operations, 

optimizing production scheduling is a crucial 

responsibility. It entails effectively allocating 

resources, such as tools, supplies, and people, to 

carry out production orders while lowering costs, 

fulfilling delivery dates, and increasing general 

productivity.  Planning strategically, using resources 

effectively, and using cutting-edge tools and 

algorithms are all necessary components of the 

continual process of optimizing production 

scheduling (Negri et al., 2021). The study may 

enhance manufacturing operations' efficiency, save 

costs, and increase customer happiness by using the 

tactics. To handle optimization issues in dynamic 
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contexts, the Dynamic Genetic Adaptive 

Optimization Algorithm (DGAOA) combines the 

concepts of genetic algorithms (GA) with adaptive 

processes. GA is made to deal with circumstances 

where the issue or its restrictions change over time, 

necessitating continual search strategy adaptation on 

the part of the algorithm. The Dynamic Genetic 

Adaptive Optimization Algorithm's primary features 

are as follows: To create and grow a population of 

potential solutions, DGAOA uses the fundamental 

framework of genetic algorithms, which makes use of 

genetic operators such as selection, crossover, and 

mutation. The architecture enables DGAOA to 

investigate the search space and take advantage of 

attractive areas to discover ideal or nearly ideal 

answers (Choueiri and Portela Santos 2021).  

 

DGAOA stands out for its flexibility in responding to 

changes in the issue domain. DGAOA includes 

systems for keeping an eye on and spotting changes in 

the problematic environment. adjustments to the goal 

function, restrictions, or problem structure are 

examples of the adjustments. The algorithm constantly 

modifies its parameters or operators as a change is 

recognized to better fit the new issue circumstances. 

DGAOA often uses systems for fitness monitoring to 

keep track of the historically most effective solutions 

(Babor et al., 2021). The algorithm may modify its 

search strategy by taking into account the most 

successful people from earlier generations by keeping 

track of the fitness levels of prior solutions. The aids in 

the preservation of valuable genetic material and offers 

a framework for adaptability when an issue changes. 

DGAOA often uses methods to modify the algorithm's 

settings while it is running (Xu et al., 2022).  

 

DGAOA can swiftly adapt to changing situations and 

enhance its performance over time by continually 

monitoring the issue landscape and modifying its 

settings and operators. It is crucial to remember that 

the kind of dynamic issue being handled and the 

caliber of the utilized adaption mechanisms are what 

determine how successful DGAOA will be. 

Achieving the best outcomes requires careful 

evaluation of problem-specific traits, appropriate 

parameter adjustment, and selection of appropriate 

adaptation approaches (Manríquez et al., 2023). To 

address optimization issues in dynamic contexts, the 

Dynamic Genetic Adaptive Optimization Algorithm 

is a potent tool. It enables the flexibility to adapt to 

shifting issue circumstances and enhances the 

efficiency and efficiency of the optimization process 

by integrating genetic algorithms with adaptive 

mechanisms. Its performance across many problem 

domains must be investigated, and it must be 

compared with other dynamic optimization methods, 

via ongoing study and testing. The Gravitational 

Optimization Algorithm's central tenet is that each 

potential solution in the search space should be seen 

as a celestial body (Yang et al., 2022).  

The interaction is comparable to the gravitational force in 

physics. According to their fitness scores, each solution's 

mass is assumed to either attract or repel other solutions by 

the algorithm. The larger a solution's mass and gravitational 

force, the more optimum it is. The Gravitational 

Optimization Algorithm's principal elements and actions are 

as follows: The program first creates a population of initial 

potential solutions. The answers, which stand in for celestial 

bodies, are generated at random inside the search area. 

Based on the optimization problem's objective function, 

each solution's fitness value is assessed. The mass of the 

solution is determined by the fitness value (Ajagekar et al., 

2022). The fitness value of each solution to the other 

solutions in the population is often taken into account when 

calculating the mass of each solution using a mass 

calculation algorithm. Larger masses are a consequence of 

higher fitness values. Based on the masses and separations 

between the solutions, the gravitational force is determined. 

Nearby solutions are gravitationally pulled away more 

strongly by solutions with bigger masses. Each solution 

moves according to the gravitational force that pulls on it. 

Higher mass solutions are subject to larger forces and 

gravitate toward better solutions (Togo et al., 2022).  

 

The action enables the algorithm to investigate several 

areas of the search space. Numerous optimization issues, 

such as feature selection, data clustering, scheduling, and 

function optimization, have been addressed using the 

gravitational optimization algorithm. Its advantages are in 

being straightforward, effective, and capable of escaping 

local optima by scouring new parts of the search area. It's 

crucial to remember that the Gravitational Optimization 

Algorithm's performance might change based on the issue 

at hand and the parameter values used (Avval et al., 2022). 

The study may benefit from proper parameter tweaking 

and adaption strategies to speed up convergence and 

balance exploration and exploitation. By mimicking the 

behavior of celestial entities, the Gravitational 

Optimization Algorithm provides a novel and efficient 

method for resolving optimization issues. It is an effective 

tool for many optimization fields since it may use gravity 

to direct the search process. Continuous investigation and 

testing are required to fully understand its potential, 

evaluate it against competing algorithms, and create 

improvements to address increasingly challenging issues 

(Bao et al., 2022). 

 

Key Contributions: 

 
 To prefer the hybrid strategy, which combines the 

Genetic Algorithm (GA) with the Improved 

Gravitational Optimization Algorithm (IGOA), two 

optimization methods? By combining the best features 

of the two methods, production scheduling optimization 

is intended to be more effective and efficient. 

 To addresses the suggested method which contains 

adaptive mechanisms to dynamically change and 

optimize the production plan depending on changing 

circumstances, addressing the difficulty of dynamic 

production scheduling. 
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The remainder of the document is structured as follows: 

Segment 2 talks about the preliminary research in 

connection to the aims or goals of the investigation and 

identifies any gaps or inconsistencies. The research 

technique and strategies are covered in Section 3. We 

proceed through the data and analysis in Segment 4 

before succinctly and methodically summarizing the 

conclusions, assessing the goals or objectives of the 

research, and offering reasons. In Segment 5, a 

summary of the Study's main parts is provided. 

 

2. RELATED WORKS 
 

(Waschneck et al., 2018) determined to realize the. Deep 

Neural Network (DNN) agents are trained with user-

defined goals to improve scheduling in an RL 

environment. Using a tiny factory simulation that models 

an abstracted front end of the semiconductor 

manufacturing facility, the study validates the system. 

(Wang et al., 2018) suggested the precast component 

delivery on time while maintaining a low production cost 

may be compromised, and the production resource 

configuration can be modified to reduce resource waste. 

The created model closes the gap between precast 

production scheduling methodologies and simulation 

system design, making it more applicable to actual building 

projects. (Xu et al., 2018) presented a strategy for planning 

open pit operations that incorporates environmental 

expenses as internal cost elements. Inside the ultimate pit, a 

succession of geologically ideal (maximum-metal) push-

backs is initially produced. The ideal production schedule 

is then obtained by sequencing the push-backs using a 

Dynamic Programming (DP) model, which incorporates 

environmental costs into economic assessment formulas. 

(Liu et al., 2019) presented an integrated decision model 

that combines single-machine scheduling choices with 

predictive maintenance decisions based on prognostic 

information to reduce the overall projected cost. The health 

condition and dummy age that were susceptible to machine 

deterioration are taken into account in the integrated 

model. (Qin et al., 2019) introduced a multi-objective 

casting production scheduling approach that aims to cut 

down on overall production costs, delivery delays, and 

makespan. To solve the model, a hybrid discrete multi-

objective grey wolf optimizer is created. To increase the 

quality of the initial population, an initialization method 

focused on decreasing work transit and processing times is 

intended. Grey wolf optimizer (GWO) incorporates an 

enhanced method to prevent the GWO from becoming 

convergent too soon. (Both and Dimitrakopoulos 2020) 

preferred in addition to uncertainty relating to equipment 

performance and truck cycle durations, geological 

uncertainty is taken into account by the stochastic 

optimization approach. (Chen et al., 2020) suggested an 

Accurate Maintenance (AM) model based on reliability 

intervals that address the shortcomings of the previous 

single reliability threshold maintenance model by having 

varied maintenance actions at various intervals. (Zonta et 

al., 2022) examines estimating whether the machines will 

be used in the production schedule while taking into 

account the resources at hand. A paradigm for data 

engineering, validation, and normalization was put out by 

the study. Additionally, it demonstrates how to combine 

deterioration indices utilizing similarity patterns to extract 

time-based failures from noisy data. The method enables 

the application of the kind of prediction to scheduling 

issues. A study compares several DNN-based models. (Liu 

et al., 2022) improved the deep reinforcement learning 

algorithm's four main parts are aspect distance, action 

distance, incentive performance, and network architecture 

and organization based on Convolution Neural Networks 

(CNNs). (Manríquez et al., 2020) suggested building short-

term production schedules utilizing the general simulation-

optimization framework to increase schedule adherence via 

an iterative process. 

  

3. EXPERIMENTAL PROCEDURE 
 

This section outlined the process for creating the model, 

covered its essential elements, and offered a detailed 

description of how the steps of the recommended model 

in (Figure 1) were created. There are five parts to this 

analysis: The fundamental objective of the first phase is 

information collecting. The study's following portion 

included data pre-processing methods. The third part 

contains the methods for feature extraction and 

selection. The fourth part, which details the work done 

to create the recommended model and gather the crucial 

experiences, contains the most important information. 

The performance of each existing and new model is 

evaluated in the fifth stage by comparing the relevant 

parameters. 

 

 

Figure 1. Experimental Procedure of Optimizing 

Production Scheduling 

 

3.1 Data Collection 

 
Two intelligent Multi-Objective Project Scheduling 

Environment (iMOPSE) datasets were created using the 

Generator application: simple for Education (EDU) 

(national) use, which consists of 6 instances, and 

benchmark dataset d36, which consists of 36 instances 

for research trials (Myszkowski et al., 2019). The EDU 

dataset is helpful for instructional purposes and only 

includes a handful of the activities listed in (Table 1). It 

may be solved to demonstrate if the approach under 

examination is effective and if the answer is simple for 

students to study, validate, and illustrate using tools. But 

the straightforward EDU dataset poses no problem for 

study. As a consequence, the research published and 
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offered a benchmark dataset of 36 instances for 

comparing the outcomes of the various techniques. It 

varies not just in the quantity of work but also the 

quantity of resources, connections, and abilities needed. 

Although more appropriate Occurrences may be quickly 

constructed using the Generator program, the provided 

datasets (EDU and benchmark d36) can be utilized for a 

variety of applications. 

 

Table 1. Outline of iMOPSE EDU datasets 

(Myszkowski et al., 2019). 

Instances Activities Materials Interactions Abilities 

10-3-5-3 10 3 5 3 

10-5-8-5 10 5 8 5 

10-7-10-7 10 7 10 7 

15-3-5-3 15 3 5 3 

15-6-10-6 15 6 10 6 

15-9-12-9 15 9 12 9 

 

3.2 Data Pre-Processing using Adaptive  

      Median Filter (AMF) 

 
The ordinary median filter has been enhanced by the 

AMF technique. Impulse noise is decreased using 

spatial processing. To assess whether noise is present or 

not, the AMF identifies each pixel in the skin picture 

together with its surrounding pixels. Because it protects 

the subtle visual features and lowers non-impulse noise, 

it performs better than other filters. Furthermore, there's 

a significant probability it can adapt to sudden loudness. 

Both the mean channel and the median channel have the 

same effect on a picture's disorder. As in Formula (1), 

the median channel for two descriptions may change. 

𝑚𝑒𝑑(𝑛𝑘) = {𝑛𝑖 + 1𝑎 = 2𝑖 + 1(𝑂𝐷𝐷)) 
[𝑛𝑖+𝑛𝑖+1]

2
𝑎 =

2𝑖(𝑒𝑣𝑒𝑛)                                                           (1) 

Here 𝑛𝑖 is the ith the biggest observed data and n1; n2; 

n3... 𝑛𝑖 are the observed data. Consider a situation where 

there are seven samples overall in the data collection 2, 

3.5, 1, 3, 1.5, 4 and the median filter yields an output of 

2.5. The signal will be maintained if the pulse is n + 1 or 

longer; else, it will be dropped from the series. The 

median filter is distinct from other filters since it has the 

potential to reduce pulse noise while preserving local 

features. The signal produced by this approach is then 

sent to the feature extraction step. 

 

3.3 Feature Extraction by using Kernel  

      Principal Component Analysis (KPCA) 

 
An approximate covariance matrix of the data in 

Formula (2) is diagonalized using a basis transformation 

known as Principal Component Analysis (PCA). 

 

𝐷 =
1

𝑘
∑𝑘

𝑖=1 𝑣𝑙𝑣𝑖
𝑆                                                        

(2) 

The orthogonal projections onto the Eigenvectors or the 

new coordinates in the tile Eigenvector basis are 

principal components. In this work, this setting is 

further developed into a nonlinear setting of the 

following kind. If the data were initially nonlinearly 

mapped onto a feature space using Formula (3), 

𝛷: 𝑄𝑀 → 𝐸, 𝑣 → 𝑉                     (3) 

We'll show that, for certain values, even if it has 

arbitrarily large dimensionality, we can still do KPCA 

in E. 

For now, let's assume that Formula (4) translates data 

into feature space. KPCA for the covariance matrix, 

𝐷 =
1

𝑘
∑𝑘

𝑖=1 𝛷(𝑣𝑙)𝛷(𝑣𝑙)
𝑆                    (4) 

Applications for denoising and wavelet transforms often 

employ KPCA, a nonlinear variant. The traditional PCA 

approach tries to reduce the number of dimensions when 

the manifold is linearly buried in the observation space. 

The manifold is linearized using the kernel technique, 

one of the two components, to satisfy the requirements 

of the PCA, the second component of KPCA. To 

automatically convert data into a pairwise formula 

between the mapped data in the feature set, KPCA 

employs feature mapping. The kernel calculates this 

pairwise formula. It is difficult to find an appropriate 

kernel that linearizes the surface in the feature space 

while taking into consideration the geometry of the 

input space. The nonlinear dimensionality reduction of 

KPCA would be ineffective for a suboptimal projection 

that does not satisfy these conditions. 

 

3.4 Classification based on Hybrid Dynamic 

Genetic-Adaptive Improved Gravitational 

Optimization Algorithm (HDG-AIGOA) 

Genetic algorithms and an enhanced gravitational 

optimization method are combined in the HDG-AIGOA 

algorithm. The gravitational forces present in nature 

serve as an inspiration for the gravitational optimization 

technique. Each answer to the optimization problem is 

regarded as a celestial body, simulating the interactions 

between celestial bodies. The gravitational forces are 

used to iteratively update the locations of these entities, 

which results in the identification of ideal or nearly 

ideal solutions. The HDG-AIGOA algorithm combines 

enhanced gravitational optimization and genetic 

algorithms to make use of each other's advantages. The 

algorithm's dynamic and adaptive properties relate to 

the integration of dynamic and adaptable parameters 

throughout the optimization process, which enables the 

algorithm to modify its behavior in response to the 

specifics of the issue being addressed. According to the 

paper's description, the HDG-AIGOA algorithm's goal 

is to generate optimum or very close-to-optimal plans 

for production scheduling issues to increase 

effectiveness and lower costs. The key components of 

the genetic-adaptive and gravitational optimization 

algorithms are described in greater depth below: 
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a) Genetic-Adaptive Algorithm (GAA) 
 

The principles of natural selection and genetics serve 

as the basis for genetic algorithms. They work with a 

population of possible answers, represented as people 

or chromosomes. To produce new children, these 

people perform genetic operations like selection, 

crossover, and mutation. An objective function is 

used to assess each person's fitness, and those who do 

better are more likely to pass on their skills to the 

next generation. The parameters and operators of the 

genetic algorithm are continuously adjusted in a 

genetic-adaptive algorithm throughout the 

optimization process. These modifications may be 

based on factors unique to the challenge or variables 

in contexts that are constantly changing. The 

algorithm may successfully balance exploitation 

(exploiting potential regions for improved solutions) 

and exploration (examining various parts of the 

solution space) by adjusting the parameters and 

operators. By adjusting to the dynamics and features 

of the issue, the use of a genetically adaptive 

algorithm aims to increase the efficiency and 

efficiency of the optimization process. 

 

Mathematical model of GAA 
 

This section introduces a revolutionary adaptive genetic 

algorithm and describes the new crossover and mutation 

operators in more depth. Two chromosomes are chosen 

as parents by the global best-crossover (GB-crossover) 

operator. One of these is chosen at random from the 

mating pool, while the other is the population's best 

chromosome for the GAA method. The chosen 

chromosome is then replaced in the child produced by 

the chosen parents. 

 

Let 𝑉⃗ 𝑗(𝑠 + 1) = 𝑉⃗ 𝑔𝑏𝑒𝑠𝑡  respectively, the chosen 

chromosome and the world's finest chromosome. The 

offspring is then determined using Formula (5) 

𝑉⃗ 𝑗(𝑠 + 1) = 𝑉⃗ 𝑔𝑏𝑒𝑠𝑡 + 𝑞 1𝑉⃗ 𝑔𝑏𝑒𝑠𝑡 − 𝑞 2𝑉⃗ 𝑗(𝑠)       (5) 

Based on the GAA principles, A variety of 

chromosomal values in the general population are 

intelligently changed using the quasi-sliding surface-

mutation (QSS-mutation) operator.  Let 𝑉⃗ 𝑗(𝑠) represent 

a randomly chosen chromosome, then Formula (6) 

defines the QSS mutation. 

𝑉⃗ 𝑗(𝑠 + 1) = 𝑉⃗ 𝑗(𝑠) + (𝑏⃗ × 𝜇)       (6) 

where 𝑉⃗ 𝑗(1) is the initial position and equal to 

𝑉⃗ 𝑗(1), 𝑏⃗  𝜖 [0,1]𝐶 is a random vector, 

 

The adaptation factor 𝜇 will be calculated by the 

following Formula (7), (8), and (9) 

𝜇 = 10

−1

√|𝑠|                                  (7) 

Which 

𝑡 = 𝑓 + 𝑓; 𝑓 = 𝑒 (𝑉⃗ 𝑗(1))                          (8) 

𝑓 =
𝑒(𝑉⃗⃗ 𝑗(1))−𝑒(𝑉⃗⃗ 𝑗(1−1))

𝑠−(𝑠−1)
 = 𝑒 (𝑉⃗ 𝑗(1)) − 𝑒 (𝑉⃗ 𝑗(1 − 1))   (9) 

Where  𝑒 (𝑉⃗ 𝑗(1)) the fitness is value of  𝑉⃗ 𝑗(1) and 𝑡 is 

the iteration number. 

 

b) Gravitational optimization Algorithm 

(GOA) 
 

A prospective solution to an optimization issue is 

represented by each mass in the GOA algorithm's 

simulation of the interactions between masses in a 

gravitational field. The search space is first randomly 

initialized with a population of masses (possible 

solutions). Each mass is assigned a place and a mass 

value. The program then repeatedly modifies the 

masses' placements by the gravitational pull of other 

masses. The mass and separation of two masses affect 

the gravitational force that exists between the mass. The 

underlying tenet is that masses with higher fitness 

values produce larger gravitational forces that pull other 

masses toward their places. The GOA method has been 

used to solve several optimization issues, including 

feature selection, parameter estimates, and function 

optimization. It has shown positive outcomes and has 

been discovered to be competitive with other well-

known optimization techniques. The law of gravity 

served as the inspiration for the GOA, a population-

based optimization method. To find the best answers to 

optimization issues, it models the interactions between 

masses in a gravitational field. 

 

Mathematical model of GOA 
 

To create a mathematical model of GOA, numerous 

elements of the area are often quantified using 

mathematical formulas or represented in (Figure 2). 

Take into consideration a situation where 𝑛 decision-

making factors and an objective function dependent on 

GOA. Each variable has a lower limit and an upper 

bound, according to Formula (10). 

𝑣𝑘𝑐  𝑎𝑛𝑑 𝑣𝑤𝑐  𝑎𝑟𝑒 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑟 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠 𝑜𝑓  

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐                     (10) 

The bounds of factors create an area known as the 

search field with an amount of 𝑛, where Formula (11) 

shows that: 

𝑣𝑘𝑐 ≤ 𝑣𝑐 ≤ 𝑣𝑤𝑐     (11) 

GOA searches randomly through this space using 𝑁 

objects trying to find the sub-optimum. The position of 

the 𝑗𝑡ℎ object in the search space is defined as Formula 

(12). 

𝑉𝑗 = (𝑣𝑘
1, … . , 𝑣𝑗

𝑐 , … . , 𝑣𝑗
𝑛), 𝑗 = 1,2, … . ,𝑀       (12) 
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𝑁𝑏𝑗(𝑠), 𝑁𝑜𝑗(𝑠) are the active, passive, and inertia mass, 

respectively 𝑁𝑗𝑗(𝑠) is the agent′s goal value 𝑗 at the time 

(𝑠) . The value of mass will increase in proportion to 

how well the goal function performs. The agent's mass 

in its active, passive, and inertial states 𝑗 is determined 

using the goal function it currently has, as shown by 

Formula (13), 

𝑁𝑏𝑗(𝑠), 𝑁𝑜𝑗(𝑠) 𝑎𝑛𝑑 𝑁𝑗𝑗(𝑠)    (13) 

The gravitational law as amended before determining 

the agent's acceleration with the use of the law of 

motion Formula (14), the total forces from a group of 

heavier objects applied to the agent should be 

calculated using Formula (15). By deducting the 

agent's current velocity from its acceleration Formula 

(16), the subsequent velocity of the agent is then 

calculated. The next step is to use Formula (17) to 

find the agent's position. 

𝐸𝑗
𝑐(𝑠) = ∑𝑖𝜖𝑙𝑏𝑒𝑠𝑡,𝑖≠𝑗 𝑟𝑎𝑛𝑑𝑖𝐸𝑗𝑖

𝑐 =

∑𝑖𝜖𝑙𝑏𝑒𝑠𝑡,𝑖≠𝑗 𝑟𝑎𝑛𝑑𝑖𝐻(𝑠)
𝐵𝑏𝑖(𝑠)𝑁𝑜𝑗(𝑠)

𝑄𝑗𝑖(𝑠)
𝑂+𝜀

(𝑣𝑖
𝑐(𝑠) − 𝑣𝑗

𝑐(𝑠))   

(14) 

𝑏𝑗
𝑐 (𝑠) =

𝐸𝑗
𝑐(𝑠)

𝑁𝑏𝑗(𝑠)
        (15) 

𝑥𝑗
𝑐(𝑠 + 1) = 𝑟𝑎𝑛𝑑𝑗 × 𝑤𝑗

 𝑐(𝑠) + 𝑏𝑗
𝑐(𝑠)    (16) 

𝑣𝑗
𝑐(𝑠 + 1) = 𝑣𝑗

𝑐(𝑠) + 𝑥𝑗
𝑐(𝑠 + 1)    (17) 

 

 

Figure 2. Flow chart of GOA 

 

4. RESULTS AND DISCUSSION 
 

4.1 Results 
 

Optimizing Production Scheduling typically provides 

detailed information about the performance metrics 

used, the specific problem instances tested, and the 

comparative suggested method with other algorithms or 

existing approaches. 

 

a) Accuracy 
 

The HDG-AIGOA algorithm's correctness would be 

assessed based on how closely its produced schedules 

match the ideal ones or how well they adhere to the 

predetermined production scheduling goals, such as 

minimizing setup times or optimizing resource use. 

According to a high accuracy score, the recommended 

model helps optimize production and eliminate false 

positives and false negatives (missing anomalies). To 

calculate the accuracy, use Formula (18). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (18) 

Table 2. Numerical Outcomes of Accuracy for existing 

and proposed methods. 

Methods Accuracy (%) 

ANN (Zhao et al., 2005) 28 

DNN  (Zonta et al., 2022) 42 

CNN (Liu et al., 2022) 73 

HDG-AIGOA (Proposed) 85 

 

 

Figure 3. Comparison of accuracy for existing and 

proposed methods 

 

(Figure 3) compares the accuracy for the recommended 

and existing techniques. The suggested method exceeds the 

already in-use ANN (28%), DNN (42%), and CNN (73%), 

with a high accuracy performance of 85%. The 

recommended technique HDG-AIGOA is shown in (Table 

2), and it performed better in terms of data classification 

accuracy than other approaches already in use. 
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b) Root Mean Square Error (RMSE) 

The average size of inaccuracy in predictions based on 

quantitative data is measured by the RMSE. It may be 

conceptualized as the vector of anticipated values' 

normalized distance from the vector of observed (or 

real) values. Instead of utilizing RMSE to gauge the 

efficiency of HDG-AIGOA for production scheduling, 

it is preferable to take into account the particular 

performance indicators connected to the scheduling 

optimization objectives. These metrics would be used to 

assess the algorithm's performance in terms of 

production scheduling activities, including optimization 

results, efficiency gains, and cost savings. The RMSE is 

calculated using Formula (19). 

𝑅𝑀𝑆𝐸 = [
1

𝑚
∑𝑚

𝑗=1 (𝜙̂𝑗 − 𝜙𝑖)]

1

2
                 (19) 

n   − Total number of samples 

𝜙̂
𝑗
− Prediction Values 

𝜙
𝑗
− Actual Values 

 

Table 3. Numerical Outcomes of RMSE for Existing 

and proposed methods. 

Methods RMSE (%) 

ANN (Zhao et al., 2005) 25 

DNN  (Zonta et al., 2022) 40 

CNN (Liu et al., 2022) 53 

HDG-AIGOA (Proposed) 58 

 

 

Figure 4. Comparison of RMSE for existing and 

proposed methods 

 

(Figure 4) compares the RMSE for the recommended 

and existing techniques. With a low performance of 

RMSE of 58%, the suggested method exceeds the ones 

already in use, including ANN (25%), DNN (40%), and 

CNN (53%). The recommended technique HDG-

AIGOA is shown in (Table 3) and outperformed other 

approaches currently in use in terms of data 

classification RMSE. 

c) Mean Square Error (MSE) 

MSE is yet another often-used statistic for assessing the 

efficiency and performance of predictive models, 

especially in regression research. Although the HDG-

AIGOA method is not specifically related to prediction 

tasks, we can nevertheless analyze the optimization 

results attained by the algorithm for production 

scheduling by adapting MSE. An indicator of the 

average squared difference between the goal values and 

the expected optimization results would be provided by 

the HDG-AIGOA-adapted MSE for production 

scheduling. An improvement in optimization outcomes, 

closely matching the intended or ideal values, is 

indicated by a decreased MSE value, which HDG-

AIGOA has attained. The MSE is determined by using 

Formula (20). 

𝑀𝑆𝐸 =
1

𝑚
∑𝑚

𝑗=1 (𝜙̂𝑗 − 𝜙𝑗)
2
         (20) 

Table 4. Numerical Outcomes of MSE for Existing and 

proposed methods. 

Methods MSE (%) 

ANN (Zhao et al., 2005) 30 

DNN  (Zonta et al., 2022) 45 

CNN (Liu et al., 2022) 48 

HDG-AIGOA (Proposed) 62 

 

 

Figure 5. Comparison of MSE for existing and 

proposed methods 

 

(Figure 5) compares the MSE for the recommended and 

existing techniques. The suggested method beats others 

already in use, such as ANN (30%), DNN (45%), and 

CNN (48%), with MSE doing poorly (62%). In terms of 

data classification MSE, the recommended strategy 

HDG-AIGOA fared better than other approaches 

already in use (Table 4). 
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d) Mean Absolute Error (MAE) 
 

An additional often-used statistic for assessing the 

accuracy and effectiveness of prediction models is 

MAE. As part of Optimizing Production Scheduling 

using Hybrid Dynamic Genetic-Adaptive Improved 

Gravitational Optimization Algorithm (HDG-

AIGOA), MAE may be modified to quantify the 

absolute difference between the anticipated and target 

values of pertinent optimization goals. A measure of 

the average absolute difference between the expected 

optimization results and the target values would be 

provided by the HDG-AIGOA-adapted MAE for 

production scheduling. A lower MAE number means 

that HDG-AIGOA has more successfully optimized 

the system, producing values that are near the 

intended or ideal values. Formula (21) is used to 

compute the MAE. 

𝑀𝐴𝐸 =
1

𝑚
∑𝑚

𝑗=1 |𝜙̂𝑗 − 𝜙𝑗|         (21) 

Table 5. Numerical Outcomes of MAE for Existing and 

proposed methods. 

Methods MAE (%) 

ANN (Zhao et al., 2005) 35 

DNN  (Zonta et al., 2022) 50 

CNN (Liu et al., 2022) 65 

HDG-AIGOA (Proposed) 76 

 

 
Figure 6. Comparison of MAE for existing and 

proposed methods 

 

(Figure 6) compares the MAE for the recommended 

and existing techniques. The suggested method beats 

others already in use, such as ANN (35%), DNN 

(50%), and CNN (65%), with MAE doing poorly 

(76%). In terms of data categorization MAE, the 

suggested method HDG-AIGOA fared better than 

other approaches already in use (Table 5). 

4.2 Discussion 
 

Numerous sectors consider the optimization of 

production scheduling to be essential since it directly 

affects operational performance, resource usage, and 

overall cost-effectiveness. A viable strategy to address 

these issues is the HDG-AIGOA algorithm, which 

combines gravitational optimization, genetic algorithms, 

and adaptive algorithms. The hybrid character of the 

HDG-AIGOA algorithm is one of its main benefits. It 

strengthens the search process and raises the quality of 

the production schedules produced by incorporating 

several optimization approaches. By introducing variety 

and exploration via the use of genetic operators like 

crossover and mutation, the genetic algorithm 

component enables the algorithm to effectively explore 

the solution space. The algorithm may dynamically 

modify its parameters and operators  

 

to adapt to the peculiarities of the problem and the state 

of the search. This is made possible by the adaptive 

algorithm component. To direct the search toward better 

solutions, the gravitational optimization component 

incorporates the idea of gravitational forces and 

simulates the interactions between particles. In 

comparison to adopting a single optimization strategy in 

isolation, the hybridization of these approaches in HDG-

AIGOA may speed up convergence and provide higher-

quality solutions. The algorithm can efficiently explore 

various areas of the search space and successfully 

exploit interesting answers by combining exploration 

and exploitation methodologies. 

 

5. CONCLUSION 

The Optimizing Production Scheduling using Hybrid 

Dynamic Genetic-Adaptive Improved Gravitational 

Optimization Algorithm (HDG-AIGOA) is a 

sophisticated algorithm designed to enhance production 

scheduling in a dynamic setting. The HDG-AIGOA 

method combines the capabilities of genetic algorithms 

with enhanced gravitational optimization to optimize 

production scheduling, as can be seen after analyzing 

the algorithm and its possible advantages. The HDG-

AIGOA algorithm provides various benefits for 

production scheduling by combining these two methods 

and including dynamic adaption mechanisms. Various 

elements, including machine availability, order priority, 

production limits, and dynamically changing 

circumstances, may all be taken into consideration while 

handling complicated scheduling challenges in real 

time. The method seeks to reduce RMSE, MSE, and 

MAE while increasing overall operational effectiveness. 

It is significant to note that the unique features of the 

production scheduling issue at hand may have an impact 

on the HDG-AIGOA algorithm's performance and 

efficiency. The effectiveness of the algorithm may be 

impacted by elements like the size, complexity, and 

accessibility of the issue. To obtain the best outcomes in 

various circumstances, proper parameter adjustment and 
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customization may be necessary. Our analysis leads us 

to the conclusion that the Hybrid Dynamic Genetic-

Adaptive Improved Gravitational Optimization 

Algorithm (HDG-AIGOA) has the potential as a method 

for improving production scheduling in dynamic 

situations. It offers a solid foundation for dealing with 

difficult scheduling issues thanks to the integration of 

evolutionary algorithms, enhanced gravitational 

optimization, and adaptive methods. Its performance has 

to be validated in a variety of settings and compared to 

other cutting-edge algorithms via more study and 

testing. 
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