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Background and purpose: The pathogenesis of idiopathic sudden sensorineural 
hearing loss (ISSNHL) is still unclear, and there is no targeted treatment. This 
research aimed to verify the role of oxidative stress in ISSNHL and explore whether 
melatonin has a protective effect on hearing.

Materials and methods: A total of 43 patients with ISSNHL and 15 healthy controls 
were recruited to detect the level of melatonin, reactive oxygen species (ROS), 
and total antioxidant capacity (TAC) in the blood and compared before and after 
treatment. Multivariate logistic regression models were performed to assess the 
factors relevant to the occurrence and improvement of ISSNHL.

Results: The patients with ISSNHL showed significantly higher ROS levels than 
controls (4.42  ±  4.40 vs. 2.30  ±  0.59; p =  0.031). The levels of basal melatonin were 
higher (1400.83  ±  784.89 vs. 1095.97  ±  689.08; p =  0.046) and ROS levels were 
lower (3.05  ±  1.81 vs. 5.62  ±  5.56; p =  0.042) in the effective group as compared 
with the ineffective group. Logistic regression analysis showed that melatonin 
(OR  =  0.999, 95% CI 0.997–1.000, p  =  0.049), ROS (OR  =  1.154, 95% CI 1.025–
2.236, p =  0.037), and vertigo (OR  =  3.011, 95% CI 1.339–26.983, p =  0.019) were 
independent factors associated with hearing improvement. Besides, the level of 
melatonin (OR  =  0.999, 95% CI 0.998–1.000, p  =  0.023) and ROS (OR  =  3.248, 
95% CI 1.109–9.516, p =  0.032) were associated with the occurrence of ISSNHL.

Conclusion: Our findings may suggest oxidative stress involvement in ISSNHL 
etiopathogenesis. The level of melatonin and ROS, and vertigo appear to 
be  predictive of the effectiveness of hearing improvement following ISSNHL 
treatment.
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1. Introduction

Idiopathic sudden sensorineural hearing loss (ISSNHL) is a 
common otological emergency, which refers to a hearing loss of more 
than 30 dB in three consecutive frequencies within 72 h (1). This 
disease is frequently diagnosed among people over 40 years old and is 
accompanied by tinnitus and vertigo (2). It is possible to develop into 
permanent deafness without timely treatment (3), which will seriously 
affect the life of patients.

The etiology of ISSNHL is still in the exploratory stage. At present, 
many scholars believed that it is mainly related to viral infection, 
endolymphatic hydrops, cochlear microcirculation, immune damage, 
and psychological factors (4). No matter what the pathogenic factors 
are, it is worth affirming that the cochlea is sensitive to ischemia and 
hypoxia (5). This change in the microenvironment aggravates the 
production of reactive oxygen species (ROS). Related studies suggest 
that oxidative stress is a risk factor for microcirculation damage (6). 
ROS are constantly produced during metabolism (7) and transformed 
into each other in four forms (8). The physiological concentration of 
ROS is beneficial to the body. They kill pathogenic microorganisms, 
maintain normal immune function (9), and act as a key second 
messenger in a variety of cellular signaling pathways (10). Once the 
balance of the oxidation-antioxidation system is broken, there are 
adverse effects. ROS directly attack proteins, lipids, and 
DNA. Furthermore, they change the phenotype of vascular smooth 
muscle cells, reduce the fluidity of cell membranes (11), and affect 
cochlear perfusion. There is evidence that endothelial dysfunction and 
impaired cochlea perfusion play a crucial role in the pathogenesis of 
ISSNHL (12).

Therefore, neutralizing excessive ROS may be  an effective 
treatment for ISSNHL. At present, melatonin is one of the most 
investigated antioxidants. It is mainly produced by the pineal gland at 
night and participates in many physiological metabolic processes, 
such as regulating hormone secretion, controlling human growth, and 
aging (13). Compared with other antioxidants, melatonin can easily 
cross cell barriers due to its oleophilic and hydrophilic structure. 
Takumida et al. (14) found that melatonin and its receptors (melatonin 
receptor 1A; MT-1 and melatonin receptor 1B; MT-2) are present in 
the inner ear, which further supports the hypothesis that melatonin 
plays a physiological role in the inner ear. Recent studies have 
confirmed that melatonin has a protective effect on drug-induced 
hearing loss (DIHL) (15), noise-induced hearing loss (NIHL) (16), 
and age-related hearing loss (ARHL) (17). Thus, this research aimed 
to explore whether melatonin has a protective effect on hearing and 
verify the role of oxidative stress in ISSNHL. Multivariate logistic 
regression models were performed to assess the factors relevant to the 
occurrence and improvement of ISSNHL.

2. Materials and methods

2.1. Participants

This was a prospective study that intended to recruit ISSNHL 
patients and measure blood parameters. The diagnosis of ISSNHL 
patients was based on the Clinical Practice Guideline on Sudden Hearing 
Loss (2012) (18). Patients with the following conditions or diseases were 
excluded: (1) bilateral ISSNHL; (2) received treatment before admission; 

(3) the time of onset is more than 10 days; (4) smoking history (>10 
cigarettes/day); (5) upper respiratory tract infection within 4 weeks; (6) 
fluctuating hearing loss; (7) MRI shows acoustic neuroma or other 
otological diseases; (8) history of ear surgery and ISSNHL; (9) recent 
history of use of ototoxic drugs; and (10) malignant tumor, hematological 
disease, diabetes, hypertension, etc. From July to December 2020, a total 
of 58 ISSNHL patients were treated at the First Affiliated Hospital of 
Nanchang University. Among them, three patients with diabetes, one 
patient with hypertension, two patients with bilateral ISSNHL, one 
patient with contralateral tympanic membrane perforation, four patients 
had been treated before admission, and four patients refused to 
participate in this study. Thus, the final analysis included 43 patients. 
Furthermore, 15 age- and sex-matched healthy participants without a 
history of otological disease, sudden deafness, and systemic disease were 
enrolled as controls. Their otology and audiology examinations were 
normal. The project was approved by the Ethics Committee of the First 
Affiliated Hospital of Nanchang University [(2019) medical research 
review no. (100)], and all the participants signed informed consent forms.

2.2. Pure tone audiometry and treatment

The patients with ISSNHL were required to sit in a soundproof 
booth, and air conduction thresholds (from 125 to 8,000 Hz) and bone 
conduction thresholds (from 250 to 4,000 Hz) were measured. If no 
reaction was elicited, the maximum sound intensity produced by the 
audiometer was increased by 5 dB (19). According to the deafness 
grading standard (20), the average air conduction threshold of 
500–4,000 kHz was calculated as the pure-tone average (PTA).

All patients received systemic steroids, vasodilators, and 
hyperbaric oxygen therapy (HPOT). We  rechecked the pure-tone 
audiometry after treatment. According to hearing recovery, patients 
were divided into the effective group (more than 15 dB of gain) and 
the ineffective group (less than 15 dB of gain).

2.3. Blood collection

Blood samples from the patients were collected at the time of 
admission, from 6 to 8 a.m. on the second day of admission [the 
secretion of melatonin is relatively stable from 6 to 8 a.m. (21)], and 
from 6 to 8 a.m. on the day of discharge. Blood samples from the 
healthy controls were collected from 6 to 8 a.m. The specific operation 
steps are shown in Figure 1. All blood samples were centrifuged for 
10 min at 4°C at a speed of 2,500 rpm within 1 h. The serum was 
separated and immediately stored in the refrigerator at −80°C. All 
operations were carried out in the absence of light as far as possible.

2.4. Measurement of parameters

2.4.1. Measurement of melatonin
The melatonin levels of the samples were measured by the 

competitive-ELISA principle using a human melatonin ELISA kit 
(Nanjing Jiancheng Biological Engineering Research Institute, China). 
Avidin conjugated to Horseradish Peroxidase (HRP) was added to each 
microplate well and incubated. Then the 3,3′,5,5′-Tetramethylbenzidine 
(TMB) substrate solution was added to each well. The enzyme-substrate 
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reaction was terminated by the addition of a stop solution and the color 
change was measured spectrophotometrically at a wavelength of 450 nm.

2.4.2. Measurement of ROS
ROS levels were measured by using a human ROS ELISA kit 

(Xiamen Huijia Biotechnology Co., Ltd., China). There are several types 
of ROS, namely superoxide anion radical, singlet oxygen, hydrogen 
peroxide, and hydroxyl radical (8). In this study, the human total ROS 
levels were measured. This ELISA kit uses the double antibody sandwich 
method. The sample was added to the purified human ROS antibody and 
combined with the HRP-labeled ROS antibody to form the antibody–
antigen–enzyme labeled antibody complex. TMB was then added to 
form a colored complex, and the absorbance was determined at 450 nm.

2.4.3. Measurement of total antioxidant capacity
Total antioxidant capacity (TAC) was measured by the 

spectrophotometric method using a commercial kit (Nanjing 
Jiancheng Biological Engineering Research Institute, China). 
2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) produces 
green ABTS+ under the action of appropriate oxidants. In the presence 
of antioxidants, the production of ABTS+ is inhibited. The TAC of the 
samples was determined and calculated by measuring the absorbance 
of ABTS+ at 405 or 734 nm.

2.5. Statistical analysis

The continuous data were shown as mean ± standard deviation 
and categorical variables were expressed as frequencies and 

percentages. Student’s t-test was used for the continuous variables with 
normal distribution, and those with non-normal distribution were 
compared with the Mann–Whitney U-test or Wilcoxon test when 
applicable. The Chi-square test was used to compare categorical data. 
Through the above methods, the factors that may affect the occurrence 
and prognosis of ISSNHL were obtained. Before the regression 
analysis, we performed a logarithmic conversion of the variables. The 
BOX-Tidwell method was used to detect whether there was a linear 
relationship between the logi-conversion values of the independent 
variables and the dependent variables. In addition, we also needed to 
verify whether there was multicollinearity between the independent 
variables. Melatonin, ROS, TAC, and vertigo were taken as the 
independent variables, and the occurrence and prognosis of ISSNHL 
were taken as the dependent variables. Multivariate logistic regression 
models were performed to assess the factors relevant to the occurrence, 
severity, and improvement of ISSNHL. The odds ratio (OR) and its 
95% confidence interval (CI) were estimated for these factors. A value 
of p less than 0.05 was considered to be statistically significant. The 
SPSS 25.0 software package was used for the analyses.

3. Results

The time of drawing blood and the corresponding 
concentration of melatonin for each participant are shown in 
Figure  2. In addition, the intra-group comparison between the 
healthy controls group and the ISSNHL patients group showed that 
the p-values were 0.502 and 0.182, respectively, which was not 
statistically significant. The results show that melatonin secretion 

FIGURE 1

Experimental flow chart.
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was stable during the period in which we  drew blood. On 
admission, the comparison of related factors between the ISSNHL 
and the control groups is shown in Table 1. The mean ROS levels 
were significantly higher in the patients than in the controls 
(4.42 ± 4.40 vs. 2.30 ± 0.59 ng/mL; p  = 0.031). There was no 
statistical difference in melatonin and TAC between the two 
groups, but the basic level of melatonin in the healthy control 
group was higher than that in the patient group (1841.87 ± 1336.57 
vs. 1237.77 ± 742.35 pg/mL).

According to the significance level (Table 2), there was a linear 
relationship between the logi-conversion values of all the continuous 

independent variables and dependent variables. And there was no 
multicollinearity between each independent variable (Tolerance > 0.1, 
VIF < 10, Table  3). Subsequently, we  used multivariable logistic 
regression to evaluate the effects of melatonin, ROS, and TAC levels 
on ISSNHL. Finally, the Logistic model was statistically significant 
(X2 = 16.311 p < 0.05). The model could correctly classify 79.3% of the 
research objects. The sensitivity, specificity, positive predictive value, 
and negative predictive value of the model were 95.3%, 33.3%, 80.4%, 
and 71.4%, respectively. Among the three independent variables 
included in the model (Table  4), melatonin (OR = 0.999, 95% CI 
0.998–1.000, p = 0.023) and ROS (OR = 3.248, 95% CI 1.109–9.516, 

FIGURE 2

The time of drawing blood and melatonin concentration of each participant.

TABLE 1 Characteristics of the patients with ISSNHL and healthy controls.

ISSNHL Group  
(n =  43)

Control Group  
(n =  15)

p-value

Age (years) 35.63 ± 16.62 34.67 ± 15.50 0.845

Gender (male) 32 (74.42%) 8 (53.3%) 0.129

Melatonin (pg/mL) 1237.77 ± 742.35 1841.87 ± 1336.57 0.077

ROS (ng/mL) 4.42 ± 4.40 2.30 ± 0.59 0.031*

TAC (Mm) 0.67 ± 0.08 0.66 ± 0.08 0.617

ROS, reactive oxygen species; TAC, total antioxidant capacity; *indicates that the difference is statistically significant.

TABLE 2 Test of the linear relationship of the variables.

p-value

Melatonin by ln_melatonin 0.845

ROS by ln_ROS 0.129

TAC by ln_TAC 0.077

ROS, reactive oxygen species; TAC, total antioxidant capacity; Ln_, logi-conversion values of 
independent variables.

TABLE 3 Multiple collinearity test of the variables.

Tolerance VIF

Melatonin 0.910 1.099

ROS 0.952 1.050

TAC 0.875 1.143

ROS, reactive oxygen species; TAC, total antioxidant capacity; VIF, variance expansion 
factor.
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p  = 0.032) were statistically significant. The lower the level of 
melatonin, the higher the level of ROS, and the higher the risk 
of ISSNHL.

The general status of the patients in the effective and ineffective 
groups is shown in Table 5. The effective group had lower basic ROS 
levels (3.05 ± 1.81 vs. 5.62 ± 5.56 ng/mL; p  = 0.042) and higher 
melatonin levels (1400.83 ± 784.89 vs.1095.97 ± 689.08 pg/mL; 
p = 0.046). Furthermore, there were statistical differences in vertigo 
(X2 = 6.702, p = 0.010) between these two groups.

Again, we performed the same verification as the steps above. 
Multivariable logistic regression was used to analyze the relationship 
between melatonin, ROS, vertigo, and the prognosis of 
ISSNHL. Finally, the Logistic model was statistically significant 
(X2 = 16.499, p < 0.05). The model could correctly classify 76.7% of the 

research objects. The sensitivity, specificity, positive predictive value, 
and negative predictive value of the model were 78.3%, 75.0%, 75.0%, 
and 78.3%, respectively. Among the three independent variables 
included in the model (Table  6), melatonin (OR = 0.999, 95% CI 
0.997–1.000, p  = 0.049), ROS (OR = 1.154, 95% CI 1.025–2.236, 
p = 0.037), and vertigo (OR = 6.011, 95% CI 1.339–26.983, p = 0.019) 
were statistically significant. The lower the level of melatonin, the 
higher the level of ROS, accompanied by vertigo, and the higher the 
risk of poor prognosis for the patients with ISSHNL.

After systemic treatment, blood samples were collected again in 
31 patients. Comparing the three indicators before and after treatment 
(Table  7), the melatonin levels were significantly reduced 
(1279.83 ± 691.29 vs. 425.24 ± 69.14 pg/mL; p < 0.01), the TAC was 
enhanced (0.69 ± 0.08 vs. 0.83 ± 0.09 Mm; p < 0.01), and the body’s 

TABLE 4 Association between the relevant factors and ISSNHL occurrence: logistic regression analysis.

B SE Wald P OR Lower Upper

Melatonin −0.01 <0.01 5.16 0.023* 0.999 0.998 1.000

ROS 1.18 0.55 4.62 0.032* 3.248 1.109 9.516

TAC 3.20 5.01 0.41 0.523 24.503 0.001 453674.325

ROS, reactive oxygen species; TAC, total antioxidant capacity; *indicates that the difference is statistically significant.

TABLE 5 Characteristics of the effective and ineffective groups.

Effective group  
(n =  20)

Ineffective group  
(n =  23)

p-value

Age (years) 32.75 ± 17.41 38.13 ± 15.86 0.295

Gender (male) 32 (74.42%) 8 (53.3%) 0.129

Side (left) 8 (40%) 13 (56.52%) 0.280

Days of onset 3.00 ± 1.75 4.22 ± 2.83 0.103

Tinnitus 20 (100%) 23 (100%) -

Vertigo 6 (30%) 16 (69.57%) 0.010*

PTA (dB) 68.70 ± 24.67 78.22 ± 21.64 0.185

Melatonin (pg/mL) 1400.83 ± 784.89 1095.97 ± 689.08 0.046*

ROS (ng/mL) 3.05 ± 1.81 5.62 ± 5.56 0.042*

TAC (Mm) 0.68 ± 0.08 0.66 ± 0.08 0.606

PTA, pure tone average; ROS, reactive oxygen species; TAC, total antioxidant capacity; *indicates that the difference is statistically significant.

TABLE 6 Association between the relevant factors and hearing improvement: logistic regression analysis.

B SE Wald P OR Lower Upper

Melatonin −0.01 <0.01 3.87 0.049* 0.999 0.997 1.000

ROS 0.42 0.20 4.35 0.037* 1.514 1.025 2.236

Vertigo 1.79 0.77 5.48 0.019* 6.011 1.339 26.983

ROS, reactive oxygen species; *indicates that the difference is statistically significant.

TABLE 7 Comparison of various indicators before and after treatment.

Pre-treatment group  
(n =  31)

Post-treatment group  
(n =  31)

p-value

Melatonin (pg/mL) 1279.83 ± 691.29 425.24 ± 69.14 <0.01**

ROS (ng/mL) 4.50 ± 5.02 3.32 ± 2.54 0.034*

TAC (Mm) 0.69 ± 0.08 0.83 ± 0.09 <0.01**

ROS, reactive oxygen species; TAC, total antioxidant capacity; */**indicates that the difference is statistically significant.
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state of high oxidative stress had been alleviated (4.50 ± 5.02 vs. 
3.32 ± 2.54 ng/mL; p  = 0.034). Compared with the control group 
(Table 8), the level of ROS in the patients with ISSNHL decreased to 
normal after treatment. For more information on the intuitive 
comparison of various indicators, please refer to Figure 3.

4. Discussion

The influence of ISSNHL on the personal life of patients promotes 
the continuous development of research on the pathogenesis of 
ISSNHL. This study suggests that the level of melatonin and ROS may 
be  related to the occurrence of ISSNHL. The logistic regression 
analysis indicated that melatonin, ROS, and vertigo were significantly 
correlated to hearing improvement after ISSNHL treatment. 
Therefore, improving the state of oxidative stress may become an 
effective method for the treatment of ISSNHL in the future.

The results show that the ROS levels of patients with ISSNHL 
were higher than that of the healthy controls (Figure 3B), which is 
consistent with the results in the literature (22, 23). This is not a 
coincidence as Guo et al. (24) speculated that the generation of 
superoxide anion radicals and the decreased activity of nitric oxide 
synthase led to endothelial dysfunction. Finally, hair cell loss, 
vascular intimal thickening, and luminal narrowing of spiral 
arteries were detected in the mouse cochlea. Merchant et al. (25) 
pointed out that the pathological activation of nuclear factor 
NF-kappa-B (NF-kB) induces oxidative stress, which causes 
ISSNHL. In a prospective study, total oxidative state (TOS) levels in 
50 patients with ISSNHL were compared with those in 50 normal 
controls, and the corresponding global oxidative stress index was 
calculated. The patients with ISSNHL showed significantly higher 
TOS levels and oxidation index (26). Excessive ROS depletes 
intracellular nitric oxide levels and increases the release of adhesion 
molecules, lipid-inflammatory mediators, and cytokines, leading to 

FIGURE 3

The intuitive comparison of melatonin and ROS in each group. (A) Comparison of melatonin levels between the ISSNHL group and the control group. 
(B) Comparison of ROS levels between the ISSNHL group and the control group. (C) Comparison of melatonin levels before treatment between the 
effective group and the ineffective group. The average blood sampling time of the effective group and the ineffective group was 6:21 ± 14 and  
6:28 ± 13 in the morning. (D) Comparison of ROS levels before treatment between the effective group and the ineffective group. (E) Comparison of 
melatonin levels in ISSNHL patients before and after treatment. The average blood sampling time before and after treatment was 6:22 ± 13 and 6:27 ± 13 
in the morning. (F) Comparison of ROS levels in ISSNHL patients before and after treatment. */**indicates that the difference is statistically significant.

TABLE 8 Comparison of various indicators between patients with ISSNHL after treatment and healthy controls.

Control group  
(n =  15)

Post-treatment group  
(n =  31)

p-value

Melatonin (pg/mL) 1841.87 ± 1336.57 425.24 ± 69.14 <0.01**

ROS (ng/mL) 2.30 ± 0.59 3.32 ± 2.54 0.815

TAC (Mm) 0.66 ± 0.08 0.83 ± 0.09 <0.01**

ROS, reactive oxygen species; TAC, total antioxidant capacity; **indicates that the difference is statistically significant.
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endothelial damage (6) and blood flow disorders. The cochlear 
labyrinthine artery is sensitive to ischemia as it has no branches. 
Subsequently, impairment of perfusion leads to an immediate 
dysfunction of the organ of Corti, resulting in irreversible hearing 
loss. ROS also have toxic effects on cell functions, especially 
hydroxyl radicals, which directly damage various organelles and 
pathways. As the main source of ROS, mitochondria may 
be  damaged while producing ROS, which affects mitochondrial 
membrane potential and energy metabolism (27). Moreover, Becatti 
et al. (28) used fluorescent markers to evaluate the fluidity of red 
blood cell membranes. The results showed that lipid peroxidation 
of red blood cell membranes in patients with ISSNHL resulted in 
decreased deformability and increased blood viscosity, affecting the 
cochlear microcirculation.

According to other authors, oxidative stress is thought to play a 
role in sensorineural hearing loss (SHL) (29). ROS have been 
identified as the main cause of aminoglycoside antibiotics-induced 
hearing loss (30). Besides, ROS induce the reduction of nicotinamide 
adenine dinucleotide phosphate (NADPH) by binding to the 
sulfhydryl group of the enzyme and affecting glutathione peroxidase 
(GPX) and glutathione reductase (GRD) activity (31), resulting in the 
conversion of hydrogen peroxide to hydroxyl radicals instead of water. 
Furthermore, the antioxidant defense mechanism of hair cells is 
weakened, which leads to the release of cytochrome c from 
mitochondria and activates the caspase pathway to trigger cell 
apoptosis (32) and causes bilateral high-frequency SHL. A guinea pig 
model (33) showed that ROS transduced the mitogen-activated 
protein kinase (MAPK) pathway to induce hair cell apoptosis after 
sound injury. It is uncertain whether these verified pathways apply to 
ISSNHL and the molecular mechanism of the role of ROS in ISSNHL 
is still being explored.

We found that the ROS levels in the ineffective group were higher 
than those in the effective group (Figure 3D), and regression analysis 
showed that the higher the ROS, the worse the prognosis of 
ISSNHL. Higher concentrations of ROS may cause more hair cell 
damage and at a certain peak level, endothelial cells undergo “sudden 
death” (34). For this reason, the hearing loss that has already occurred 
is hard to recover, even when prompt and comprehensive treatment is 
administered. Furthermore, the basal region of the cochlea responsible 
for high-frequency hearing is more metabolically active than the 
apical region. Therefore, the basal region generates more ROS while 
consuming energy, and is more susceptible to oxidative stress damage 
(35). This may also be the reason for the prognosis of the all-frequency 
and high-frequency hearing loss being worse than other types 
of ISSNHL.

There was no significant difference in TAC between the patients 
with ISSNHL and the healthy controls (Table 8). We believe that the 
normal antioxidant system could not remove the excess ROS, and the 
balance had been broken. After systemic treatment, the level of ROS 
dropped to the same level as the healthy controls (Table 8) and the 
antioxidant capacity was enhanced. Consistent with the results of 
previous findings (36), the state of oxidative stress in vivo was 
significantly improved after steroid treatment. Glucocorticoids (GCs) 
effectively improve the microcirculation of the inner ear, decrease the 
edema of vascular endothelial cells, and improve the state of ischemia 
and hypoxia (37). After treatment, the level of ROS decreased 
(Figure 3F), which further shows that cochlear microcirculation is 
related to ROS. Unfortunately, only a part of the patients had improved 

hearing. We postulate the following reasons: first, ROS are not the only 
causative agent, and many other factors are involved in the 
pathogenesis of ISSNHL; second, hair cells could not regenerate after 
being destroyed by ROS; third, it takes a longer period for the hearing 
improvement of ISSNHL patients.

It is certain that oxidative stress causes damage by inducing 
endothelial dysfunction within inner ear micro-circulation. To 
eliminate excessive ROS to improve the hearing of patients, we chose 
to observe serum melatonin concentrations as it, as an antioxidant, 
has been proven to protect hair cells in SHL. Demir et al. (15) injected 
melatonin into the tympanic chamber of rats and found that melatonin 
has an antagonistic effect on cisplatin ototoxicity due to its antioxidant 
and immunomodulatory functions. Serra et al. (17) obtained the same 
results in a study on melatonin and ARHL. Mice with orally 
administered melatonin maintained a higher distortion product 
otoacoustic emissions (DPOAE) amplitude and signal-to-noise ratio 
at the end of the experiment. Melatonin is an indoleamine hormone 
secreted by the pineal gland controlled by the hypothalamic 
suprachiasmatic nucleus (SCN). Compared with other traditional 
antioxidants, melatonin has certain advantages. Its structural 
properties enable it to shuttle cells freely, effectively reducing high 
levels of ROS.

Our research found that the melatonin levels in the effective group 
were higher than those in the ineffective group (Figure 3C) before 
treatment. We speculate that a higher concentration of basal melatonin 
may have a positive effect on patients with ISSNHL, as shown by the 
logistic regression analysis. As previously described, the erythrocyte 
membranes of patients with ISSNHL are accompanied by lipid 
peroxidation and functional alterations. Melatonin can directly 
eliminate ROS when in contact with the cell membrane. At the same 
time, melatonin reduces intracellular malondialdehyde (MDA, 
excessive MDA alters membrane fluidity) in a concentration-
dependent manner (38), which protects the morphology and function 
of cell membranes from ROS attack and improves the blood and 
oxygen supply to the inner ear. Melatonin is then metabolized in vivo 
through enzymatic and chemical reactions such as oxidation to several 
derivatives, including N1-acetyl-N2-formyl-methoxykynuramine 
(AFMK) and N2-acetyl-5-methoxykynuramine (AMK) (39). These 
possess even greater antioxidative capacities than melatonin. In other 
words, melatonin can scavenge multiple free radicals. In addition, 
AFMK and AMK exhibit anti-inflammatory and immunomodulatory 
activities (40), inhibit the formation of prostaglandins, tumor necrosis 
factor-α (TNF-α), and interleukin-8 (IL-8) (8), and protect hair cells 
from inflammatory mediators.

The balance of the oxidation-antioxidant system is inseparable 
from the action of antioxidant enzymes, which is the first line of 
defense against free radicals. Superoxide dismutase (SOD) is a key 
antioxidant enzyme that converts superoxide anion radicals into 
hydrogen peroxide (41). Previous studies have shown that the level of 
SOD in rats increased significantly after injection with melatonin (42), 
indicating that melatonin enhanced its activity to achieve indirect 
antioxidation. In the presence of transition metals, hydrogen peroxide 
generates highly toxic hydroxyl radicals (43), while catalase (CAT) and 
glutathione peroxidase (GPX) catalyze peroxidation hydrogen to 
produce water and oxygen (44). The concentration of GPX is higher 
at night, which is consistent with the circadian rhythm of melatonin. 
Melatonin maintains the activity of these enzymes in a receptor-
dependent manner. Similarly, Baydas et al. (45) observed a significant 
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decrease in GPX activity in multiple tissues after the removal of the 
pineal gland in rats. Another study found the activity of CAT is 
weakened under strong oxidative stress conditions, and when 
melatonin is present, the high activity of CAT can be maintained (46). 
The antioxidants can accelerate ROS degradation, while antioxidant 
enzymes reduce ROS production. Therefore, melatonin not only 
removes the generated ROS but also avoids the generation of ROS at 
the source, a characteristic that other antioxidants do not possess.

Mitochondria are the major source of cellular ROS (47). ROS are 
formed continuously by electron leakage from the respiratory chains 
(48). Over time, mitochondria may be affected by severe oxidative 
stress. Therefore, mitochondria may be a potential target for melatonin 
to eliminate ROS. First, melatonin stabilizes the inner membrane and 
maintains the integrity of the mitochondria. It then upregulates the 
expression and activity of antioxidant enzymes in the mitochondria 
(49) and inhibits pro-oxidant enzymes. Most importantly, melatonin 
reduces the production of free radicals during respiration by 
stimulating complexes I  and IV of the mitochondrial respiratory 
chain. Finally, melatonin regulates mitochondrial gene expression and 
maintains a high level of glutathione, which greatly enhances the 
antioxidant capacity of mitochondria (50). In short, melatonin could 
reduce ROS generation and protect the mitochondria from 
ROS-induced damage.

Most treatments for ISSNHL are based on two etiological theories: 
circulatory disorders and inflammatory response. Interestingly, the 
systematic treatment we use seems to have the same effect as melatonin 
(Table 9). Hargunani et al. (51) confirmed that GCs plays a therapeutic 
role by binding to glucocorticoid receptors (GRs). GRs are widely 
found in the human inner ear, especially the spiral ligament in the 
cochlea (52). Studies have shown that melatonin plays a role in delaying 
cell loss in spiral ligaments (53). In other words, the concentration of 
melatonin affects the efficacy of GCs in the treatment of ISSNHL. In 
addition to GCs as a first-line treatment, most doctors in our country 
use vasodilators as a combination therapy (54). The best arterial blood 
supply and adequate oxygenation are prerequisites for the full function 
of the inner ear, which is the reason for choosing vasodilators. 
However, melatonin seems to have a superior performance in dilating 
blood vessels. Melatonin regulates the central nervous system and 
coordinates the activity of multiple organs to maintain more regular 
and stable hemodynamics. It can also promote the production of nitric 
oxide (NO) and reduce peripheral resistance and ischemia–reperfusion 
injury (55, 56). When to use HPOT  is still controversial. Our view is 
consistent with some recent studies (57, 58) that additional therapeutic 
benefit can be provided when HPOT  is used in combination with GCs 

to treat ISSNHL. It is undeniable that HBOT has the function of 
increasing the oxygen tension in the blood and nourishing nerve 
elements, whether as a routine treatment or as a remedial measure 
(59). Besides, some domestic scholars have pointed out that HPOT can 
activate the superoxide free radical scavenging system and reduce the 
damage to the inner ear caused by ROS. However, the use of hyperbaric 
oxygen (HPO) may also accelerate the production of ROS and lead to 
lipid peroxidation, which is harmful to the body (60). Surprisingly, it 
has been reported that melatonin could effectively prevent 
HPO-induced oxidative stress, even physiologically secreted melatonin 
(61). Animal experiments have shown that the combination of 
melatonin and HPO was superior to either one in vascular events (62). 
Based on these findings and our regression analysis, we  boldly 
speculate that melatonin can cooperate with these treatment measures 
to play a more active role and avoid some side effects.

After treatment, the concentration of melatonin decreased 
significantly (Table 7), which may be related to our treatment. The link 
between steroids and melatonin was mentioned a long time ago. 
Demisch et al. (63) observed that melatonin plasma levels decreased 
significantly in adults treated with dexamethasone. They believed that 
dexamethasone could interact with the pineal gland to affect melatonin 
secretion. Another study showed that oral GCs can increase melatonin 
excretion in children (64). With the deepening of the study, the pineal 
gland was considered a neuroendocrine organ regulated by the central 
clock (SCN) and peripheral circadian clocks (65). Dexamethasone 
treatment changed the mRNA expression of several clock genes in the 
pineal gland. Furthermore, the synthesis of melatonin requires the 
participation of a variety of enzymes. Arylalkylamine 
N-acetyltransferase (AANAT) is the rate-limiting enzyme in the 
synthesis of melatonin (66). Dexamethasone reduces the synthesis of 
melatonin by reducing the activity of AANAT (67). Other studies have 
found that propranolol caused a dose-dependent decrease in 
melatonin levels (68). There are many kinds of vasodilators and their 
mechanisms are different, so we are not sure whether the vasodilators 
used to treat ISSNHL will affect the concentration of melatonin. In 
addition, as mentioned above, melatonin can antagonize the negative 
effects of HPOT, and endogenous melatonin is even more effective 
than exogenous administration (69), which may cause melatonin loss. 
Overall, under the current treatment, first, the synthesis of melatonin 
was reduced. Second, the excretion of melatonin increased. Third, 
we postulate that melatonin was involved in the clean-up of ROS and 
works with drugs. Finally, melatonin decreased significantly after 
systematic treatment. Of course, there is a lack of research on drug 
interaction, and the specific mechanism needs to be further studied.

TABLE 9 The function of different treatments.

GC Vasodilator HPOT Melatonin

Regulation of endothelial cell function Relieve vasospasm √ √ √

Improve microcirculation Improve ischemia and hypoxia √ √ √ √

Inhibit inflammatory response √ √ √

Maintain endolymphatic homeostasis Reduce hair cell edema √ √

Immunosuppression √ √

Elimination of ROS Improve the ability of antioxidation √ √

Nutritive nerve √

GC, glucocorticoids; HPOT, hyperbaric oxygen therapy; ROS, reactive oxygen species.
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A recent study shows that melatonin alleviates pyroptosis of hair 
cells via the MT-1 and MT-2/Nrf2 (NFE2L2)/ROS/NLRP3 pathway, 
which further supports the conjecture that melatonin can be used for 
the treatment of ISSNHL (70). In addition, melatonin also has an 
antidepressant function (71) and improves tinnitus (72). It is well 
known that depression and tinnitus afflict some patients with ISSNHL 
patients and eliminating these symptoms has a certain positive effect 
on the prognosis of patients.

Few studies have linked melatonin to ISSNHL. According to our 
results, appropriate melatonin supplementation may have a positive 
effect on hearing improvement in patients with ISSNHL.

The limitations of this study include that it was based on the 
physiological concentration of melatonin and the sample size was too 
small. Furthermore, the use of peripheral blood measurement 
indicators to evaluate the redox level of the inner ear was not accurate 
enough. In future studies, we will establish animal models to measure 
melatonin and ROS levels in the inner ear with more accurate data.

5. Conclusion

We conclude that low plasma melatonin and high ROS are 
significant in the occurrence and development of ISSNHL. Furthermore, 
the levels of melatonin and ROS, and vertigo appear to be predictive of 
the effectiveness of hearing improvement following ISSNHL treatment.
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