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Cancer has remained one of the leading causes of death worldwide, with a lack of
effective treatment. The intrinsic shortcomings of conventional therapeutics
regarding tumor specificity and non-specific toxicity prompt us to look for
alternative therapeutics to mitigate these limitations. In this regard, we
developed multifunctional bimetallic (FeCo) bi-MIL-88B-FC MOFs modified
with folic acid—conjugated chitosan (FC) as drug delivery systems (DDS) for
targeted delivery of 5-Fluorouracil (5-FU). The bi-MIL-88B nanocarriers were
characterized through various techniques, including powder X-ray diffraction,
scanning electron microscopy, energy-dispersive X-ray, thermogravimetric
analysis, and Fourier transform infrared spectroscopy. Interestingly, 5-FU@bi-
MIL-88B-FC showed slower release of 5-FU due to a gated effect
phenomenon endowed by FC surface coating compared to un-modified 5-
FU@bi-MIL-88B. The pH-responsive drug release was observed, with 58% of
the loaded 5-FU released in cancer cells mimicking pH (5.2) compared to only
24.9% released under physiological pH (5.4). The in vitro cytotoxicity and cellular
internalization experiments revealed the superiority of 5-FU@bi-MIL-88B-FC as a
highly potent targeted DDS against folate receptor (FR) positive SW480 cancer
cells. Moreover, due to the presence of Fe and Co in the structure, bi-MIL-88B
exhibited peroxidase-like activity for chemodynamic therapy. Based on the
results, 5-FU@bi-MIL-88B-FC could serve as promising candidate for smart
DDS by sustained drug release and selective targeting.
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1 Introduction

The emergence of nanomedicine as a next-generation
technology has brought a revolution in battling diseases,
particularly cancer (van der Meel et al., 2019). Cancer, for
decades, has remained the leading cause of death worldwide after
cardiovascular disease (Dibden et al., 2020). Despite advances in
early diagnosis and associated treatments, current anticancer
therapies rely heavily on invasive surgical procedures,
radiotherapy, and chemotherapy (Das et al., 2020). These
procedures are endemic to the problems of unwanted toxicity,
insufficient drug delivery, premature drug degradation, and
cancer recurrence due to incomplete eradication (Ulldemolins
et al., 2021). The field of nanomedicine tries to mitigate such
limitations by using smart nanodevices to transport therapeutic
molecules specifically to cancer cells reducing off-target side effects
(Akbarzadeh et al., 2021; Manzari et al., 2021; Surekha et al., 2021;
Bäumer et al., 2022). Drug delivery systems based on nanodevices
have become increasingly popular due to their advantages of
improved drug loading, stable transfer of drugs to the target site,
and reduced dosage requirement (Li Y. et al., 2022; Wang et al.,
2022a; Yu et al., 2022; Rana et al., 2023). In this regard, various
nanomaterials have been explored as drug delivery systems
comprising carbon nanotubes (CNTs), liposomes, hydrogels,
Layered double hydroxides (LDHs), dendrimers and metal-
organic frameworks (MOFs) (Hesse et al., 2013; Chen et al.,
2020; Zhang et al., 2020; Anisimov et al., 2022; Yang et al., 2022;
Zhao et al., 2023). Among others, MOFs, due to their exceptional
characteristics, have recently gained much attention for their
potential in gas sorption, catalysis, sensing, and drug delivery
(Okur et al., 2021; Abbas et al., 2023; Oh et al., 2023; Ye et al.,
2023). MOFs are crystalline materials formed by self-assembling
inorganic (metal ion/clusters) and organic linkers through
coordination chemistry (Vodyashkin et al., 2023). They are
highly diverse structures with tunable surface chemistry,
adjustable pores, and high surface areas reaching up to
10,000 m2/g (Adegoke and Maxakato, 2021; Altintas et al., 2022;
Yin et al., 2022). Moreover, through pre or post-synthetic
modifications, MOFs can respond to various stimuli (pH,
temperature, redox reaction, and ATP) (Wang et al., 2020; Sun
and Davis, 2021). Upon encountering such stimuli, MOFs undergo
structural alterations allowing them to release their encapsulated
drug molecules (Zhao et al., 2021). Various MOFs such as MIL-101
(MIL = Material Institute Lavoisier), UiO-66 (UiO = University of
Oslo), and ZIF-8 (ZIF = Zeolite Imidazolate Framework) have been
successfully deployed in the past as stimuli-responsive smart DDS
for chemotherapy (Abánades Lázaro et al., 2020; Karimi Alavijeh
and Akhbari, 2020; Yan et al., 2020). The metal nodes in MOFs also
act as catalytic centers performing peroxidase-like (POD) reactions
to induce reactive oxygen species (ROS) mediated stress in cancer
cells for chemodynamic therapy (Di et al., 2023). In this regard,
mixed-metal MOFs have shown higher POD performance than
mono-metallic MOFs due to the excellent MIII/MII cycling frequency
and efficient electron transfer capability (Lyu et al., 2017; Wen et al.,
2021). The performance of MOFs for drug delivery applications
could also be improved by making MOFs-composites through
surface modification or encapsulating MOFs in biodegradable
materials (e.g., Biopolymers) (Ge et al., 2022).

Compared to other polymers used for biodegradable coatings in
targeted DDS, chitosan (CS) has recently attracted much attention
due to its cationic character, biodegradable nature, pH sensitivity,
efflux pump inhibition, and higher cellular permeability (Aibani
et al., 2021; Sathiyaseelan et al., 2021). The repeated amine groups
found in the structure of CS are responsive towards tumor
microenvironment mimicking acidic media and cause swelling of
the system to release loaded cargo (Lv et al., 2016; Chen et al., 2017).
The tumor specificity of the DDS modified with CS could further be
improved by functionalizing it with active targeting ligands like folic
acid (FA) (Nemati et al., 2021). Since FA receptors are exclusively
overexpressed in most tumor cells, CS functionalization with FA
could help DDS internalize into the cells through receptor-mediated
endocytosis (İnce et al., 2020). However, the application of CS-based
DDS as stand-alone nanocarriers is limited due to their rapid
degradation and higher swelling degree leading towards pre-
mature drug release (Peers et al., 2020). Thus, making a
composite of CS with other materials is termed beneficial to
improve the system’s overall efficiency (El Leithy et al., 2019).

5-Fluorouracil (5-FU) is a pyrimidine analog anticancer drug
that exerts its cytotoxic effects through DNA/RNA incorporation,
causing apoptosis in cancer cells (Guo et al., 2020). However, it has a
rapid degradation rate (5–10 min) which hampers its broad clinical
efficacy (Longley et al., 2003). The non-specific nature of the 5-FU
and lack of suitable carriers further aggravate the situation by
causing side effects such as diarrhea, cardiac toxicity, mucositis,
dermatitis, and myelosuppression (Chang et al., 2012). Therefore,
encapsulation of 5-FU in suitable carriers to avoid unnecessary side
effects has been in focus (Valencia-Lazcano et al., 2023). For this,
FeCo based bi-MIL-88B nanocarriers were synthesized in the
current study due to their flexible structure, high surface area,
and biocompatible nature of the components (Horcajada et al.,
2012). The bi-MIL-88B nanocarriers exhibited a higher 5-FU
loading capacity of 29.8wt%. After loading, these nanocarriers
were coated with FA-conjugated CS (FC) to endow them with an
extra-gated obstruction in premature drug release and folate
receptor-associated cellular uptake. The pH-responsive 5-FU
release was realized against the tumor-mimicking environment
(pH = 5.2) and a normal physiological environment (pH = 7.4).
The in vitro cytotoxicity and cellular uptake of the FC-coated bi-
MIL-88B were checked against HEK-293 (FR negative) and SW480
(FR positive) cell lines. Moreover, the FeIII and CoII based trinuclear
clusters inMIL-88B act as catalytic centers for in situ peroxidase-like
activity.

2 Materials and methods

All the chemicals used in the study were of analytical grade and
used as received. Iron (III) nitrate nonahydrate (Fe(NO3)3·9H2O),
Cobalt (II) nitrate hexahydrate (Co(NO3)3·6H2O), Sodium acetate
trihydrate (CH3COONa·3H2O), Terephthalic acid, 5-Fluorouracil
(5-FU), N, N-dimethylformamide (DMF), 3,3′,5,5′-
Tetramethylbenzidine (TMB), Phosphate buffer saline (PBS)
tablets, Chitosan (CS), Folic Acid (FA), 1,1′-Dioctadecyl-
3,3,3′,3′tetramethyl indocarbocyanine perchlorate (Dil),
N-hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethyl
aminopropyl) carbodiimide (EDC), dimethyl sulfoxide (DMSO),
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and Glacial acetic acid used were manufactured of Sigma-Aldrich.
Roswell park memorial institute (RMPI-1640) medium, 3-(4,5-
Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT),
L-glutamine, Penicillin-Streptomycin (pen-strep), Alexa fluor™
488 Phalloidin and Fetal bovine serum (FBS), were manufactured
of Gibco, Invitrogen.

2.1 Characterization

A powder X-ray diffraction (PXRD) pattern was obtained to
perform crystal structure analysis using BRUKER (D2 Phaser) with
Ni-filtered Cu-Kα irradiation (λ = 1.5406 Å) over 2θ range from 5° to
50°. FEI NOVA Nano 450 scanning electron microscope (SEM)
equipped with an energy dispersive X-ray spectroscope (EDX) was
used to analyze the morphology of the samples. The samples’ Zeta
potential (ZP) was obtained through Zetasizer (Nano ZS, Malvern)
at room temperature in water. N2 adsorption-desorption isotherm
was obtained to Brunauer-Emmett-Teller (BET) surface area and
porous makeup of the samples using Quantachrome Nova 2200e.
Infrared studies were performed using Bruker Alpha Platinum ATR
between the 500–4,500 cm-1 range. Thermogravimetric analysis
(TGA) was obtained through the TA instrument under an N2

atmosphere in a temperature ranging from 10°C to 600°C with a
heat ramp of 10°/min. UV-Vis spectrophotometry was used to
characterize drug loading/release and TMB oxidation studies by
Shimadzu UV-1800 spectrophotometer. The cellular uptake
fluorescence studies were performed through confocal laser
scanning microscope (CLSM) model ZEISS LSM—880, Jena,
Germany.

2.2 Synthesis of bi-metallic cluster

The synthesis of bi-metallic acetate cluster FeCo(μ3-O) was
performed using a previously reported method with slight
modifications (Sanchez-Lievanos et al., 2020). Briefly, 0.022 mol
(3 g) of CH3COONa.3H2O were dissolved in 5 mL of deionized
water and was called solution-A. On the other hand, a solution-B of
Fe and Co was prepared by dissolving 0.0014 mol (0.571 g) of
Fe(NO3)3.9H2O and 0.007 mol (2.07 g) of Co(NO3)3.6H2O in
5 mL of deionized water and was kept on stirring after filtration.
Later, solution-A was added dropwise into the thoroughly stirred
solution-B, and the mother mix was kept on stirring for 24 h at room
temperature. After 24 h of stirring, the light brown precipitates were
collected through filtration and washed thrice with small amounts of
water and ethanol. After washing, the collected product was kept to
air dry at room temperature.

2.3 Synthesis of bi-MIL-88B

To synthesize bi-MIL-88B MOFs from pre-synthesized FeCo-
μ3O clusters, equimass of Terephthalic acid (100 mg) and FeCo-μ3O
(100 mg) were separately dissolved in vials containing 9 mL of DMF
each through sonication. After dissolution, the terephthalic acid
solution was added into the FeCo-μ3O containing solution under
stirring. An additional 1 mL of the glacial acetic acid as a modulating

agent was added to the mother solution. The whole mixture was
homogenously dissolved and inserted into a Teflon-lined autoclave
for incubation at 120°C for 24 h. After 24 h of reaction, bi-MIL-88B
MOF precipitates were isolated through centrifugation and later
washed thrice with DMF and distilled ethanol to remove any
unreacted linker present in the structure.

2.4 Preparation of folic acid-conjugated
chitosan (FC)

The folic acid conjugated chitosan (FC) was synthesized using a
previously reported method (Hu et al., 2017). In this method, amine
groups of CS were conjugated to the FA by NHS-EDC chemistry.
Briefly, a solution of FA (0.16 mmol, 7, 150 mg) was prepared
through dissolution in 40 mL of anhydrous DMSO at room
temperature. After that, NHS (3.36 mmol, 380 mg) and EDC
(3.36 mmol, 645 mg) were added to the solution and stirred for
2 hours at room temperature. The solution turned into red brown
colored ester solution of DMSO containing activated FA. In the
second step, a solution of CS was prepared by dissolving 60 mg of CS
in 15 mL of sodium acetate buffer (pH = 7.4) containing 0.1 M acetic
acid. Later, the activated FA solution of DMSO was added dropwise
into the CS solution at room temperature under dark conditions.
The solution was allowed to stir for 24 h. After this time, the pH of
the solution was adjusted to 9.0 through the slow addition of 0.1 M
sodium hydroxide. In the end, the obtained mixed solution was
dialyzed in PBS for 3 days to remove phosphoric acid salt, and
finally, FC conjugates were obtained through freeze drying.

2.5 Drug loading

Before drug loading, bi-MIL-88B nanocarriers were activated
under vacuum for 24 h at 100°C to eliminate some of the
coordinated solvent molecules occupying the pores. Briefly,
100 mg of bi-MIL-88B were dispersed into a 30 mL concentrated
5-FU (6,000 ppm) solution in ethanol. The solution was put on an
orbital shaker at room temperature for 48 h. After that, the drug-
loaded 5-FU@bi-MIL-88B MOFs were isolated through
centrifugation and the supernatant was analyzed for the
remaining drug. The drug loading capacity (DLC) and drug
loading efficiency (DLE) of the nanocarriers were determined
using a calibration curve of 5-FU in ethanol (λmax = 265 nm)
(Supplementary Figure S8) according to the following formulas
(Parsaei and Akhbari, 2022a);

DLC wt%( ) � weight of loaded drug

weight of drug loadedMOFs
× 100 (1)

DLE wt%( ) � weight of loaded drug

total weight offeeded drug
× 100 (2)

2.6 Fabrication of 5-FU@bi-MIL-88B-FC

To prepare the final composite, FC (20 mg) was dissolved in
4 mL of an acetic acid solution (pH 6.0) under stirring for 24 h to
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form a homogenous solution. After that, the homogenous FC
solution was added to the saturated ethanolic solution of 5-FU
(20 mL) containing 100 mg 5-FU@bi-MIL-88B dispersed
nanocarriers. Finally, the master mix was stirred at room
temperature for 24 h. Later, the resultant FC-coated drug carriers
were collected through centrifugation and rinsed twice with ethanol
and ultrapure water. After rinsing, the final products were allowed to
dry at room temperature under a vacuum for 24 h.

2.7 Drug release

The pH-responsive drug release from samples was realized
against TME (pH 5.2) and physiological environment (pH 7.4)
mimicking PBS solutions. Briefly, 60 mg of 5-FU@bi-MIL-88B and
5-FU@bi-MIL-88B-FC were dispersed in a dialysis bag (3.5 kDa
MWCO) containing a small amount of PBS. Later, the dialysis bag
containing drug-loaded nanocarriers was placed in a beaker
containing 60 mL of PBS (pH 5.2 and 7.4). The drug release was
performed through dialysis at 37°C under mild stirring. At
predetermined intervals, 1 mL of the dialysate solution was
pipetted out and replaced with the same amount of fresh PBS to
maintain the total volume constant. The withdrawn samples were
analyzed through a UV-Vis spectrophotometer, and the
concentration of the released drug was determined according to
the calibration curve of 5-FU in PBS (Supplementary Figure S9). The
experiments were performed in duplicate and the final results were
plotted through averaging. The following equations were used to
obtain the cumulative 5-FU release percentage:

Drug release cumulative%( ) � Rt

Rf
× 100

Where Rt denotes the 5-FU concentration released at time t and
Rf represents the total amount of 5-FU loaded on the nanocarriers.

2.8 Cell culture

Human embryonic kidney cells (HEK-293 cells) and human colon
cancer (SW480 cells) were obtained from The University of Lahore
(UOL) Cell Culture Collection (UCCC). The cells were cultured in
RMPI-1640 media supplemented with 1% Pen-strep (100 IU/ml
penicillin and 100 μg/mL streptomycin), 10% Hi-FBS, and 2 mM L-
glutamine in a humidified incubator with 5% CO2 at 37°C.

2.9 Cell cytotoxicity assay

The in vitro cytotoxicity of the 5-FU, bi-MIL-88B, 5-FU@bi-
MIL-88B and 5-FU@bi-MIL-88B-CS was evaluated by the MTT
assay. Briefly, the HEK293 and SW480 cells were seeded in a 96-well
plate at a 1 × 104 density and incubated for 24 h in a CO2 incubator
at 37°C. After 24 h, the cell culture medium was removed and
different concentrations of the test samples (7.81—500 μg/mL)
dissolved in the culture medium supplied to the cells and allowed
for 48 h of incubation. After incubation, 10 μL of MTT (12 mM)
reagent was further supplied to each well and the cells were further
incubated for another 4 h. Later, the medium was removed and

DMSO (100 μL) was added to each well. The absorbance was
recorded by PerkinElmer Enspire 2300 multimode reader at
570 nm. The experiments were conducted in triplicated and the
final results were presented through averaging. The IC50 values were
calculated by a non-linear regressionmodel using GraphPad Prism 8
(San Diego, United States).

2.10 Cellular uptake studies

Confocal laser scanning microscopy was used to study the
cellular uptake of nanocarriers. For CLSM imaging, SW480 cells
at a density of 3 × 104 were seeded and grown on a glass coverslip in a
24-well plate for 24 h. After incubation for a predetermined time, the
original medium was replaced with fresh medium containing Dil@
bi-MIL-88B and Dil@bi-MIL-88B-CS (80 μg/mL) and incubated for
an additional 12 h. Dil was used as a fluorescent probe to detect the
internalization of the nanocarriers. Later, cells were washed twice
with PBS and fixed through 4% formalin. The DAPI and Alexa flour
488 phalloidine were used to stain the nuclei and cytoskeleton of the
cells. Finally, the cells were visualized under CLSM.

2.11 Peroxidase-like activity

The peroxidase-like property of synthesized nanocarriers was
studied through the TMB oxidation methodology. Briefly, 5 mL of
PBS (pH 5.2) was prepared by adding different amounts of bi-MIL-
88B (0, 10, 20, 40, 60, and 80 μg/mL), H2O2 (1 mM) and TMB
(0.25 mM) and allowed to incubate for 10 min at 37 °C. After that,
samples were analyzed through a UV-Vis spectrophotometer at
652 nm wavelength related to the oxidized form of the TMB.
Moreover, mechanistic studies on the performance of bi-MIL-
88B nanocarriers were performed by varying the temperature
(30°C—60°C) and pH (4—8) of the solution with concentrations
of TMB (0.25 mM), H2O2 (1 mM) and bi-MIL-88B (50 μg/mL) kept
constant.

2.12 Statistical analysis

The statistical analysis carried out in the study was performed
through GraphPad Prism 8.0. The MTT data were shown as mean ±
standard deviation. The statistically significant values of different
groups were obtained through the Kruskal-Wallis test, followed by
Dunn’s multiple comparison analysis. The degree of significance of
the treated groups against the control is represented as ****p ≤
0.0001, ***p ≤ 0.001, **p ≤ 0.01, and *p ≤ 0.05.

3 Results and discussions

3.1 Synthesis and characterization of bi-
MIL-88B

The bi-metallic (FeCo) bi-MIL-88B MOFs were synthesized
using a previously published two-step secondary building unit
(SBU) approach (Iqbal et al., 2021). A FeCo-μ3O trinuclear
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cluster with metal ions connected to central oxygen (μ3-O) in a
trinuclear fashion was synthesized in the first step (Akbar et al.,
2022). These metal ions are stabilized through the coordinated
acetate ligands and solvent molecules at their terminal positions.
In the second step, FeCo-μ3O cluster is reacted with the terephthalic
acid as the organic ligand. During the reaction, the terephthalic acid
attaches to the metal ions by replacing the acetate ligands in a
dissociative manner to form a bi-MIL-88B MOFs (Liu et al., 2016).
Compared to SBU route, mixed-metal MOF synthesis through
conventional one-pot synthesis or postsynthetic modifications
(PSMs) method is tricky and results in mixed phase MOFs with
unwanted altered physico-chemical properties (Li et al., 2013).
Moreover, these methodologies provide less control over the
reproducibility of the same MOFs and often generate unwanted
metal oxides or even amorphous structures (Wongsakulphasatch
et al., 2015). While, the SBU route exhibits certain advantages
over others as the concentration of metals in the final MOFs can
be precisely controlled avoiding the generation of unwanted
metal oxides. Moreover, stable incorporation of the pre-
synthesized mixed-metal SBU into the final MOF allows
excellent reproducibility with predictable incorporation of the
second metal (Co) with stoichiometric ratio of Fe and Co (2 : 1)

(Peng et al., 2017). The synthetic approach of bi-MIL-88B, drug
loading, FC coating, and mechanism of action are illustrated in
Scheme 1.

The SEM analysis was performed to observe the morphological
features of the synthesized samples. As seen in Supplementary
Figures S1A, B, the FeCo clusters exhibited a jumble of rocks
type appearance having undefined morphology. However, upon
reaction with the organic linker, the resulting bi-MIL-88B MOFs
revealed hexagonal rod-like morphology resembling the pure MIL-
88B MOFs reported in the literature (Figures 1A, B) (Cai et al.,
2016). The average size of the bi-MIL-88B was around 338 ± 30 nm,
evaluated through average aspect ratio and size distribution analysis
by DLS method (Figure 1D; Supplementary Figure S5). The EDX,
elemental map and ICP-OES analysis was performed to analyze the
elemental composition of the FeCo-cluster and bi-MIL-88B. The
EDX spectra and elemental maps showed the homogenous
distribution of Fe and Co ions having a stoichiometric ratio of Fe
to Co (2 : 1) in the synthesized cluster (Supplementary Figures S1D,
S2A) and bi-MIL-88B (Figure 1C; Supplementary Figure S2B).

Moreover, the ICP-OES analysis also revealed the homogenous
distribution of Fe and Co in both samples with a ratio of 2:1
(Supplementary Figure S1). The presence of a similar

SCHEME 1
Synthetic scheme of 5-FU@bi-MIL-88B and folate receptor (FR) mediated endocytosis in SW480 (FR positive) cells.
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stoichiometric ratio of both metals in the bi-MIL-88B indicates that
the FeCo clusters retained their structural traits in the final product
without any deformities. FT-IR analysis was performed to evaluate
the major linkages in the samples. In the case of monometallic Fe-
based MIL-88B, the Fe3O trinuclear cluster in the structure exhibits
metal-oxygen bond vibrations around 600 cm-1. However, when one
Co is incorporated into the cluster, the D3h symmetry of Fe3O breaks
into C2v, evident by the emergence of two new vibrational stretching
around 734 cm-1 and 528 cm-1 related to FeCo-O bonds in the
cluster (Supplementary Figure S3) (Iqbal et al., 2019). The
vibrational bands found around 1,590 cm and 1,420 cm-1 in the
cluster are related to the carboxyl groups of the coordinated acetate
ligands (Zhang et al., 2012). The vibrational stretching in bi-MIL-
88BMOFs found at 1,592 cm-1 and 1,386 cm-1 were related to -COO
stretching of the coordinated linker (Liu et al., 2013).

The PXRD analysis revealed the crystal structure and phase
purity of the samples. The characteristic peaks of the synthesized
FeCo cluster’s PXRD pattern matched well with the simulated one
(Supplementary Figure S1C) (Sanchez-Lievanos et al., 2020). The bi-
MIL-88B exhibited highly crystalline phase purity with distinctive
peaks at 9.3°, 10.2°, and 11.6° related to 002, 100, and 101 planes also
found in the simulated MIL-88B MOF (Figure 1F) (Horcajada et al.,
2008). The porous makeup of the bi-MIL-88B nanocarriers was
studied by N2 adsorption-desorption analysis at 77K
(Supplementary Figure S4A). The BET-specific surface area of
the bi-MIL-88B was 86 m2/g with an average pore diameter and
volume of 1.9 nm and 0.21 cc/g (Supplementary Figure S4B). The
lower surface area of the nanocarriers could be due to shrinkage of
the structure upon solvent removal during thermal activation (Ma
et al., 2013). The bi-MIL-88B MOFs have a flexible structure and
tend to shrink/expand on the removal/addition of the guest
molecules, known as a reversible breathing effect (Cao et al., 2022).

3.2 Fabrication of 5-FU@bi-MIL-88B-FC

SEM analysis was used to study the morphological changes after
the drug impregnation and subsequent FC coating. As shown in
Figure 2, bi-MIL-88B, 5-FU@bi-MIL-88B, and 5-FU@bi-MIL-88B-
FC, the drug-loaded and FC-coated nanocarriers exhibited similar
morphology to the unmodifiedMOFs. However, 5-FU@bi-MIL-88B
reflects some swelling crystals due to the drug impregnation and
reversible expansion. After FC coating, 5-FU@bi-MIL-88B-FC
showed less aggregation than 5-FU@bi-MIL-88B, which
aggregated upon drug impregnation (Figure 2).

The FT-IR studies further confirmed the incorporation of the 5-
FU and the final synthesis of the FC-coated composite. As seen in
the FT-IR spectra of 5-FU (Supplementary Figure S6), the
vibrational peaks around 1,245 cm-1 and 1740 cm-1 are related to
the C—N and C—O stretching, and the peaks between 800 cm-1 to
540 cm-1 represent C—F deformations (Chowdhuri et al., 2016). The
characteristic peaks of 5-FU, when compared with bi-MIL-88B, can
also be seen in the drug-loaded 5-FU@bi-MIL-88B samples
confirming the successful drug incorporation. After the drug
encapsulation, the second step involved the synthesis of folic
acid–conjugated chitosan (FC) and subsequent composite 5-FU@
bi-MIL-88B-FC. The synthesis of FC can be verified by comparing
the FT-IR spectra of CS, FA and final conjugated FC. As seen in
Supplementary Figure S7, in the FT-IR spectrum of CS, the peaks at
3,360 cm-1, 2922 cm-1 and 2875 cm-1 are attributed to the N—H and
asymmetric/symmetric vibrations of C—H groups. The peaks
around 1,060 cm-1 represent C—O stretching, and vibrational
bands around 1,322 cm-1 and 1,650 cm-1 are related to C—N and
C=O bonds in the CS. While the peak at 1,154 cm-1 represents
asymmetric stretching modes of C—O—C in the CS spectrum
(Chen et al., 2011; Al-Nemrawi et al., 2022). Whereas the

FIGURE 1
(A–B) SEM images; (C) Elemental Maps; (D) Size distribution chart of bi-MIL-88B nanocarriers; (E) PXRD pattern of simulated and experiment bi-MIL-
88B; (F) FT-IR spectra of terephthalic acid and bi-MIL-88B.
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characteristic peaks at 1,695 cm-1, 1,480 cm-1, 1,230 cm-1 and
1,170 cm-1 in the FT-IR spectra of FA are attributed to C=O,
C=C, C—O, and C-N vibrational stretching. The 830 cm-1 and
750 cm-1 bands represent aromatic rings’ out-of-plane C—H
bond stretching (Parsaei and Akhbari, 2022b). Most of the
characteristic peaks of CS and FA are observed in the FT-IR
spectra of FC, which confirms the conjugation of FA to the CS
in the final product (Supplementary Figure S7) (Chanphai et al.,
2017). Moreover, the characteristic peaks of FC conjugates are also
visible in the 5-FU@bi-MIL-88B composite confirming the
successful coating of the 5-FU@bi-MIL-88B nanocarriers with the
FC (Figure 3A). The influence of the 5-FU encapsulation and FC
coating on the structural properties of the bi-MIL-88B was observed
through the PXRD analysis. According to Figure 3B, no significant
alteration in the PXRD patterns of the 5-FU@bi-MIL-88B and 5-
FU@bi-MIL-88B-FC was observed compared to the pure bi-MIL-
88B. A minor decrease in the diffraction angle of the peak related to
the 101 plane from 11.6 to 11.2 can be attributed to the pore
expansion by 5-FU loading due to the reversible breathing effect
(Horcajada et al., 2011). The reduction in the overall peak intensities
of the 5-FU@bi-MIL-88B-FC nanocarriers could be due to the
external coating by the FC (Shi et al., 2018).

The ZP of the nanocarriers plays an essential role in deciding the
stability and adhesion to the cells (Ishihara et al., 2015). The ZPs of the
CS, FA, FC, 5-FU, bi-MIL-88B, 5-FU@bi-MIL-88B, and 5-FU@bi-MIL-

88B were 0.47, −22.1, −9.83, −10.7, −3.52, −19.9 and −30.5 respectively
(Figure 3C). The positive ZP of CS is due to the cationic amino groups,
and the negative ZP of the FA can be ascribed to the anionic carboxyl
groups of FA (Song et al., 2013). The shift to the higher negative ZP
value after the FC coating of 5-FU@bi-MIL-88B can be related to the
anionic properties of the FC conjugates. The higher ZP values for
nanocarriers are beneficial as the highly charged particles tend to
repulse each other limiting agglomeration. A lower ZP value results
in coagulation due to the weaker repulsion force being overtaken by the
attraction force between the charged particles. Moreover, nanoparticles
are found in stabilized dispersions with an optimal ZP value of −30 mV
(Samimi et al., 2019). The surface charge of the nanocarriers also plays a
significant role in the cellular uptake of the nanocarriers. The
nanocarriers with cationic character are usually internalized into the
cell via caveolae-mediated endocytosis andmicropinocytosis. While the
nanocarriers with anionic features mainly tend to internalize through
clathrin/caveolae-mediated endocytosis pathways (Foroozandeh and
Aziz, 2018; Mazumdar et al., 2021). The TGA analysis further provided
insights into the degradation patterns of the samples. As shown in
Figure 3D, the bi-MIL-88B nanocarriers before the 5-FU incorporation
exhibited two significant weight loss regions. The first weight loss below
280°C is attributed to the removal of coordinated solvent molecules in
the structure (Gandara-Loe et al., 2020). The second considerable
weight loss from 320°C to 480°C represents the decomposition of
the organic linker and structural disintegration (Rojas et al., 2018).

FIGURE 2
SEM images of bi-MIL-88B (A, B); 5-FU@bi-MIL-88B (C, D); and 5-FU@bi-MIL-88B-FC (E, F).
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The drug-loaded 5-FU@bi-MIL-88B nanocarriers exhibited a weight
loss pattern similar to the TGA of both 5-FU and bi-MIL-88B. The
initial weight loss regions found in unloaded MOFs related to solvent
molecules were not observed in the TGA of 5-FU@bi-MIL-88B,
indicative of the pores filed with 5-FU molecules (Sheta et al., 2018).
The initial weight loss till 320°C in the 5-FU@bi-MIL-88B is related to
the decomposition of 5-FU molecules. In contrast, the second
significant weight loss follows the pattern of linker decomposition
similar to the unloaded MOFs. The 5-FU loaded nanocarriers
coated with the FC exhibited a mixture of weight loss patterns
identical to the TGA pattern of FC and 5-FU@bi-MIL-88B, which
indicates the synthesis of FC-coated 5-FU@bi-MIL-88B composites
(Nejadshafiee et al., 2019). Through the characterizations of SEM, FT-
IR, PXRD, ZP, and TGA, the incorporation of the 5-FU and the
subsequent coating by FC over the bi-MIL-88B nanocarriers was
verified. Through the UV-Vis spectrophotometry analysis, the DLC
and DLE of the nanocarriers were found to be 29.8% and 18.2%.

3.3 Drug release

The in vitro 5-FU release was investigated in two PBS mediums
with variable pH mimicking the cancer cell environment (pH 5.2)
and typical physiological environment (pH 7.4). The concentration
of the 5-FU released from the nanocarriers was calculated by

correlating the results with the 5-FU calibration curve in PBS
(Supplementary Figure S9). The drug release behavior of 5-FU@
bi-MIL-88B was compared with the FC-coated 5-FU@bi-MIL-88B-
FC to examine the influence of the external coating on the release
properties.

The 5-FU release profiles of uncoated and coated bi-MIL-88B
are shown in Figure 4. Generally, MOF-based drug delivery systems
follow a two-step drug release pattern (Li et al., 2020). The first stage,
rapid/burst release, is due to the drug molecules loosely bound to the
surface of the nanocarriers. The quick release stage is followed by
more sustained release related to nanocarriers’ structural
modifications and departure of the drug molecules from the
pores (Oh et al., 2015; Jiang et al., 2016). The 5-FU@bi-MIL-88B
and 5-FU@bi-MIL-88B-FC followed a similar two-phase drug
release kinetics pattern. A typical parabola of burst release during
the first stage can be observed in all samples, with slight changes in
both PBS (5.2 and 7.4). In the first 4 hours, 5-FU@bi-MIL-88B
showed 23.8% and 37.9% of the 5-FU release in pH 5.2 and 7.4
(PBS). The drug release amounts reached 86.7% and 46.4% after 48 h
in the second stage.

In contrast to the uncoated 5-FU@bi-MIL-88B, the FC-coated 5-
FU@bi-MIL-88B-FC exhibited a much-controlled release kinetics of
5-FU in both PBS mediums simulating cancer microenvironment
(pH = 5.2) and physiological environment (7.4). The FC-coated
nanocarriers showed only 24.9% of drug release even after 48 h in

FIGURE 3
(A) FT-IR spectra; (B) PXRD patterns; (C) Zeta potential values; and (D) TGA patterns of the samples.
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the PBS of pH = 7.4, which could be beneficial to mitigate the
unwanted toxicity of the drug to the normal cells. The lower
release of the 5-FU from the 5-FU@bi-MIL-88B-FC nanocarriers
under a physiological environment can be ascribed to the lower
pKa (6.5) of the free amino groups in the CS. These groups lose
their charge due to deprotonation at higher pHs and turn CS into
an insoluble biopolymer shell. The insoluble coating act as a
barrier to the premature release of the drug molecules. Moreover,
the higher 5-FU release from the FC-coated nanocarriers in
acidic PBS (pH = 5.2) compared to the physiological pH (7.4)
is due to the protonation of the amine groups making the CS
more soluble (Taghavi et al., 2017; Lu et al., 2019). Interestingly,
the 5-FU@bi-MIL-88B-FC showed much sustained and slower
release than their counterparts (5-FU@bi-MIL-88B) in the acidic
pH (5.2). Only 58% of the 5-FU was released from the FC-coated
nanocarriers compared to the uncoated ones, with 86% of the
drug released during the same period. Due to the rapid

degradation rate, chemotherapies based on free 5-FU
administration lead to many issues, such as rapid cancer
progression, metastasis and drug resistance (Leelakanok et al.,
2018). Therefore, sustained release from the FC-coated 5-FU@bi-
MIL-88B-FC could be helpful to overcome these challenges by a
prolonged drug presence at the tumor site with target specificity
of the carriers (Ali et al., 2023).

The structural stability of 5-FU@bi-MIL-88B-FC was
examined by immersing the samples in PBS of pH (5.2 and
7.4) for 4 days. According to the SEM images (Figures 5A, B),
the nanocarriers immersed at a pH of 7.4 showed little or no
difference in morphology, consistent with CS’s insoluble
character at pHs above 6.5 (Liu et al., 2012). However, 5-FU@
bi-MIL-88B-FC immersed in acidic media (pH = 5.2) showed
complete degradation of the morphological traits resulting in
distorted shape, indicating the drug release in acidic media due to
structural breakdown (Figures 5C, D).

FIGURE 4
5-FU release pattern from (A) 5-FU@bi-MIL-88B; and (B) 5-FU@bi-MIL-88B-FC at different pHs (5.2 and 7.4).

FIGURE 5
SEM images of 5-FU@bi-MIL-88B-FC after 4 days of immersion in PBS (A, B) of pH 7.4 and (C, D) pH 5.2.
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PXRD analysis was obtained from these PBS (5.2 and 7.4)
immersed samples further to analyze the structural alterations of
nanocarriers under different pH. Figure 6., compares the PXRD
pattern of PBS-immersed nanocarriers with the pure bi-MIL-88B.

The nanocarriers soaked in PBS of pH 7.4 maintained most of the
characteristic peaks reflected in the PXRD pattern of the pure bi-
MIL-88B, supporting the good stability of MOF under physiological
conditions also observed in SEM analysi. However, the PXRD
pattern of the samples immersed under acidic pH (5.2) exhibited
a loss of characteristic peaks of the parent MOFs indicating
structural decomposition and instability. Moreover, the
degradation of MOF in PBS could also be attributed to the
strong affinity of phosphate ions present in the PBS towards the
exposed metal sites in the MOF’s structure (Li et al., 2017). Evident
from the pxrd pattern of samples immersed in acidic pH, the extra
peaks found arround 17, 26, 32° and 46° (2theta) indicate the
presence of Fe and Co phosphates due to their strong interaction
(Beale and Sankar, 2002; Yuan et al., 2016).

3.4 In Vitro cytotoxicity and cellular uptake
studies

In vitro, the cytotoxicity profile of the samples was investigated
to evaluate the efficacy of the FC-conjugated system for targeted 5-
FU delivery. For this purpose, different concentrations
(7.81–500 μg/mL) of 5-FU, bi-MIL-88B, 5-FU@bi-MIL-88B and
5-FU@bi-MIL-88B-FC were administered to the HEK-293 (FR-
negative) and SW480 (FR-positive) cell lines. As seen in
Figure 7A, 5-FU showed higher cytotoxic effects towards both

FIGURE 6
PXRD pattern of experimental bi-MIL-88B and immersed
samples in PBS (pH 7.4 and 5.2).

FIGURE 7
Cell viability results of HEK-293 and SW480 against different concentrations (7.81–500) of (A) 5-FU; (B) bi-MIL-88; (C) 5-FU@bi-MIL-88B and (D) 5-
FU@bi-MIL-88B-FC. The degree of significance between the control and treatment groups for each cell line is denoted by ****p ≤ 0.0001, ***p ≤ 0.001,
**p ≤ 0.01, and *p ≤ 0.05.
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cell lines due to its non-specific nature (Alvarez et al., 2012). The
IC50 value of 5-FU and other treated agents are mentioned in
Table 1. The unloaded and uncoated bi-MIL-88B MOFs showed
considerable biocompatibility against HEK-293 cell lines with an
IC50 value calculated at 342 μg/mL (Figure 7B). Moreover, 5-FU-
loaded 5-FU@bi-MIL-88B nanocarriers exhibited concentration-
dependent toxicity in HEK-293 and SW480 cells. The non-
selective cytotoxicity behavior of 5-FU@bi-MIL-88B, if applied
without FC coating, could lead to unwanted cytotoxicity against
normal cells (Figure 7C) and cause failure of the whole system. The
FC-coated 5-FU@bi-MIL-88B-FC exhibited selective toxicity
against the FR-positive SW480 cells only with an IC50 of 136 μg/
mL. A slightly higher IC50 value of FC-coated nanocarriers was
observed compared to the free 5-FU against SW480 cells. It is
because the free drug is readily available to the system to exert
its effects during a short incubation time. In contrast, the
encapsulated drug molecules are released slowly into the system
and require more time to show their full efficacy (Gu et al., 2012).
Moreover, 5-FU@bi-MIL-88B-FC showed very low toxicity towards
the FR-negative cell lines (HEK-293), demonstrating the potential of
the synthesized DDS to be effectively applied for targeted drug
delivery against FR-positive cancer cell lines (Figure 7D).

To further support the observation of enhanced and selective
toxicity of FC-coated nanocarriers against FR-positive
SW480 cancer cells, the carbocyanine dye (Dil) labeled Dil@bi-
MIL-88B and Dil@bi-MIL-88B-FCMOFs were used as a fluorescent
probe. The Dil fluorescence intensity was measured using the
excitation wavelength of 550 nm and an emission peak at

564 nm. The cellular uptake based on the Dil fluorescence
intensity is shown in Figure 8A. The higher fluorescence
intensity in cells treated with Dil@bi-MIL-88B-FC, compared to
non-FC conjugated Dil@bi-MIL-88B, indicates the enhanced
cellular uptake due to the FC shell. The cytoplasm was stained
with alexa fluor 488 phalloidin, and the nucleus was stained with
DAPI. Moreover, the increaed in the mean fluorescence intensity
(MFI) by 1.8 to 2.4- fold for cells treated with Dil@bi-MIL-88B-FC
compared to Dil@bi-MIL-88B further corroborated to the excellent
cellular uptake of FC functionalized nanocarriers. These results
suggest that the FC coating facilitates folate receptor-mediated
cellular uptake and is essential in developing targeted DDS (Stella
et al., 2000; Song et al., 2013).

3.5 Peroxidase-like activity

Inspired by the peroxidase (POD) like activity of the different
transition metals such as Fe, Mn, Cu, and Co, and their use in
chemodynamic therapy, we examined the POD activity of our
nanocarriers through the TMB oxidation test (Scheme 2) (Bokare
and Choi, 2014). Due to their altered metabolic pathways, the cancer
cells are known to have higher levels of reactive oxygen species
(H2O2,

1O2,
•OH) production (Giacosa et al., 2021). This over-

expressed ROS production is utilized by cancer cells for various
purposes, such as drug resistance, tumor pathogenesis, and
metastasis (Ishikawa et al., 2008; Chun et al., 2021). The bi-MIL-
88B MOFs, due to their trinuclear oxo cluster with terminal

TABLE 1 Estimated IC50 values of different treatment groups against HEK-293 and SW480 cells.

Treatment groups (μg/mL)

Cell line 5-FU bi-MIL-88B 5-FU@bi-MIL-88B 5-FU@bi-MIL-88B-FC

HEK-293 108 342 184 N.A

SW480 113 482 301 136

N.A: not accountable.

FIGURE 8
(A) Cellular internalization results of Dil@bi-MIL-88B (top) and Dil@bi-MIL-88B-FC (bottom) against SW480 cells visualized through CLSM. Red
fluorescence (Dil), Green (Alexa fluor 488 stained cytoplasm), Blue (DAPI stained nuclei) andMerge (Overlay image); (B)Quantification of theMFI of Dil per
cell via ImageJ. Data is shown in mean ± SD (n = 10). ****p < 0.0001.
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coordinatively unsaturated sites (CUS), are capable of decomposing
H2O into highly toxic •OH radicals (Xiao et al., 2023). These •OH
radicals are highly potent and can oxidize any macromolecules that
come in contact with them (Li H. et al., 2022).

Similar results were observed in the current study; when the
system contained only H2O2 and TMB, no catalytic reaction was
observed regarding TMB oxidation (Figure 9A). However, by
adding different concentrations of the bi-MIL-88B, the colorless
TMB started to convert into a blue-colored oxidized form
(detected at 652 nm wavelength), indicating the POD

potential. Furthermore, mechanistic studies were performed to
evaluate the performance of bi-MIL-88B nanocarriers under
variable pH and temperature. As seen in Figure 9B, an
increase in the pH from 4 to 8 reduced the production of
oxidized TMB, indicating our nanocarriers’ safety at
physiological pH (7.4). Higher catalytic activity in the samples
in an acidic pH medium suggested the cancer cell-specific POD
performance. The catalytic performance also increased by
increasing the system’s temperature (Figure 9C). The
increased activity with higher temperatures benefits our

SCHEME 2
The peroxidase-like activity of bi-MIL-88B nanocarriers.

FIGURE 9
(A) TMB oxidation with different concentrations of bi-MIL-88B; (B) Effect of temperature and (C) pH on the POD activity of bi-MIL-88B; (D) Digital
photograph of TMB color change during the oxidation process.
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developed DDS, as cancer cells usually have higher internal
temperatures than normal cells (Vahed et al., 2017). The
enhanced POD performance under rising temperature can be
related to the altered entropy of the reaction constant and
reduced activation energy needed for the catalytic reaction
(Åqvist et al., 2017). Based on the multidimensional
therapeutic ability, 5-FU@bi-MIL-88B-FC present excellent
potential in the field of multifaceted targeted therapies. Some
of the MOF based carriers functionalized through FA for targeted
therapies are mentioned in Table 2.

As it is crucial for the effectiveness of any therapy that drug
accumulation should be in the target sites rather off-target (Farooq
et al., 2019; Saddozai et al., 2020). In case of leakage to healthy
tissue, adverse effects in terms of cellular cytotoxicity could be
observed, leading to severe complications (Torchilin, 2010; He
et al., 2020). Several factors, such as the physicochemical properties
of drug molecules and tumor biology, can affect passive targeting.
Therefore, these issues can be addressed by functionalizing drug-
loaded nanocarriers with targeting ligands (Attia et al., 2019;
Tesauro et al., 2019). FA is the most commonly used ligand for
MOFs’ surface functionalization to obtain FR-receptor targeting
(Muhamad et al., 2018). In addition to active targeting, MOF-
based nanocarriers utilizing intrinsic components of TME to
generate ROS stress for a synergistic therapeutic effect along
with chemotherapy present a new class of intelligent
nanomaterials for efficient anticancer properties (Wang C.
et al., 2022; Wang et al., 2022c; Liang et al., 2023). In this
regard, bi-MIL-88B-FC can be effectively utilized as a potential
DDS for multidimensional targeted chemotherapy and
chemodynamic therapy based on mechanistic insights into the
catalytic performance and drug release kinetics.

4 Conclusion

In this study, 5-FU@bi-MIL-88B-FC nanocarriers were
synthesized for tumor-specific targeted drug delivery. The

nanocarriers presented a higher 5-FU loading capacity of
29.8 wt%. Moreover, surface modification through the FA
conjugated CS (FC) endowed these carriers with exceptional
cell targeting and sustained drug release properties. The
presence of an extra polymer coating provided a gated effect
in improving the controlled release of the loaded drug and
evasion of premature leakage. The 5-FU@bi-MIL-88B-FC
exhibited pH-responsive drug release with higher
concentrations of the 5-FU released under the tumor-
mimicking environment (pH 5.2). The cytotoxicity profile and
folate receptor-mediated cellular uptake was investigated against
HEK-293 (FR-negative) and cancer SW480 (FR-positive). The
results showed FR-positive cancer cell-specific cytotoxic effects
of 5-FU@bi-MIL-88B-FC against the SW480 cells with sufficient
internalization efficacy. Moreover, the peroxidase-like activity
due to the catalytic sites provides these nanocarriers an extra
feature to be tested for a full-fledged multidimensional anticancer
therapy. The sufficient short-time stability, stimuli-responsive
drug release, POD mimicking character and active targeting of
FR-positive tumor cells with FA binding make these nanocarriers
promising DDS for multifunctional tumor therapy.
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TABLE 2 List of reported MOF based nanocarriers functionalized with folic acid for targeted therapy.

MOF Functionalization Drug Loading capacity Stimuli Therapy Reference

ZIF-67@ZIF-8 Iron oxide, FA Quercetin 50 wt% pH CT, CDT Pandit et al. (2022)

BioMOF-101 FA Curcumin 99.42 wt% pH CT Alves et al. (2023)

MOF-808 FA - CS Quercetin 43 wt% pH CT Parsaei and Akhbari (2022b)

Zr-MOF FA Bufalin 17.4 wt% pH, GSH CT Zeng et al. (2022)

PCN-224 FA Camptothecin, Doxorubicin 10,7 and 6.8 wt% pH CT Xie et al. (2022)

Fe-MIL-88@ZIF-8 FA Doxorubicin, MnOx 43.2 wt% pH CT, CDT Zeng et al. (2021)

Zn-MOF FA - CS Methotrexate 78 wt% pH CT Khatibi et al. (2022)

UiO-66-NH2 FA Oxaliplatin 29.3 wt% pH CT Hashemzadeh et al. (2021)

ZIF-8 FA miR-491–59 pH Gene regulation Ju et al. (2021)

UiO-66 FA– Pluronic F127 and SiO2 Doxorubicin 5.6 wt% pH CT Trushina et al. (2022)

Fe-MOF-5-NH2 FA, 5-FAM 5-FU 35 wt% pH CT Gao et al. (2019)

Bi-MIL-88B FA—CS 5-FU 29.8 wt% pH CT, CDT This study
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