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In recent years, sensor components similar to human sensory functions have been

rapidly developed in the hardware field, enabling the acquisition of information

at a level beyond that of humans, and in the software field, artificial intelligence

technology has been utilized to enable cognitive abilities and decision-making

such as prediction, analysis, and judgment. These changes are being utilized

in various industries and fields. In particular, new hardware and software

technologies are being rapidly applied to robotics products, showing a level of

performance and completeness that was previously unimaginable. In this paper,

we researched the topic of establishing an optimal path plan for autonomous

driving using LiDAR sensors and deep reinforcement learning in a workplace

without map and grid coordinates for mobile robots, which are widely used in

logistics and manufacturing sites. For this purpose, we reviewed the hardware

configuration of mobile robots capable of autonomous driving, checked the

characteristics of themain core sensors, and investigated the core technologies of

autonomous driving. In addition, we reviewed the appropriate deep reinforcement

learning algorithm to realize the autonomous driving of mobile robots, defined

a deep neural network for autonomous driving data conversion, and defined

a reward function for path planning. The contents investigated in this paper

were built into a simulation environment to verify the autonomous path planning

through experiment, and an additional reward technique “Velocity Range-based

Evaluation Method” was proposed for further improvement of performance

indicators required in the real field, and the e�ectiveness was verified. The

simulation environment and detailed results of experiments are described in this

paper, and it is expected as guidance and reference research for applying these

technologies in the field.

KEYWORDS

autonomous mobile robot, deep reinforcement learning, continuous action, map-less

navigation, SLAM, LiDAR, reward shaping

1. Introduction

The Fourth Industrial Revolution, also known as Industry 4.0, refers to a change in the

industrial environment that maximizes intelligence, automation, and connectivity through

the convergence of more advanced information and communication technologies and

existing industrial sectors. Industry 4.0 defines nine core technology areas, and one of them

is autonomous robots (Kovács et al., 2018). Along with the emergence of the 4th industrial

revolution and the associated digital transformation, the use of robots in many industrial

fields is diversifying and increasing rapidly. From 2016 to 2021, the global robot market grew

by 11% annually; from 2022 to 2025, it is expected to grow by 7–10% annually (IFR, 2022).
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Moreover, the recent rapid drop in the birth rate has led

to a shortage of manpower, and the use of robots is a very

attractive countermeasure to address such manpower shortages. In

terms of industry, robots are widely used in medical/health care,

professional cleaning, transportation/logistics, and hospitality,

and their use in 2021 grew by 23–85% (IFR, 2022). Among

them, the application of robots in transportation/logistics is

particularly noteworthy.

Mobile robots have become more popular in the marketplace

thanks to Amazon, the world’s largest e-commerce company.

In 2012, Amazon acquired Kiva Robotics, a mobile robotics

startup, and deployed mobile robots in its large warehouses,

reducing operating costs by about 20% and reducing logistics

turnaround time from 60 to 75min to 15min. Amazon’s case

has raised market expectations that robots can be used in

workplaces and public facilities to achieve low cost and high

efficiency. In addition, Amazon is currently conducting research

and development on various types of delivery robots using mobile

robots and autonomous vehicles suitable for long-distance delivery.

The intelligence and sophistication of robots are developing

rapidly, and their use will evolve and accelerate from simply

replacing repetitive tasks to skilled and specialized areas.

Mobile robots can be divided into Automated Guided Vehicles

(AGVs) and Autonomous Mobile Robots (AMRs). An AGV can

only move along a fixed path. This means that it is necessary to have

information about the moving space for such a robot to be able to

move. The robot is controlled and moved with a magnetic tape or

a Quick Response (QR) code attached to the floor (Giuseppe et al.,

2021). When using these methods, the environment for controlling

the mobile robot must be built on the floor so that the robot can

recognize the path to move, which requires a lot of money and

time (Giuseppe et al., 2021). Because of these disadvantages, AGVs

are rapidly being eclipsed by the AMR method using autonomous

driving technology. Recently, it has been confirmed that the market

which in 2017 was a 1 billion-dollar market will rapidly grow in

2022 into a 7 billion-dollar market (IFR, 2022).

The evolution ofmobile robots is shifting fromAMRs operating

in warehouses or factories to delivery robots delivering or shipping

items outside of buildings. To achieve this, mobile robots need

to be advanced to the point where they can drive unmanned on

roads with limited space, and delivery robots need to actively utilize

various core technologies of autonomous vehicles. In addition,

standards and laws are being actively established for autonomous

vehicles, and delivery robots must consider these autonomous

driving laws and standards. For example, the J3016 SAE Levels

of Driving Automation standard released by SAE (Society of

Automotive Engineers) International in 2018 is a typical example

of a standard related to autonomous vehicles. SAE J3016 defines

six levels of automation and establishes the initial regulatory

framework and safety design standards for autonomous driving

systems in road vehicles. The US Department of Transportation

(USDot) has adopted J3016 in its federal autonomous vehicle

policy, and J3016 is increasingly recognized as a global standard

(SAE International Website, 2021).

There are various skills involved in making a mobile robot.

Among various autonomous driving technologies, the most

important technology is Simultaneous Localization and Mapping

(SLAM) technology, which collects and moves the robot’s current

real-time and surrounding environment information in real-time

through the robot’s attached sensors (Giuseppe et al., 2021).

Hardware reference guides and examples of mobile robots for

autonomous driving were reviewed, as were the principles and key

technologies of SLAM. LiDAR sensors were mostly recommended

in the hardware reference guide and in the example of mobile

robots for autonomous driving, and multiple experiments have

decided to use LiDAR sensors (Zhang et al., 2019; Chen et al., 2021;

Juan, 2021). Another important technology is artificial intelligence,

which can be used to learn path planning. Robots have recently

been developing to a level at which they are capable of making

judgments and decisions in much more complex environments

and situations. In such contexts, a robot must be able to consider

uncertainty and flexibly respond to changes in the environment.

For a robot to properly operate in a new environment, it must

expand and improve its intelligence from the information it initially

acquired, and this can be achieved through a method termed

learning. Therefore, the learning of robots requires observing the

environment as an input and performing actions corresponding

to changes in the environment as an output (Zhang et al., 2020;

Adithya et al., 2021; Ibarz et al., 2021; Pavlos et al., 2021; Liu

et al., 2022; Raj and Kos, 2022). These characteristics are very

similar to the reinforcement learning method in which state

information is received from the environment, reward information

is received from the reward function, and corresponding actions

are performed.

Therefore, studies related to the path planning learning

of mobile robots through reinforcement learning have been

conducted in the past (Lee and Jeong, 2021; Lee et al., 2022),

and reinforcement learning technology is applied as an extension

in this paper. The papers reviewed when preparing for this

paper were cases in which autonomous driving of mobile robots

was implemented using LiDAR sensors and deep reinforcement

learning (Lei et al., 2017; Grando et al., 2021). The reward method

of reinforcement learning in these papers defined reward values

for the case of arriving at the target position, the case of collision,

and the case of moving to the target position (Lei et al., 2017;

Zhang et al., 2020; Adithya et al., 2021; Pavlos et al., 2021). In

particular, in cases where it is necessary to move a robot to the

target position, methods of giving a fixed reward value or a variable

reward value based on distance were used to define the reward value

(Lei et al., 2017; Zhang et al., 2020; Adithya et al., 2021; Pavlos

et al., 2021). In this study, we propose a reward method for path

planning with improved performance and stability by considering

other factors beyond reward value for distance when moving to the

target location and verifying the results through the experiments.

This paper expects to make the following contributions:

1. This paper explains the basic principles and characteristics of

AMR and SLAM, and it compares the operating principles and

characteristics of key sensors to help elucidate how the sensor

technology can be used for SLAM.

2. We explain the concept of global and local path planning and

explain how SLAM and reinforcement learning techniques

serve to implement map-less navigation path planning. We

also explain the process used to identify the reinforcement
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learning type suitable for the path planning characteristics and

determine the reinforcement learning algorithm to be used in

the experiment.

3. This paper explains the architecture for the experiment, the

simulation environment, the software design of reinforcement

learning, the proposed reward technique for performance

improvement, and the parameter values to be used in the

experiment. It also visualizes the results of the experiments

and explains the analysis results and meanings of the

experiments. In this process, the effect of the proposed reward

technique is verified.

4. The basic configuration to implement AMR using LiDAR

sensor and deep reinforcement learning is comprehensively

presented, and a practical reward technique for performance

improvement in path planning through reinforcement

learning is proposed and verified.

This paper proceeds as follows: Section 2 reviews the

mechanical characteristics of AMR, principles of autonomous

driving, hardware configuration, main principles and

characteristics of SLAM, comparison between LiDAR and

RADAR sensors, path planning using SLAM and reinforcement

learning, etc. It also explains the reinforcement learning types

suitable for autonomous driving and the reinforcement learning

algorithms to be used in the experiments. Section 3 presents

the proposed system architecture, software design with deep

reinforcement learning, and reward function with the proposed

technique. Section 4 details the simulation environment, the

parameters to be used in the experiments, and the experimental

results. Finally, Section 5 offers the final conclusions, opinions, and

future research directions.

2. Materials

2.1. Autonomous driving and autonomous
robots

In this paper, we researched the optimal path planning of an

autonomous mobile robot with a LiDAR sensor in a warehouse

environment via deep reinforcement learning. Most people think

of autonomous vehicles when they hear the word autonomous

driving, but autonomous driving technology is also of great interest

in the robotics industry. Typical types of autonomous robots that

utilize autonomous driving technology are autonomous mobile

robots and delivery robots. The mobile robot market is growing

rapidly and the related technologies are mature to commercialize.

On the other hand, delivery robots are in their early stages,

and many things need to be prepared and considered for actual

commercialization and practical application.

Mobile robots and delivery robots have a lot in common.

Delivery robots transport goods in the same way as mobile robots,

but the main difference is that they do not transport goods in a

single place such as a warehouse or factory, but include outdoor

driving to remote locations. Autonomous driving is the most

important capability for delivery robots, and location estimation

technology and object/environment recognition technology are

very important. From the perspective of autonomous driving

technology, indoor autonomous driving technology using LiDAR

has reached the level of practical application, but outdoor

driving technology has many problems to be solved and requires

significant institutionalization and regulatory adjustment for

practical application (West, 2016). Currently, many technology

companies, large enterprises, and startups are conducting research

and development to develop delivery robots, and some delivery

robots have been launched on a trial basis or are undergoing

early experiments.

In this article, we studied the indoor navigation of mobile

robots, but we will also briefly look at major examples of

products related to delivery robots from the perspective of

autonomous driving.

• Starship Technologies, an Estonian startup, has been operating

a delivery service for goods and groceries using delivery robots

in six locations in the United States and the United Kingdom

since 2019. Starship’s delivery robots utilize cameras, GPS, and

inertial sensors for autonomous driving and do not use LiDAR

sensors to reduce the unit cost of products. Object detection

andmovement area recognition were replaced by Convolution

Neural Networks (CNN) based image recognition technology

with cameras (Starship Technologies Website, 2019).

• In 2019, Amazon in the United States also introduced a

delivery service demonstration using a delivery robot named

Scout. Similar to Starship, it did not use LiDAR sensors but

utilized cameras and Convolution Neural Networks (CNN)

based image recognition technology (Vincent, 2019).

• Marble, a Silicon Valley startup in the United States,

implemented autonomous driving in a similar way to

existing indoor autonomous robots and outdoor autonomous

vehicles. It utilized 3D precise maps and 3D LiDAR sensors

acquired in advance to estimate the global position and used

LiDAR sensors to detect obstacles and recognize sidewalks.

Marble’s delivery robot can operate in a more complex

urban environment than Starship’s delivery robot and has

higher stability through multiple sensors. However, there are

disadvantages such as the need to build a precise spatial map

in advance, the increase in embedded parts, and the high cost

of robot products due to expensive parts (Marble debuts its

autonomous food-delivery robots in partnership with Yelp,

2017).

2.2. Kinematic modeling of autonomous
mobile robot

To understand the movement path and autonomous driving

characteristics of a mobile robot, it is first necessary to elucidate

the kinematic composition of the mobile robot. The mobile robot

shown in Figure 1 is an example of the simplest type of mobile

robot, which has a structure in which two wheels are located on the

same axis, with each wheel is independently controlled by a motor.

The speed of the right shift is vR, the speed of the left shift is

vL, and the distance between the two shifts is L. The mobile robot’s

velocity V and counterclockwise angular velocity ω are determined

by the velocity of the two wheels, and they are respectively
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FIGURE 1

Basic kinematic example of AMR (Kim, 2002; Han et al., 2014; Baek,

2021).

expressed by Equations 1, 2 (Kim, 2002; Han et al., 2014; Yu et al.,

2020).

V =
vR+vL

2
(1)

ω =
vR−vL

L
(2)

Figure 1 shows that the position of the robot in coordinates

is xi(t), yi(t). When the position and direction are expressed as

vectors, it can be expressed as Equation 3 (Kim, 2002; Han et al.,

2014).

P =
[

xi yi θ

]T
(3)

The change in the center coordinates of the mobile robot is the

same as in Equation 4, and it can be defined as: ẋi(t) = cos θ · V ,

ẏi(t) = sin θ ·V , θ̇(t) = ω, so themovement of the mobile robot can

be defined as shown in Equation 5 (Kim, 2002; Han et al., 2014).

Ṗ =
[

ẋi ẏi θ̇

]T
(4)







ẋi
ẏi
θ̇






=







cos θ 0

sin θ 0

0 1







[

V

ω

]

(5)

2.3. Hardware of the autonomous mobile
robot

The hardware configuration of the autonomous mobile robot

consists of a control module, a driver module, a power module,

and a sensor module (Zhang et al., 2019; Liu et al., 2022).

The power module consists of a battery and a power control

system. The control module which is the main part of the

hardware consists of a Single Board Computer (SBC) and a

Microcontroller (MCU) (Zhang et al., 2019; Liu et al., 2022). The

SBC and MCU work interdependently; the SBC is the center

of the decision-making system and implements various control

systems. Meanwhile, the MCU can control peripheral devices

and some sensors, and a Real-Time Operating System (RTOS) is

embedded in the MCU (Zhang et al., 2019). The sensor module

is necessary for the path search of the mobile robot, and as

can be seen in the hardware configuration example below, it is

composed of a LiDAR sensor and an Inertial Measurement Unit

(IMU) (Zhang et al., 2019). The mobile robot can check the

surrounding environment by using data from the LiDAR sensor

and the SLAM algorithm and make targeted movements. The

driver module is a motor controller for driving (Zhang et al.,

2019).

Figure 2 shows an example of the hardware configuration of an

autonomous mobile robot.

2.4. Basic principles and features of SLAM

The most important concepts in the autonomous driving of

mobile robots are mapping and localization (Liu, 2021). Mapping

is the process of making a map of a predefined environment so

that a mobile robot can accurately move (Liu, 2021). Specifically,

changes in the environment may occur due to changes in

external environmental conditions in the process of searching

for a new path. Localization is the process of locating a mobile

robot in the environment (Liu, 2021). To find the movement

path, it is very important to find the place where the mobile

robot starts moving. These steps can be most simply performed

using a Global Positioning System (GPS) sensor (Liu, 2021).

Using the GPS sensor has the advantage of being inexpensive,

but it can also lead to measurement errors. Therefore, higher

accuracy can be secured if the configuration uses a sensor such

as LiDAR.

Simultaneous Localization and Mapping (SLAM) is a method

of mapping and localization at the same time, and when a

destination is given, the robot uses sensor or image data to

estimate its own location and then moves to the destination

based on this technology (Liu, 2021). To perform these SLAM

functions, it is necessary to track the robot’s location information,

surrounding landmark information, and distance information

from the target point. Recently, the most frequently utilized sensors

for AMR to acquire surrounding information are cameras, Light

Detection and Ranging (LiDAR) sensors, and Laser Detection

and Ranging (LADAR) sensors. SLAM technology can be

divided into Visual and Laser SLAM (Chan et al., 2018; Liu,

2021).
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FIGURE 2

Hardware structure of an autonomous mobile robot (Murat et al., 2017; Zhang et al., 2019; Liu et al., 2022).

2.4.1. Visual SLAM vs. Laser SLAM
Visual SLAM extracts image features and estimates obstacle

maps based on geometry theory (Chan et al., 2018; Baek, 2021).

Oriented Fast and Rotated BRIEF SLAM (ORB-SLAM) is a

representative Visual SLAM method, and it involves using the

ORB algorithm to find feature points at high speed. This method

finds the location of the map and the robot by estimating

changes in multi-frame images using a camera and image sensor,

then calculating the distance to an object using the accumulated

changes (Chan et al., 2018; Baek, 2021). This method is a feature

point-based method that can be used to estimate location by

extracting feature points from an image and estimating movement.

However, while this method has the advantage of being relatively

inexpensive and simple to apply in terms of cost, it has the

disadvantage of being sensitive to the environment along with

being weak against noise by extracting information from images

(Chan et al., 2018; Baek, 2021). Due to the large amount of data

involved, the computation is burdensome, and the accuracy and

performance may both be limited in practice (Chan et al., 2018;

Baek, 2021).

Laser SLAM was commercialized earlier than the Visual

SLAM method, so it is more technologically mature and has

a relatively large number of use cases. A typical example is

the GMapping method, which directly constructs an obstacle

map of the environment based on the results of high-density

laser distance measurement (Chan et al., 2018; Liu, 2021).

Laser SLAM methods generally use LiDAR sensors frequently.

Although the cost is relatively higher than Visual SLAM, it

has many use cases due to its high reliability and accuracy.

However, using high-density laser sensors is burdensome because

it takes a lot of time to construct landmarks and maps, and

the performance is highly dependent on sensor accuracy (Chan

et al., 2018; Liu, 2021). Recently, the Real-Time Appearance-

Based Mapping (RTAB–MAP) method has also emerged as a

Visual SLAM method that utilizes a LiDAR sensor. This method

has the advantage of being able to detect a range that cannot

be detected using a LiDAR sensor (Chan et al., 2018; Liu,

2021).

2.4.2. Light detection and ranging vs. laser
detection and ranging

The most widely used sensors for autonomous driving are

LiDAR and RADAR sensors. These image sensors are responsible

for visual functions in autonomous driving. The two sensors

have almost the same purposes, but they work in different ways:

LiDAR sensors use lasers whereas RADAR sensors use radio

waves. A LiDAR sensor emits high-powered laser pulses, measures

the characteristics of the return signal after the laser strikes the

target, and then determines the distance, shape, and position

between objects. RADAR sensors work similarly to Li-DAR sensors,

except they use radio waves instead of lasers; they emit radio

waves that hit objects, then they utilize the returned data to

grasp information.

The pros and cons of these two sensors are:

• Precision: As explained for the LiDAR sensor, the LiDAR

sensor uses a laser. The characteristics of the laser are strong

linearity, so when it hits an object and returns data there

is almost no distortion and the error range is very small,

thus allowing for precise observation (Ryde and Hillier,

2009). LiDAR sensors can also measure distance, width, and

height, so they have the advantage of recognizing them in

3D. The LiDAR sensor is easy to map in 3D because a lot

of information can be confirmed by increasing the number

of channels and splitting and emitting (Ryde and Hillier,

2009). Meanwhile, RADAR sensors can grasp information,

such as the distance between objects, speed, and direction,

but they have limitations in their ability to grasp the shapes

of objects. Therefore, LiDAR sensors are widely used in

autonomous driving.
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• Cost: In general, LIDAR sensors cost muchmore than RADAR

sensors (Wevolver, 2021). Although LiDAR sensors have

many advantages in autonomous driving, the sensor prices

are still the biggest reason why manufacturers do not readily

decide to use them. An increasing number of companies are

trying to reduce prices by reducing the observation range of

the existing LiDAR sensor and lowering the performance of

the part.

• Sensitivity to the external environment: In the case of RADAR

sensors, there is almost no change in changes in the external

environment (Ryde and Hillier, 2009; Wevolver, 2021).

For example, the same performance and accuracy can be

maintained without a significant change even in environments

such as rain, snow, and fog (Ryde and Hillier, 2009; Wevolver,

2021). In the case of radio waves, little is absorbed when they

hit an object compared with the light, such as a laser. This is

also the reason why RADAR is preferred in the case of combat

equipment. Comparatively, LiDAR sensors are more sensitive

to these changes than RADAR sensors, and they can thus be

more affected.

2.5. Path planning using SLAM and
reinforcement learning

Path planning to find the optimal route is very important

for mobile robots. In general, path planning can be divided into

global path planning and local path planning. If the mobile robot

has environmental information, global path planning can be used;

if there is no environmental information, local path planning

should be used (Zhu and Zhang, 2021). In other words, global

path planning provides all information about the environment

before the mobile robot moves, then utilizes this information for

movement. Local path planning does not require any information

before the mobile robot starts to move, and the robot should use

sensors to detect objects and check the information to create a local

path plan (Zhu and Zhang, 2021).

Figure 3 describes the change in structure when the SLAM

method is added to the structure in which the mobile robot utilizes

the existing global path planning and local path planning.

The purpose of using a reinforcement learning algorithm

for the autonomous driving of a mobile robot is to identify an

optimal policy to efficiently reach a target location while interacting

with the environment (Lee and Jeong, 2021). This method

observes sensor information in the actual workplace environment,

learns to maximize the reward value for the task, and performs

autonomous driving based on this obtained sensor information and

approximated information (Zhu and Zhang, 2021). Specifically,

reinforcement learning involves learning through trial and error;

therefore, during the learning process, the robot collides with

fixed or moving obstacles and learns how to avoid them. This

experimental environment also has the advantage of allowing for

checking in advance through simulation testing before the actual

application and operation of a mobile robot. Figure 4 shows the

structure of the AMR system based on sensors and reinforcement

learning as well as the interaction between the reinforcement

learning agent and the environment. Instead of the existing local

path planning module, the reinforcement learning agent learns

to move to the target position while avoiding obstacles (Zhu and

Zhang, 2021). However, in the case of a structurally very complex

environment, the agent may not be able to properly learn, so it

may be necessary to use global path planning to divide the entire

movement path into stopovers and then set up path planning (Zhu

and Zhang, 2021).

2.6. Reinforcement learning algorithm for
path planning

In this paper, we use reinforcement learning technology for

path planning. Although previous studies have established path

planning for grid-type warehouse environments (Lee and Jeong,

2021; Lee et al., 2022), the goal of this paper is to create path

planning for autonomous driving. In a grid-type environment, grid

coordinate values have been used as state information, and discrete-

type of data such as up, down, right, and left can be used as action

information (Lee and Jeong, 2021; Lee et al., 2022). However, in an

autonomous driving environment without grid coordinates, sensor

data can be used instead of grid information as state information,

while continuous-type data, such as velocity or angle, can be used

for action information (Zhao et al., 2021; Zhu and Zhang, 2021).

Among various reinforcement learning algorithms, it was

confirmed that the Policy-based type can handle both the

Stochastic Policy and the Deterministic Policy to support

continuous action space problem handling (OpenAI Spinning

Up, 2018; Sutton and Barto, 2018). Specifically, it was decided

to use the Deep Deterministic Policy Gradient (DDPG) and

Soft Actor–Critic (SAC) algorithms in the experiment, because

these algorithms have the characteristics of the Policy Gradient

series and the Q-Learning series, and they are suitable for

the continuous action space problem. The DDPG algorithm

combines the advantages of the Deep Q-Network (DQN)

algorithm and the concept of the Deterministic Policy

Gradient (DPG) algorithm (Lillicrap et al., 2016; Wen et al.,

2019).

DDPG and SAC algorithms are the same types of algorithms,

and they have the following common characteristics:

The first is model-free type reinforcement learning, which is

an algorithm in which an agent searches to find a policy from

the absence of environmental information at the beginning, then

gradually learns and finds a policy through trial and error (Silver,

2015; Lillicrap et al., 2016; Sutton and Barto, 2018). The second

is an off-policy algorithm. There are two types of policies for the

off-policy method: the Target policy and the Behavior policy. The

Target policy learns based on information such as each state and

action to find an optimal policy, while the Behavior policy selects an

action. If the Target and Behavior policies are different andmultiple

policies exist, then this is the off-policy method (Silver, 2015;

Lillicrap et al., 2016; OpenAI Spinning Up, 2018; Sutton and Barto,

2018). However, if the Target and Behavior policies are the same,

this means it can be the on-policy method. The third common

characteristic is the Actor–Critic. The Actor–Critic algorithm is

composed of two networks: an Actor network and a Critic network.

The Actor network is a Policy network, while the Critic network is
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FIGURE 3

Structure of mobile robot path planning using SLAM (Zhu and Zhang, 2021).

FIGURE 4

Structure of mobile robot path planning using SLAM and reinforcement learning (Zhu and Zhang, 2021).

a Value network (Mnih et al., 2016; Sutton and Barto, 2018). The

Actor-Critic algorithm has two agents, which are called Actor and

Critic. The Actor and the Critic separately manage parameters; the

Actor updates the policy parameters in the direction suggested by

the Critic, while the Critic updates the parameters of the action–

value function (Mnih et al., 2016; Sutton and Barto, 2018). The

Actor decides the action given to the state, and the Critic evaluates

the value of the state (Mnih et al., 2016; Sutton and Barto, 2018).

The Actor and Critic can each obtain a loss value with a loss

function as well as learn to minimize the total loss value by

combining the two loss values (Mnih et al., 2016; Sutton and Barto,

2018). Figure 5 schematically depicts how the main elements of

Actor–Critic interact.

2.6.1. Deep deterministic policy gradient
The DDPG algorithm is a model-free reinforcement learning

algorithm that is based on off-policy and operates in an Actor–

Critic manner. It is also based on the Deterministic Policy Gradient,

and it can only be used in continuous action space. The DDPG is an

algorithm created by complementing the weaknesses of the Deep

Q-Network (DQN) algorithm and Deterministic Policy Gradient

(DPG) algorithms and taking advantage of their strengths. The

DDPG algorithm is basically Actor–Critic-based and consists of an

Actor network µ and a Critic network Q. To calculate the target

value, the Target Actor network µ′ and the Target Critic network

Q′ are also composed (Lillicrap et al., 2016; Wen et al., 2019).

The Actor estimates an appropriate action from the current state,
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FIGURE 5

Structure of the actor–critic.

while the Critic evaluates the value of the action determined by the

Actor. This is randomly sampled from the information stored while

learning and trained through a deep neural network (Mnih et al.,

2016; Wen et al., 2019).

As briefly explained in the Actor–Critic structure above, the

DDPG algorithm learns to minimize the total loss value, and

Equations 6, 7 explain how the loss value can be calculated (Lillicrap

et al., 2016; Wen et al., 2019). In the formula, s is the state, a is the

action, r is the reward value, γ is the learning rate, θ is the weight

constituting the neural network, andN is the number of mini-batch

samples. Moreover, yi is the target Q-value and Q
(

si, ai | θQ
)

is the

Estimated Q-value. The L is the loss value and the Mean Squared

Error (MSE) value.

yi = ri+γQ
′
(

si+1,µ
′
(

si+1|θ
µ
′ )

|θQ
′ )

(6)

L=
1

N

∑

i

(

yi−Q
(

si,ai|θ
Q
))2

(7)

The Actor network predicts the transformation of the

parameter values using the sampled policy gradient method, and

it is described by Equation 8 (Lillicrap et al., 2016).

∇θµ J ≈
1

N

∑

i

∇aQ
(

s,a |θQ
)

∣

∣

∣

∣

∣

s=si ,a=µ(si)

∇θµµ
(

s |θµ
)

∣

∣

∣

∣

∣

∣

si

(8)

The DDPG algorithm has the following main features:

• Replay Buffer: The Replay buffer is denoted as R with a fixed

size, and while the Agent searches for a path, it stores state,

action, reward, and next state information in the form of a

tuple in the Replay Buffer (Lillicrap et al., 2016; Wen et al.,

2019). The Actor and the Critic learn by extracting a random

mini-batch from the Replay Buffer (Lillicrap et al., 2016; Wen

et al., 2019).

• Soft Target Update: In the case of DQN, there are cases in

which learning is unstable because the updated Q-Network

parameter value is used when calculating the Target value.

To address this disadvantage, it is necessary to use a Target

network that copies the Actor/Critic and a Soft Target Update

method (Lillicrap et al., 2016). The copied Target network is

used to calculate the Target value, and the update speed of the

Target network can be adjusted by utilizing the weight value

and parameter τ (Lillicrap et al., 2016). If the parameter τ is

set to a small value, the copied target networks can be updated

slowly, which can improve the problem of unstable learning.

Equations 9, 10 are the equations that are used to update the

Target network (Lillicrap et al., 2016; Wen et al., 2019). The

weight of the Actor network is θµ, the weight of the Critic

network is θQ, the weight of the Actor Target network is θµ′ ,

the weight of the Critic Target network is θQ
′
, and τ is the

approximate coefficient, which should always be <1.

θQ
′

← τθQ + (1− τ )θQ
′

(9)

θµ
′

← τθµ + (1− τ )θµ
′

(10)

• Batch Normalization: When the components of observation

contain different physical units, this hinders network learning.

To improve these constraints, batch normalization which

normalizes the input and output of the layer as well as the

Actor and Critic layers can be performed (Lillicrap et al.,

2016).

• Noise Process: Exploration makes a new attempt at learning.

In DDPG, noise is added to the Actor policy for continuous

exploration, as is explained in Equation 11 (Lillicrap et al.,

2016).

at=µ
(

st |θ
µ
)

+Nt (11)

2.6.2. Soft actor-critic
The SAC algorithm is a model-free reinforcement learning

algorithm that is based on off-policy and consists of an Actor–

Critic method. It is also based on Policy Gradient and can

only be used in continuous action space. Existing model-free

deep reinforcement learning algorithms require a new sample for

each step, thus necessitating an exponentially large number of

samples, ultimately resulting in low efficiency, sensitivity to changes

in hyperparameters, and unstable convergence (Haarnoja et al.,

2018a,b).

The SAC algorithm has the following features added to improve

these disadvantages:

• Maximum Entropy Reinforcement Learning: The goal of

conventional reinforcement learning is to find a policy that

maximizes the expected value of the cumulative reward value.

Maximum Entropy Reinforcement Learning adds the entropy
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of the policy for the reward policy to the existing objective

function (Haarnoja et al., 2018a,b). In this case, the expected

reward and entropy of the policy should be maximized, as

described in Equation 12 (Haarnoja et al., 2018b).

π∗ = arg max
π

∑

t

E(st ,at)∼ρπ [r (st ,at)+αH (π (· |st))] (12)

Here, H (π (· | st)) represents the probability distribution

entropy of an action in state st when policy π is followed. In

general, to maximize the expected reward, the policy tends to

be deterministic. Therefore, the randomness of the policy can

be controlled with a temperature parameter, termed parameter

α (Haarnoja et al., 2018a,b). Equation 13 shows the modified

objective function. In the current policy π , the distribution of

the state–action pair information follows ρπ , while γ is the

discount factor (Haarnoja et al., 2018b).

J(π) =
∞
∑

t=0

E(st ,at )∼ρπ

[

∞
∑

l=t

γ l−t
Esl∼p,al∼π [r (st ,at)+αH (π (· |st)) |st ,at ]

]

(13)

Applyingmaximum entropy to the reinforcement learning

goal in this way has the following advantages: First, it leads to

more rapid abandonment of less probable actions than when

maximizing the expected reward. On the other hand, if there is

a possibility, the probability of taking action increases. Second,

multiple optimal policies can be found instead of just one

optimal policy.

• Soft Policy Iteration: Policy iteration is a method of learning

by repeating the convergence of policy by sequentially

performing policy evaluation and improvement (Haarnoja

et al., 2018a,b) If the action space is finite, the soft Q value can

be obtained by calculating the value of following the policy π

that maximizes the maximum entropy objective in the policy

evaluation, and the policy improvement updates the policy

proportionally to the exponential of the soft Q function to

obtain a better policy (Haarnoja et al., 2018a,b). However, if

the action space is continuous, the above two methods require

too much computation to converge (Haarnoja et al., 2018a).

• Soft Actor-Critic: Soft policy iteration involves performing

policy evaluation and policy improvement, but because of

the need for intensive computation, convergence takes a

long time. To solve this problem, soft Q-function and soft

policy function are approximated and optimized through deep

neural networks instead of soft policy iteration (Haarnoja

et al., 2018a,b). The soft Q-function is trained to minimize

the soft Bellman residual and its loss function is in Equation

14 (Haarnoja et al., 2018b). The θ is the Exponential Moving

Average (EMA) value of θ obtained in the previous step and is

used for stable learning (Haarnoja et al., 2018b).

JQ(θ) = E(st ,at )∼D

[

1

2

(

Qθ (st ,at)−
(

r (st ,at)+γEst+1∼p

[

Vθ̄ (st+1)
]))2

]

(14)

The calculation of the above formula with Stochastic

Gradient Descent (SGD) is equivalent to that shown in

Equation 15 (Haarnoja et al., 2018b). The soft policy function

is learned in the direction of reducing KL divergence. The

loss function is shown in Equation 16 below (Haarnoja et al.,

2018b).

∇̂θ JQ(θ)

= ∇θQθ (at ,st)
(

Qθ (st ,at)−
(

r (st ,at)+γ
(

Qθ̄ (st+1 ,at+1)−αlog
(

πφ (at+1|st+1)
)))

(15)

Jπ (φ) =Est∼D

[

Eat∼πφ

[

αlog
(

πφ (at |st)
)

−Qθ (st ,st)
]]

(16)

Since a Q-function is used for the target part, π is also

parameterized using the same neural network transform as

Q and described in Equation 17. ǫt is the input noise vector

(Haarnoja et al., 2018b). After that, the loss function Jπ
is changed to Equation 18, and the gradient of the policy

objective is approximated as in Equation 19 (Haarnoja et al.,

2018b).

at=fφ (ǫt;st) (17)

Jπ (φ) =Est∼D,ǫt∼N
[

αlogπφ

(

fφ (ǫt;st) |st
)

−Qθ

(

st ,fφ (ǫt;st)
)]

(18)

∇̂φ Jπ (φ)

= ∇φαlog
(

πφ (at |st)
)

+
(

∇at αlog
(

πφ (at |st)
)

−∇atQ (st ,at)
)

∇φ fφ (ǫt;st) (19)

3. Methods

3.1. System architecture

As explained earlier, the HW part should be able to detect

the external environment by embedding a LiDAR sensor, and the

path planning of the mobile robot should be established through

trial and error by utilizing the detected external environment using

reinforcement learning. For this purpose, the structure of the

Autonomous Mobile Robot Framework is mainly composed of two

layers: HW controller, which directly controls the robot, and SW

controller, which is based on agents. TheHWpart includes a LiDAR

sensor, and the SW controller part also includes deep reinforcement

learning part to enable path-planning learning.

Figure 6 depicts the structure including the software/hardware

architecture and the warehouse environment in which the

autonomous mobile robot is operated. The robot controller

that controls the actual hardware is the part that physically

controls the movement of the mobile robot, and the part that

collects local environment information using LiDAR sensors

is considered. For reference, the proposed architecture only
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FIGURE 6

Autonomous mobile robot framework in a warehouse (Lee and Jeong, 2021; Lee et al., 2022).

considers local path planning and does not consider global

path planning.

In the structure of the Autonomous Mobile Robot Framework

in Figure 6, it will work as follows:

• The agent requests geographic information from the

robot controller, which is delivered to the LiDAR sensor

attached to the robot to check the external environment

information of the site. The robot controller delivers the

geographic information, which is the external environment

information confirmed by the LiDAR sensor, to the

requesting agent.

• The agent inputs some of the geographic information, which

is the external environment information confirmed by the

LiDAR sensor, into the Actor-Critic network to receive an

action value and inputs this value into the reward function to

receive a reward value and next state information.

• Based on the received reward value and the following state

information, the agent sends a moving command to the robot

controller, and the mobile robot moves.

3.2. State function and network structure

State information st is defined as expressed in Formula 20 as a

translation function formula that takes distance data xt and relative

target coordinate information pt about the target as input values

(Lei et al., 2017; Grando et al., 2021).

st = f
(

xt ,pt
)

(20)

The state information defined in this way can be input to the

deep neural network and the velocity and angular velocity values

can be approximated with action values. The DDPG and SAC

algorithms which the reinforcement learning algorithms used in

this paper define the network structure to use the value obtained

as the output information as the action value by inputting state

information as the input parameter of the policy network, which

is an Actor network (Lei et al., 2017; Grando et al., 2021; Han et al.,

2021).

In the case of the Q-Network structure, state information,

action information, and the output value obtained through the
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FIGURE 7

Neural network structure: (A) Policy network of DDPG; (B) Q-network of DDPG; (C) Policy network of SAC; (D) Q-Network of SAC.

Policy network were used as the input parameters (Zhang et al.,

2019). In relation to this, by adding two nodes at the end of

the first hidden layer, it was designed to concatenate and input

action information, which is Policy network output information

(Zhang et al., 2019). Figure 7 explains the Actor and Critic

network structures of the DDPG and SAC algorithms used for

the experiments in this paper. After three fully connected neural

network layers with 512 nodes, the input values are converted

into velocity and angular velocity information, and the hyperbolic

tangent function tanh is used as the activation function to limit the

range of angular velocity in the range −1 to 1 (Zhang et al., 2019;

Han et al., 2021; Liu et al., 2022).

3.3. Reward function

The mobile robot continues to move the step of the minimum

movement unit and arrives at the final target position. After the

mobile robot starts to move at the beginning, it receives the step

reward value for each step movement and accordingly determines

the direction and speed of the next movement. When the mobile

robot reaches the final target position, the movement of the episode

ends, and a comprehensive reward value for the path trajectory that

has been traveled from the beginning to the arrival is given, and this

is called the final reward value. It is a comprehensive reward value

that is given when the final arrival or failure to the destination is

within a single episode.

In general, if it arrives at the target position normally, the final

reward value is given a positive reward value; meanwhile, in the

case of failure or failure to reach the target position, such as in a

collision, a negative reward value or a relatively low reward value is

given as a penalty (OpenAI Spinning Up, 2018; Wen et al., 2019).

For the symbols used in the following formulas, we have added

a short description as follows: rfinal_reward( ) is the reward function

to calculate the final reward value, rstep_reward( ) is the reward

function to calculate the step reward value, st is the 21 channel

distance values of mobile robot, at is the action values obtained

based on 21 channel distance values of mobile robot, dt is the
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distance between the location of the mobile robot and the target

position, ot is the arctan value for the angle between the target

position and the moved position, cd is the threshold distance value

to determine whether mobile robot is arrived, co is the threshold

distance value to determine whether mobile robot is collide, minx
is the smallest distance value of 21 channels, rarrive is the reward

value when mobile robot arrives to the target position, and rcollide is

the reward value when mobile robot collide.

As shown in Equation 21, if dt is smaller than cd, then it is

determined that the robot has arrived at the target position, and a

positive reward value rarrive is given (OpenAI Spinning Up, 2018;

Wen et al., 2019). A collision is considered to be detected when

minx is smaller than co, and a negative reward value rcollide is given

(Lei et al., 2017; Sharma, 2020; Grando et al., 2021).

rfinal_reward (st ,at)=

{

rarrive if dt<cd
rcollide if minx<co

(21)

The step reward value is a reward value that is given when

the mobile robot continuously moves in a minimum unit to reach

the final target position. The most basic step reward value can be

defined as a composite value of dt and ot . At this time, if importance

weight values can be used for the dt and ot values, the step reward

value can be controlled in a more flexible manner. w1 and w2 are

weight values that can be defined in the range 0 to 1.

In this paper, to increase the additional learning efficiency

for reinforcement learning, we proposed “Velocity Range-based

Evaluation Method” that reflects the value evaluated as the action

value in the basic step reward for the distance and angle to the target

position. Among the action values, the velocity value is divided into

several sections based on the percentage in the range−100 to 100%,

while the evaluation score value is differentially defined for each

divided section. Equation 22 defines a step reward that reflects the

evaluation score value et , and its value is min−1 and max 1.

rstep_reward (st ,at)= (w1×dt+w2×ot)+ et (22)

The guide is a detailed description how to define velocity ranges

and its evaluation scores for proposed “Velocity Range-based

Evaluation Method” below.

Guide: Define velocity ranges and evaluation scores

1. Divide−100 to 100% into several ranges for actual velocity values.

It is assumed that the number of ranges is n, and the divided ranges

stand for v1 to vn .

v1 starts from−100% and vn ends at 100%.

(v1 < v2 < ...< vn)

2. Define evaluation score values.

It is assumed that the defined evaluation score values stands for

e1 , e2 , ....., en .

(e1 < e2 < ...< en)

3. Match one of the evaluation score values for each divided percentage velocity

range.

A higher evaluation score value is assigned to a relatively high percentage

velocity range.

(v1 to e1 , v2 to e2 , ... , vn to en)

The following algorithm is the training part of reinforcement learning. (c), (d), and (e)

describe how to use “Velocity Range-based Evaluation Method”.

Initialize state, action, reward

Loop for episode count:

(a) Get action through policy network

If current movement is not final step then

(b) Get the difference of distances and

angle values between current position

and target position.

(c) Check velocity value and its percentage

velocity range.

(d) Get designated evaluation score for the

percentage velocity range.

(e) Calculate step reward value with

gathered information

(Need to include evaluation score of

velocityrange)

(f) Get step reward value

(g) Get next State

Else

(h) Get final reward value

End If

(i) Move to next position

End for

Algorithm 1. Training with velocity range-based evaluation method.

3.4. Experiment environment

The experimental environment used in this paper was

configured based on a warehouse environment. The warehouse

layout was configured as a simulation environment for a small-

scale work environment with six inventory pods in a simple

form. An open source simulation was used to build the

experimental environment, and Figure 8 shows the layout of

the environment.

Moreover, the LiDAR sensor simulation for the experiment

assumed the use of a LiDAR sensor composed of 21 laser channels

between−120 and 120 degrees (Lei et al., 2017; Kim et al., 2021).

3.5. Experiment method

In this experiment, the starting position of the mobile robot’s

movement and the target position to which it will arrive are

continuously changed randomly for each episode, and a single

mobile robot avoids the inventory pod, and proceeds to find the

optimal autonomous driving path to the target location.

The experiments are performed in two cases below:

• Experiment #1: Experiments are performed on the DDPG

and SAC algorithms without applying the “Velocity Range-

Based Evaluation Method”. LiDAR sensor and lowering the

performance of the part.

• Experiment #2: The experiment applies the “Velocity Range-

Based Evaluation Method” to experiment with DDPG and

SAC algorithms.
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FIGURE 8

Experimental environment.

TABLE 1 Evaluation score of percentage velocity range.

Velocity range Evaluation score

−100% ≤ v1 <−70% −0.3

−70% ≤ v2 <−30% −0.1

−30% ≤ v3 < 0% −0.05

0% ≤ v4 < 30% 0

30% ≤ v5 < 70% 0.05

70% ≤ v6 < 100% 0.1

For our experiments, we defined the following parameter

values. As a default Final Reward Value, we defined 20 for reaching

the target position and−2 for collision. Moreover, in relation to the

proposed technique “Velocity Range-based Evaluation Method” in

the step reward, the evaluation score value in Table 1 was applied

and used in the experiment. Table 2 shows the Hyper Parameter

values used in the DDPG and SAC algorithms in the experiment

detailed in this paper.

3.6. Performance metrics

The experiments were performed three times with the given

conditions for each algorithm. The evaluation method used to

confirm the experimental results was evaluated and analyzed based

on the following indicators.

TABLE 2 Parameter values for experiment.

Parameter DDPG SAC

Learning rate (Actor) 0.00005 0.00005

Learning rate (Critic) 0.00005 0.00005

τ Value 0.01 0.01

Memory size 100,000 100,000

Batch size 64 64

Max epoch 5,000 5,000

α value N/A 0.1

• The trend of path movement count: This is the value of

how many movements were required to reach the target

position if a path was found in a single episode. It is an

indicator for checking how quickly the path was found

during learning.We provide two kinds of visualization graphs;

simple plots and box plots. For the simple plot, the value

was obtained by dividing every 50 episodes and calculating

their average value. For the box plot, the value was obtained

by dividing every 500 episodes and it shows maximum

value, minimum value, quartile values, and outlier values

at every interval. The results of the three experiments were

independently plotted and displayed on a single graph; the

results of the DDPG and SAC algorithms are displayed in

separate graphs.
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• The trend of final reward value: This is the reward value given

when a path was found in a single episode. It is an indicator

that checks the level of learning as learning progresses. The

description of the visualization graph’s types, the information

the graphs provide, and the types of experiments the graphs

show are the same as the description of the trend of path

movement count above.

• The comparison of the path movement count’s average: This

is the overall average value of path movement counts of

three times conducted experiments. We provide two kinds

of visualization graphs; simple plots and box plots. For the

simple plot, the average value was obtained by dividing every

50 episodes for each experiment and it shows the overall

average value of three experiments. For the box plot, the value

was obtained by dividing every 500 episodes and it shows the

overall maximum value, minimum value, quartile values, and

outlier values of three experiments at every interval. A single

graph includes the following four cases: experiment #1 with

DDPG, experiment #1 with SAC, experiment #2 with DDPG,

and experiment #2 with SAC.

• The comparison of the final reward value’s average: This is

the overall average value of final reward values of three times

conducted experiments. The description of the visualization

graph’s types, the information the graphs provide, and the

types of experiments the graphs show are the same as the

description of the comparison of the path movement count’s

average above.

• The path movement count during the learning stabilization

phase: In the case of learning with the SAC algorithm, it was

judged that the stabilization phase of learning was entered

from about the 2,000th episode, and data from episodes 2,000

to 5,000 were checked for this item. The results of three

replications of experiments were independently plotted and

displayed on separate graphs. This was checked by separating

and visualizing the results before and after applying the

“Velocity Range-based Evaluation Method” to the experiment

on the SAC algorithm.

• The comparison of the cumulative frequency for an inefficient

learning path: First of all, when experimenting with the SAC

algorithm, learning became stable from about the 2,000th

episode, so stable data from episodes 2,000 to 5,000 were

checked, excluding data in an unstable state at the beginning

of learning. At this time, if the path movement count was over

150, the learning was judged as being inefficient. Therefore, the

case in which the path movement count exceeds 150 is divided

into nine ranges: (150–200), (200–250), (250–300), (300–350),

(350–400), (400–450), (450–500), (500–550), and (550–600);

the frequency for each range was checked. At this time, all

three experimental data were combined and checked, and

the frequency of episodes was verified by experimenting with

and without applying the proposed “Velocity Range-based

Evaluation Method” technique.

• The comparison of the path found rate: Three experiments

were conducted with the SAC algorithm and the “Velocity

Range-based Evaluation Method” applied to the SAC

algorithm. Each time, the experiment was repeated for 5,000

episodes, and the percentage of successfully found paths

was calculated every 50 episodes. In addition, the maximum

and minimum percentages of the three experiments were

visualized in a graph to check the deviation between

the experiments.

4. Results and discussions

Figures 9, 10 check and visualize the path movement count and

the final reward value from the experimental results by a simple

plots and a box plots. The results of the experiments that were

conducted are detailed in the following. Figure 9 shows the results

of experiment #1, which did not apply “Velocity Range-based

Evaluation Method”.

According to the path movement counts of the DDPG

algorithm experiment in a simple plot graph of Figure 9A, the

values fluctuate between 60 and 100 before the 1,000th episode,

and the values fluctuate between 80 and 60 as learning progresses.

The path movement counts of the SAC algorithm experiment

in a simple plot graph of Figure 9B showed values with very

large deviations as well as wide fluctuations in the early stages

of learning, and the number of steps increased to 160. However,

as learning progressed, the changes in the values decreased, and

it was confirmed that they stably converged to values between

80 and 60 from about the 3,000th episode. In the early stage of

learning, the DDPG algorithm showed a relatively small range of

value fluctuations and reached the target position with a small

number of steps, but the experimental results of the SAC algorithm

and the DDPG algorithm showed similar performance after the

3,000th episode. In the box plots, the width of the quartiles and

the difference between the minimum and maximum values were

found to be slightly narrower for SAC algorithm compared to

DDPG algorithm.

In Figure 9C, which shows the final reward values of the DDPG

algorithm experiment in a simple plot graph, it can be seen that the

reward value increases at the beginning of learning and learning

proceeds, and the reward value fluctuates between 13 and 18 after

the 2,000th episode and is maintained until the end. The final

reward values of the SAC algorithm experiment shown in a simple

plot graph of Figure 9D learned by increasing the reward value

from the beginning, but the reward value fluctuated between 16.5

and 20 after the 2,000th episode and was maintained until learning

ended. According to the box plot, the difference is obvious from

the 2,000th episode. The width of the quartiles and the difference

between the minimum and maximum values are narrower for SAC

compared to DDPG. It can also be seen that the positions of the

boxes become quite similar in the case of the SAC algorithm.

Figure 10 shows the results of experiment #2 which “Velocity

Range-based EvaluationMethod” was applied. The path movement

counts of the DDPG algorithm experiment in a simple plot graph

are shown in Figure 10A. The values fluctuated between 60 and 100

around the 1,000th episode, while the values fluctuated between

80 and 60 as learning progressed. The path movement counts of

the SAC algorithm experiment in a simple plot graph are shown in

Figure 10B. As learning progressed, the values stabilized, and it was

confirmed that they stably converged to values between 80 and 60

after the 3,000th episode. In the early stage of learning, the DDPG
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FIGURE 9

Experiment #1 result: (A) path movement count of DDPG; (B) path movement count of SAC; (C) final reward value of DDPG; (D) final reward value of

SAC.
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FIGURE 10

Experiment #2 result: (A) path movement count of DDPG; (B) path movement count of SAC; (C) final reward value of DDPG; (D) final reward value of

SAC.
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algorithm showed a relatively small range of value fluctuations and

reached the target position with a small number of steps, but after

the 3,000th episode, the experimental results of the SAC algorithm

and the DDPG algorithm showed similar performance. Checking

the experimental results in the box plots, we can see that the

width of the quartiles and the difference between the minimum and

maximum values are slightly narrower for SAC compared to DDPG

in experiment #1, but they are quite similar in experiment #2.

According to the DDPG algorithm experiment’s final reward

values shown in Figure 10C, the reward value increased at the

beginning of learning and learning progressed. The reward values

fluctuated and were maintained between 13 and 18 after the

2,000th episode. In the case of the SAC algorithm experiment’s final

reward values shown in a simple plot graph of Figure 10D, learning

proceededwith the reward value rapidly increasing before the 500th

episode. The reward values fluctuated and were firmly maintained

between 17 and 20 after the 2,000th episode. The box plots show

that the differences start to become apparent after 2,000 episodes.

The width of the quartiles and the difference between the minimum

and maximum values are narrower for SAC compared to DDPG.

Also, in the case of the SAC algorithm, after 3,500 episodes, the

locations of the boxes are clustered around the reward value of

20, and the median values are quite similar, showing a consistent

data distribution.

In the graphs shown above, the results of individual

experiments can be verified, and the DDPG algorithm and the

SAC algorithm can be compared in terms of the evaluation

criteria. However, it is not easy to grasp and understand the

meaning and implications of the overall experimental results.

Therefore, as shown in Figure 11, the average values of the

results of three experiments were verified for each evaluation

criterion and comprehensively compared in a single graph

without distinguishing between the algorithms. Figure 11 verify

and visualize the path movement count and the final reward value

by a simple plots and a box plots.

The averages path movement count values in a simple plot

graph are shown for each experimental case in Figure 11A.

Compared to the SAC algorithm, the DDPG algorithm tends to

reach the target position with a relatively smaller number of steps

in the initial learning. However, both the SAC algorithm and the

DDPG algorithm showed similar performance after the 3,000th

episode. It was confirmed that the count of path movements

converged to about 60 to 80 after the 3,000th episode. In these

results, there was not much difference between applying the

“Velocity Range-based Evaluation Method” and not applying it.

Moreover, there was no significant difference in the experimental

results between the DDPG algorithm and the SAC algorithm. In

the box plot graph, the differences in the size of the boxes and their

values are not significant after 3,000th episode.

The average final reward values in a simple plot graph are

shown for each experimental case in Figure 11B, where it can be

seen that the SAC algorithm shows definitely superior performance

than the DDPG algorithm. In particular, the experiment using the

“Velocity Range-based Evaluation Method” shows slightly more

stable and superior performance than the case in which it is

not applied. When the proposed technique was applied, it was

confirmed that the learning proceeded robustly from the beginning

of learning and was maintained stably. In the simple plot graph,

the “Velocity Range-based Evaluation Method” definitely learns

quickly and shows good performance before the 2,000th episode,

but it is not clear whether the improvement is valid after the

2,000th episode. In the box plot graph, we can clearly see that

the SAC algorithm performs better than DDPG, but it is not

easy to make sure if the experiment that applied “Velocity Range-

based Evaluation Method” has improved, too. Therefore, further

verification is needed to confirm the validity of the “Velocity Range-

based Evaluation” Method when testing with the SAC algorithm.

Simple plot graphs and box plot graphs were provided to

understand and verify the experimental results. We roughly

identified which experiments were superior and which were

inferior. However, it might not be clear enough for some points

to check the validity with only two visualization graphs, so

we performed statistical validation. To determine whether the

observed results are statistically significant, we conducted statistical

significance tests by paired t-test. The test was performed with a

confidence level of 0.95 and α value of 0.05.

• Regarding the path movement count, two points need to be

confirmed. The first is to verify that the experimental results

of DDPG and SAC are similar after 3,000 episodes. The

null hypothesis “the experimental results of DDPG and SAC

are similar after 3,000 episodes” is confirmed to be true for

experiment #1 and experiment #2. For experiment #1, the

p one-tailed test value is 0.4632, and it confirmed that the

null hypothesis is true. For experiment #2, the p one-tailed

test value is 0.0638, and it confirmed that the null hypothesis

is true. Therefore, the experimental results of DDPG and

SAC proved not significantly different after 3,000th episode in

terms of path movement count. The second is to verify that

there is no significant difference between the “Velocity Range-

based Evaluation Method” applied to the SAC algorithm

and the SAC algorithm after 3,000th episode in terms of

path movement count. Therefore, the null hypothesis “the

experimental results of the ‘Velocity Range-based Evaluation

Method’ applied to the SAC algorithm and the SAC algorithm

are similar after 3,000 episodes” is confirmed to be true. The

p one-tailed test value is 0.4521, and it confirmed that the

null hypothesis is true. Therefore, the experimental results

of the “Velocity Range-based Evaluation Method” applied

to the SAC algorithm and the SAC algorithm proved no

significantly different after 3,000th episode in terms of path

movement count.

• Regarding the final reward value, two points need to be

confirmed. The first is to verify whether the performance of

the SAC algorithm is better than the DDPG algorithm in terms

of the final reward value. To check this, we verified the null

hypothesis “the final reward value of the DDPG algorithm and

the final reward value of the SAC algorithm are the same” and

the alternative hypothesis “the final reward value of the SAC

algorithm is greater than the final reward value of the DDPG

algorithm”. For the result of paired t-test, the p one-tailed test

value is 1.8753E-10, and it confirmed that the null hypothesis

is false and the alternative hypothesis is true. The second

is to verify whether the “Velocity Range-based Evaluation
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FIGURE 11

Comparison of test cases: (A) average of path movement count; (B) average of final reward value.

Method” performs better in terms of the final reward value.

To check this, we verified the null hypothesis “the final reward

value of the SAC algorithm and the final reward value of the

‘Velocity Range-based Evaluation Method’ applied to the SAC

algorithm are the same” and the alternative hypothesis “the

final reward value of the ‘Velocity Range-Based Evaluation

Method’ applied to the SAC algorithm is greater than the

final reward value of the SAC algorithm.” For the result of

paired t-test, the p one-tailed test value is 0.0023, and it

confirmed that the null hypothesis is false and the alternative

hypothesis is true. Consequently, it is proved that the SAC

algorithm performs better than the DDPG algorithm, and

the “Velocity Range-based Evaluation Method” applied to the

SAC algorithm performs better than the SAC algorithm only.

From the above visualization and statistical analysis, it is clear

that the SAC algorithm outperforms the DDPG algorithm in terms

of the trend of the final reward value and it was confirmed that the

final reward value was higher when the proposed method “Velocity

Range-based Evaluation Method” was applied than when it was

not applied. However, in terms of the effectiveness of the “Velocity

Range-based Evaluation Method”, it would be better to check what

specific problems were improved in addition to better learning,

stability, and higher reward values.

If we look closely at the simulation experiment after the 2,000th

episode, the mobile robot mostly finds the path quickly. However,

finding the path was delayed intermittently and it takes more time

to arrive at the target position sometimes. In this paper, we will

name this problem “Intermittent Path Movement Count Increase

Problem”. Therefore, we checked whether the proposed “Velocity

Range-based Evaluation Method” is effective in improving this

issue. For this, we checked the movement counts for all paths found

in the experimental results in a bar graph.

Figure 12 shows a comparison of the SAC algorithm with and

without the “Velocity Range-based Evaluation Method”, and the

count of movements for every path found is plotted separately in

a bar graph. In the bar graphs, the red circles within the red dashed

area indicate that the count of path movement exceeds 200. For

Experiment #1, this happened 17 times in the first trial, 23 times

in the second trial, and 18 times in the third trial. The results

of Experiment #2 were 5 times in the first trial, 11 times in the

second trial, and 7 times in the third trial. In the case of path

movement count with a large number, it is an inefficient result

compared to a small number. When checking the case in which

the count of the path movement exceeds 200, it was confirmed

that the case where “Velocity Range-based EvaluationMethod” was

applied significantly reduced the count of the path movements that

exceeded 200 compared to the case where it was not applied.
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FIGURE 12

Status of intermittent path movement count increase problem in SAC algorithm: (A) 1st of Experiment #1; (B) 2nd of Experiment #1; (C) 3rd of

Experiment #1; (D) 1st of Experiment #2; (E) 2nd of Experiment #2; (F) 3rd of Experiment #2.
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A simple comparison can be made using the previous graphs,

but it is necessary to check for a more quantitative and accurate

comparison. The previous experimental results indicated that the

count of path movement was concentrated at a value smaller than

150, and the cases the path movement count exceeds 200 is too few

cases, so we lowered the threshold to 150 to check more data. It

was thought that this phenomenon could be judged to be relatively

inefficient if the count of path movement was >150, even if the

episode was successful. Therefore, the counts of path movement

are divided into nine ranges: (150–200), (200–250), (250–300),

(300–350), (350–400), (400–450), (450–500), (500–550), and (550–

600); the frequency of path movement count is checked for each

range in Figure 13. For this review, the stable data of episodes

2,000 to 5,000 were checked, the case where the “Velocity Range-

based Evaluation Method” was applied and the case where it was

not applied were compared. The first experimental case is the

case where the “Velocity Range-based Evaluation Method” was

not applied and the color of the bar is marked in orange. The

second experimental case is the case where the “Velocity Range-

based Evaluation Method” was applied and the color of the bar

is marked in green. Between episodes 2,000 and 5,000, the path

movement counts exceeded 150 have occurred 345 times in the

first case and 137 times in the second case. In the first case, it

occurred 115 times in the 150–200 range, 51 times in the 200–

250 range, 55 times in the 250–300 range, 34 times in the 300–350

range, 19 times in the 350–400 range, 26 times in the 400–450

range, 23 times in the 450–500 range, 15 times in the 500–550

range, and 7 times in the 550–600 range. In the second case, it

occurred 62 times in the 150–200 range, 31 times in the 200–250

range, 13 times in the 250–300 range, 7 times in the 300–350 range,

6 times in the 350–400 range, 5 times in the 400–450 range, 4

times in the 450–500 range, 7 times in the 500–550 range, and 2

times in the 550–600 range. The frequency of the “Intermittent Path

Movement Count Increase Problem” was reduced by about 66%

and it is reduced up to 73% in the 250 to 600 range. Consequently,

the proposed “Velocity Range-based Evaluation Method” is clearly

effective in improving the “Intermittent Path Movement Count

Increase Problem”.

Figure 14 shows the difference between the SAC algorithm

experiment and the experiment with the “Velocity Range-based

Evaluation Method” applied to the SAC algorithm, which was

conducted three times each, by calculating the percentage of

successfully finding the path every 50 episodes and visualizing

the maximum and minimum rates. In the case of the SAC

algorithm, the difference is quite large at the beginning of

learning and gradually decreases as learning progresses, while

in the case of the “Velocity Range-based Evaluation Method”

applied to the SAC algorithm, we can see the feature that the

experiment proceeds with little difference in deviation from the

beginning of learning. This feature also has the advantage that

the learning effect can be seen in a short time in the case of the

“Velocity Range-based Evaluation Method” applied to the SAC

algorithm. Therefore, the small performance difference between the

experiments and the rapid and stable learning from the beginning

are the advantages of the “Velocity Range-based Evaluation

Method” method.

5. Conclusions

In this paper, experiments were conducted in a simulation

environment using LiDAR sensors and deep reinforcement

learning for the self-moving path planning of a single autonomous

mobile robot in a small-scale warehouse environment, and

additional performance improvements were proposed and verified.

In constructing the experimental environment, global path

planning was not considered, and local path planning was replaced

with deep reinforcement learning. In terms of hardware, an

autonomous mobile robot using 21 channels of LiDAR sensors was

simulated. In particular, to learn path planning using reinforcement

learning for an autonomous driving environment, it was necessary

to consider a continuous action space that was different from those

used in previous studies. For this reason, the deep reinforcement

learning algorithm is a policy-based type of policy gradient

algorithm. The DDPG algorithm and SAC algorithm were used.

Moreover, the state, action, and reward methods were defined in

consideration of the above-mentioned points. Further, to improve

the additional performance and stability of reinforcement learning

for autonomous driving, the “Velocity Range-based Evaluation

Method” was proposed for the Reward technique. The experiment

results were classified by the algorithm, and individual experiment

results were confirmed. In addition, two types of graphs, a simple

plot graph and a box plot graph, were shown to compare and

analyze results. To capture the trend and efficiency of learning,

we checked the change of final reward value and the movement

count of the paths found, and the performance of the SAC

algorithm was found to be better than the DDPG algorithm.

The effectiveness of the proposed method “Velocity Range-based

Evaluation Method” was confirmed by the fact that the final

reward value was higher when it was applied than when it was

not applied, and this result was also verified statistically. In

addition, we also confirmed that the frequency of the phenomenon

of intermittent increasing of the path movement count, which

is the “Intermittent Path Movement Count Increase Problem”

was reduced by about 66%. It reduces the difference between

each experiment, enabling consistent learning and confirming fast

learning performance with stable learning from the beginning.

The “Velocity Range-based Evaluation Method” method can be

used when implementing the autonomous driving of a mobile

robot. To apply it, it is necessary to check and redefine the

values of velocity range and evaluation score according to the

experimental environment.

This research focuses on the implementation of autonomous

mobile robots and the use of deep reinforcement learning to

find the optimal path for autonomous driving. Autonomous

mobile robots are rapidly being utilized in various fields and

can be easily seen in our lives. Autonomous mobile robots

that used to move around buildings are expected to evolve

into delivery robots that deliver long distances in the near

future, and autonomous robots for security surveillance. These

autonomous mobile robots are expected to reduce costs, increase

efficiency, and provide convenience to society and businesses.

However, on the other hand, in terms of employment, there

are disadvantages of replacing people’s jobs with robots, and
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FIGURE 13

Comparison of cumulative frequency for intermittent path movement count increase problem.

FIGURE 14

Comparison of the path founding rate: (A) SAC; (B) SAC with “Velocity Range-based Evaluation Method”.

security concerns may be raised, such as the risk of exposing

personal information collected through sensors and cameras.

Despite these concerns, the utilization and application of

robots is expected to expand rapidly. In particular, for the

application of delivery robots and autonomous robots for

surveillance, standards for authorization/permission must be

established, relevant laws and regulations must be established,

and inefficient regulations that hinder the use of robots must be

actively relaxed.

As a future research direction, we would like to review

the areas that need to be realistically identified and considered
in order to use reinforcement learning for optimizing the
path planning of mobile robots, develop additional evaluation

criteria to strengthen the objective analysis and interpretation
of experimental results, further strengthen the statistical
interpretation to prove them, and solve the inherent problems

and constraints in path planning based on reinforcement

learning, and use reinforcement learning technology for actual

mobile robots.
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