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Introduction: Chronological aging is a well-recognized diagnostic and

prognostic factor in multiple cancer types, yet the role of biological aging in

manifesting cancer progression has not been fully explored yet.

Methods: Given the central role of chronological aging in prostate cancer and

AML incidence, here we investigate a tissue-specific role of biological aging in

prostate cancer and AML progression. We have employed Cox proportional

hazards modeling to associate biological aging genes with cancer progression

for patients from specific chronological aging groups and for patients with

differences in initial cancer aggressiveness.

Results: Our prostate cancer-specific investigations nominated four biological

aging genes (CD44, GADD45B, STAT3, GFAP) significantly associated with time

to disease progression in prostate cancer in Taylor et al. patient cohort. Stratified

survival analysis on Taylor dataset and validation on an independent TCGA and

DKFZ PRAD patient cohorts demonstrated ability of these genes to predict

prostate cancer progression, especially for patients with higher Gleason score

and for patients younger than 60 years of age. We have further tested the

generalizability of our approach and applied it to acute myeloid leukemia (AML).

Our analysis nominated three AML-specific biological aging genes (CDC42EP2,

CDC42, ALOX15B) significantly associated with time to AML overall survival,

especially for patients with favorable cytogenetic risk score and for patients older

than 56 years of age.
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Discussion: Comparison of the identified PC and AML markers to genes selected

at random and to knownmarkers of progression demonstrated robustness of our

results and nominated the identified biological aging genes as valuable markers

of prostate cancer and AML progression, opening new avenues for personalized

therapeutic management and potential novel treatment investigations.
KEYWORDS

genome-wide analysis, biological aging, biomarkers, cancer progression,
precision medicine
1 Introduction

Chronological aging is a widely recognized diagnostic and

prognostic factor across a variety of diseases, including oncogenic

and nononcogenic malignancies. In recent years, biological age has

received a lot of attention in attempts to slow down the onset of

aging and reverse age-related deterioration (1–4). As opposed to the

chronological age of how long a person has existed, biological age is

defined based on how old a person’s cells are, reflecting one’s

functionality and onset of diseases related to old age. The role of

biological aging has recently received a lot of attention in

Alzheimer’s disease and multiple sclerosis (1–4), but its role in

oncology remains a largely unexplored promising new direction

with potential for more effective biomarker discovery and novel

therapeutic strategies.

Chronological age is a known central player in prostate cancer

(PC) incidence, as more than 65% of all prostate cancer cases are

diagnosed after the age of 65, with incidences increasing with each

year of age. While chronological age is not a prognostic biomarker

in prostate cancer (i.e., disease aggressiveness is not correlated with

age at diagnosis), the prognostic role of biological age in this

malignancy has not been investigated to date.

Our state-of-the-art literature investigations uncovered

nontissue-specific 52 genes associated with biological aging,

including genes from the hippocampus associated with

Alzheimer’s disease (1), multiple tissues in association with

cognitive health (2), skeletal muscles associated with aging (3),

and genes associated with aging and mortality (4).

Among the nontissue-specific 52 genes associated with biological

aging (1–4), four genes (CD44, GADD45B, STAT3, and GFAP)

showed prostate cancer tissue-specific association with disease

progression in the Taylor et al. primary prostate cancer cohort when

adjusted for initial Gleason score (which reflects histologic patterns

with prognostic significance in PC) and chronological age. Further

stratification of this cohort into subgroups of patients with low and

high Gleason scores and younger and older age and subsequent

validation in TCGA and DKFZ patient cohorts demonstrated that

the four prostate cancer-specific biological aging genes are particularly
02
predictive of PC progression in patients with a higher Gleason score

(above 3 + 4) and for patients of younger age (≤ 60 years).

Furthermore, we have tested the generalizability of our

approach and applied it to acute myeloid leukemia (AML) with

overall survival as a clinical endpoint, identifying three genes

(CDC42EP2, CDC42, and ALOX15B) that demonstrated

association with AML overall survival in the BEAT AML bone

marrow patient cohort (5), adjusted for cytogenetic risk (which

reflects clinicopathologic features with prognostic significance in

AML) and chronological age. Further stratification of this cohort

into subgroups of patients with favorable and unfavorable

cytogenetic risk scores and younger and older age and validation

in TCGA LAML patient cohort (6) demonstrated that the three

AML-specific biological aging genes are particularly predictive of

AML overall survival in patients with favorable cytogenetic scores

and for patients of older age (> 56).

Finally, comparison to an equally sized set of genes selected at

random and to known markers of PC and AML progression,

respectively, demonstrated the nonrandom, independent, robust

ability of the identified biological aging genes to predict either PC or

AML progression, as applicable. Our results indicate that the

identified biological aging markers present an independent line of

evidence for patient stratification and predictive modeling in

addition to initial cancer aggressiveness and patient chronological

age and thus could be effectively utilized for personalized disease

management and therapeutic advice.
2 Methods

2.1 Biological aging genes

The literature search identified 52 nontissue-specific genes

associated with biological aging, including genes from the

hippocampus associated with Alzheimer’s disease (1), multiple

tissues associated with cognitive health (2), skeletal muscles

associated with aging (3), and genes associated with aging and

mortality (4) (Supplementary Table S1, Supplementary Materials).
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2.2 Methods for prostate cancer analysis

2.2.1 Prostate cancer patient cohorts utilized
in this study

PC gene expression patient cohorts utilized for this study

included (i) the Taylor et al. (7) cohort, used for model training/

discovery; (ii) The Cancer Genome Atlas Prostate Cancer

Adenocarcinoma (TCGA PRAD) cohort (6), used for test/

validation; and (iii) the Deutsches Krebsforschungszentrum

(DKFZ, The German Cancer Research Center) PRAD cohort (8),

used for additional test/validation (Table 1).

The Taylor et al. cohort (7) is an MSKCC dataset composed of

primary tumor prostatectomy samples (n = 138), profiled on the

Affymetrix Human Exon 1.0 ST Array, and obtained from the Gene

Expression Omnibus (GEO) GSE21032. Gene expression data were

normalized using the robust multi-array average (RMA) algorithm

for background correction, quantile normalization, and log2-

transformation. The clinical endpoint was defined as a time to

biochemical recurrence (BCR) or time to the latest follow-up

(censored data).

TCGA PRAD cohort (6) is composed of primary tumor

prostatectomy samples (n = 384), profiled on Illumina HiSeq

2000, with its RNA-sequencing and clinical data obtained from

dbGap phs000178 and cBioPortal. TCGA dataset was mapped to
Frontiers in Oncology 03
hg19 using the STAR aligner (9). Raw counts were normalized, and

variance was stabilized using DEseq2 normalization (10). Two

clinical endpoints were considered: (i) time to BCR (defined as a

rise of prostate-specific antigen in patient’s blood)/latest follow-up

(censored data); and (ii) time to progression-free survival (PFS,

defined as the progression of cancer, local recurrence, distant

metastases, or PC-specific death)/latest follow-up.

The DKFZ PRAD cohort (8) is composed of primary tumor

prostatectomy samples (n = 100) profiled on Illumina HiSeq 2000,

with RNA-sequencing and clinical data obtained from cBioPortal.

Gene expression data were obtained from cBioPortal as RPKM

values, z-scored relative to all samples. The clinical endpoint was

defined as a time to BCR or time to the latest follow-up

(censored data).

2.2.2 Identification of PC-specific biological
aging genes associated with PC progression

To identify PC-specific biological aging genes associated with

prostate cancer progression, we employed Cox proportional

hazards analysis using the coxph function from the R survival

package (11) on the Taylor et al. training cohort. The 52

biological aging genes were used as input variables, and time to

BCR was used as a clinical endpoint in the univariable Cox

proportional hazards analysis on the Taylor et al. patient cohort,

adjusted for Gleason score (combined major plus minor Gleason

was used for adjustment purposes) and chronological age variables

(adjusted hazard p-value of < 0.05 was considered significant,

Supplementary Table S2, Supplementary Materials).

To assess for multicollinearity among the identified (four) PC

genes, we employed the variance inflation factor (VIF) analysis

using the vif function from the R car package (11). The threshold of

5 was utilized to evaluate the presence of multicollinearity (all

evaluated genes had values below 1.5).

For multivariable additive Cox proportional hazards modeling,

expression levels of four identified genes were utilized as input

variables and were adjusted for Gleason score and chronological age

(as above). An adjusted Wald test p-value of < 0.05 was

considered significant.
2.2.3 PC stratified survival analysis
To investigate the predictive ability of the biological aging genes

in subsets of patients defined by Gleason scores and chronological

age, we employed cohort stratification. For this, the training Taylor

et al. cohort was divided into two Gleason score groups: a group

consisting of patients with Gleason scores 3 + 3 and 3 + 4,

considered least aggressive clinically (n = 94), and the group

consisting the rest of the patients (n IL = 44). For chronological

age-stratified analysis, the Taylor et al. cohort was divided into two

age groups: a group consisting of patients aged less than equal to a

median age (in the Taylor et al. training cohort) of 60 (n = 87) and a

group consisting of patients aged over 60 (n = 51).

Multivariable additive Cox proportional hazards modeling was

run utilizing four identified genes as input variables and time to

BCR as a clinical endpoint for each stratified group separately.
TABLE 1 Clinical characteristics of prostate cancer patient cohorts
utilized in this study.

Characteristics Training
cohort
(Taylor
et al.)

Test
cohort 1
(TCGA
PRAD)

Test
cohort 2
(DKFZ
PRAD)

Number of samples 138 384 100

Number of BCR
events

35/138 (25.36%) 49/384
(12.76%)

24/100 (24%)

Number of PFS
events

NA 74/384
(19.27%)

NA

Platform Affymetrix
Human Exon
1.0 ST Array

Illumina HiSeq
2000

Illumina HiSeq
2000

Age

≤ 60 87 175 100

> 60 51 209 NA

Gleason score

3 + 3 41 38 11

3 + 4 53 121 57

3 + 5 1 7 0

4 + 3 23 80 18

4 + 4 8 45 1

4 + 5 10 88 13

5 + 3 2 5 0
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2.2.4 PC testing/validation analysis
For testing/validation purposes, a multivariable additive Cox

proportional hazards model in a stratified setting was performed

using TCGA PRAD and DKFZ PRAD patient cohorts. For Gleason

stratification (similarly to the training cohort), two subgroups were

defined: the group that included patients with Gleason 3 + 3 and 3 +

4 (TCGA n = 159, DKFZ n = 68) and the group that included the

rest of the patients (TCGA n = 225, DKFZ n = 32). For

chronological age stratification, two subgroups were defined as in

training: the group that included patients aged ≤ 60 (TCGA n = 175,

DKFZ n = 100) and the group that included patients aged > 60

(TCGA n = 209, DKFZ = NA as this dataset only included patients

younger than 6 years of age). The Cox proportional hazards model

and p-values were estimated as above (i.e., during training).
2.3 Methods for acute myeloid
leukemia analysis

2.3.1 AML patient cohorts utilized in this study
AML gene expression patient cohorts utilized in this study

included (i) the BEAT AML cohort (5), used for model training/

discovery; and (ii) TCGA AML (also referred to as TCGA LAML)

(6), used for model test/validation (Table 2).

The BEAT AML (5) dataset is composed of bone marrow samples

from de novoAML (n = 127), profiled on Illumina HiSeq 2500, with its

RNA-sequencing and clinical data obtained from dbGap

phs001657.v2.p1 and downloaded through the Genomic Data

Commons (GDC). BAM files were converted to FASTQ files, which

were then mapped to hg38 using the STAR aligner (9). Raw counts

were normalized, and variance was stabilized using DEseq2

normalization (10). Overall survival was utilized as a clinical endpoint.

TCGA AML (6) dataset is composed of bone marrow samples

from de novo AML (n = 151), profiled on Illumina HiSeq2000, with

its RNA-sequencing and clinical data obtained from TCGA

phs000178.v11.p8 and downloaded through the GDC. BAM files
Frontiers in Oncology 04
were converted to FASTQ files, which were then mapped to hg38

using the STAR aligner (9). Raw counts were normalized, and

variance was stabilized using DEseq2 normalization (10). Overall

survival was utilized as a clinical endpoint.

2.3.2 Identification of AML-specific biological
aging genes associated with AML progression

To identify AML-specific biological aging genes associated with

AML progression, we employed Cox proportional hazards analysis

using the coxph function from the R survival package (11) as above on

the BEAT AML training cohort. The 52 biological aging genes were

used as input variables, and overall survival was used as a clinical

endpoint in the univariable Cox proportional hazards analysis, adjusted

for cytogenetic risk score (based on ELN2017 guidelines (12), which

utilize cytogenetics and mutation patient profiles and includes

favorable, intermediate, and poor risk scores) and chronological age

variables (an adjusted hazard p-value of< 0.05 was considered

significant, Supplementary Table S3, Supplementary Materials). To

ensure an appropriate sample size for each group, we combined

intermediate and poor cytogenetic risk score categories into the

“unfavorable” category.

Multicollinearity was assessed as above, with all evaluated genes

having values below 1.5. For multivariable additive Cox

proportional hazards modeling, expression levels of three

identified genes were utilized as input variables and were adjusted

for cytogenetic score and chronological age (as above). An adjusted

Wald test p-value of < 0.05 was considered significant.

2.3.3 AML stratified survival analysis
To investigate the predictive ability of the biological aging genes

in subsets of patients defined by cytogenetic risk and chronological

age, we employed cohort stratification. For this, the training BEAT

AML cohort was divided into two cytogenetic risk groups (based on

ELN2017 guidelines): consisting of patients with favorable

cytogenetic risk (n = 53) and unfavorable cytogenetic risk (n =

74, which included patients with intermediate and poor cytogenetic

risk scores, for sample size purposes). For chronological age-

stratified analysis, the BEAT AML cohort was divided into two

age groups: patients with a median age of ≤ 56 in the BEAT AML

training cohort (n = 64) and patients aged > 56 (n = 63).

Multivariable additive Cox proportional hazards modeling was

run utilizing three identified genes as input variables and overall

survival as a clinical endpoint for each stratified group separately.

2.3.4 AML testing/validation analysis
In AML, for testing/validation purposes, a multivariable additive

Cox proportional hazards model in a stratified setting was performed

using TCGA AML patient cohort. For cytogenetic stratification

(similarly to the training cohort), two groups were defined: the group

that included patients with favorable cytogenetic risk (n = 30) and a

group that included patients with unfavorable cytogenetic risk (n =

121). For chronological age stratification, two groups were similarly

defined: a group that included patients aged ≤ 56 (n = 76) and a group

that included patients aged > 56 (n = 75). The Cox proportional

hazards model and p-values were estimated as above (i.e.,

during training).
TABLE 2 Clinical characteristics of AML patient cohorts utilized in this
study.

Characteristics Training cohort
(BEAT AML)

Test cohort
(TCGA AML)

Number of de-novo
cases (bone marrow)

127 151

Number of events
(overall survival)

46/127 (36.22%) 97/151 (64.24%)

Platform Illumina HiSeq 2500 Illumina HiSeq2000

Age

≤ 56 64 76

> 56 63 75

Cytogenetic risk

Favorable 53 30

Unfavorable 74 121
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2.4 Comparison to genes selected and
random and to known markers of PC
and AML progression

For both PC and AML analyses, to compare the predictive

ability of identified biological aging genes to the predictive ability of

the equally sized (i.e., four or three, respectively) set of genes

selected at random, we defined a random model using the Taylor

et al. patient cohort (for PC analysis) and BEAT AML cohort (for

AML analysis). In this model, four (for PC) or three (for AML)

genes were selected at random and subjected (as a group) to

multivariable additive Cox proportional hazards model analysis,

with a Wald test p-value reported. This process was repeated 10,000

times, and a nominal p-value for the random model was calculated

as the number of times the random model reached or outperformed

the p-value for the original (non-random) biological aging genes.

The tidyverse, survival, and factoextra R packages were utilized for

this analysis.

For comparison to knownmarkers of PC and AML progression,

respectively, we employed a univariable Cox proportional hazards

model with adjustment for covariates such as Gleason score and

chronological aging (for PC) and cytogenetic score and

chronological aging (for AML).
2.5 Statistical considerations

All statistical analysis was performed using R Studio version

4.4.1. The Cox proportional hazards model was utilized for

training/discovery and testing/validation purposes, with and

without adjustment for clinical variables, as appropriate. The

significance of the analysis was estimated using a hazard p-value

or Wald p-value, where appropriate. To investigate pathway

membership of the four (for PC) or three (for AML) identified

genes, we utilized the DAVID bioinformatics tool (13) to perform

pathway enrichment analysis, where the FDR-corrected chi-square

test p-value of< 0.05 was considered significant. Integration of p-

values was done using the harmonic mean method, which is well
Frontiers in Oncology 05
suited for our analysis as it produces significant results when all/

majority of the input p-values are significant (14).

For two p-values x and y, the harmonic mean is defined as:

Harmonic mean   (x, y) =  
2*x*y
x + y

For three p-values x and y, the harmonic mean is defined as:

Harmonic mean (x, y, z) =  
2*x*y*z

x*y + y*z + x*z

Integrated p-values (from the harmonic mean calculation) were

then FDR-corrected, with FDR-corrected integrated p-values of<

0.05 considered significant. Patient cohorts for training/discovery

and for testing/validation were obtained from the GEO, dbGap,

GDC, and cBioPortal public repositories.
3 Results

The overall objective of our investigations was to evaluate

biological aging genes for their ability to predict cancer-specific

disease progression across patient cohorts (Figure 1, left). The

ultimate goal is for each patient to be assigned a disease

aggressiveness (i.e., risk) score based on the activity levels of these

genes (Figure 1, middle). These scores would then be utilized to

allow for personalized disease management and therapeutic advice

(Figure 1, right).
3.1 Investigating biological aging genes

To identify nontissue-specific genes associated with biological

aging, we have reviewed the current state of the literature and

identified 52 genes associated with biological aging, including genes

from the hippocampus associated with Alzheimer’s disease (1) (n =

28), multiple tissues associated with cognitive health (2) (n = 15)

and age prediction (15) (n = 2), and skeletal muscles associated with

aging (3) (n = 5), associated with aging and mortality (4) (n = 1),
FIGURE 1

Overall schematics and objectives of our approach. Patient gene expression profiles are examined for the activity of biological aging genes (left). This
allows us to assign each patient a score based on the risk of disease progression (middle). The scores are utilized to provide personalized therapeutic
advice (right).
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and associated with premature aging (16) (n = 1) (Supplementary

Table S1, Supplementary Material).
3.2 Prostate cancer analysis

3.2.1 Model training/discovery: identifying
prostate cancer-specific biological aging genes
associated with prostate cancer progression

Since the 52 biological aging genes were nontissue-specific, our

first objective was to assign their tissue specificity for prostate

cancer. For this, we employed the Taylor et al. patient cohort (n

= 138, see Methods), which comprised primary prostatectomy

samples from patients with prostate cancer, with subsequent

disease progression monitoring (defined as time to BCR). Taylor

et al. dataset was specifically selected for training purposes as it

presented a wide chronological age range (37.3–83.0) and contained

25% of patients with BCR failure events, making it an ideal dataset

for training purposes. We utilized 52 genes as input variables in the

univariable Cox proportional hazards model analysis, with time to
Frontiers in Oncology 06
BCR or the latest follow-up (if censored) as a clinical endpoint

(Figure 2A, left). This analysis identified 17 genes with unadjusted

Cox proportional hazards p-value of< 0.05 (Figure 2A, middle) that

are significantly associated with prostate cancer progression in a

tissue-specific manner. To ensure that our results are not due to the

effect of the initial disease aggressiveness (i.e., Gleason score at

diagnosis) or the effect of chronological age (at diagnosis), we

adjusted our Cox proportional hazards model for these variables

and identified four (4) genes that remained significant (adjusted

Cox proportional hazards p-value of< 0.05) after adjusting for both

Gleason score and chronological age (Figure 2A, right;

Supplementary Table S2, Supplementary Materials).

Four genes (Figure 2B) included those with HR ≤ 1 (negative

association with BCR; the higher the gene expression, the poorer the

prognosis the patient will have), such as CD44 (Cox proportional

hazards model HR = 0.49, p-value of< 0.001), GADD45B (Cox

proportional hazards model HR = 0.55, p-value = 0.008), STAT 3

(Cox proportional hazards model HR = 0.66, p-value = 0.017), and HR

> 1 (positive association with BCR, the higher the gene expression, the

more favorable the prognosis the patient will have) with BCR, such as
B

A

FIGURE 2

Model training identified four prostate cancer-specific biological aging genes associated with cancer progression. (A) Venn diagram from prostate
cancer-specific Cox proportional hazards model analysis, ranging from 52 to 17 to four biological aging genes. (B) A composite hazards plot, where
the analysis for each gene was adjusted for Gleason score and chronological age. Central squares indicate the hazard ratio (HR), and whiskers
indicate the HR confidence interval. Hazard p-values are indicated (*p< 0.05; **p< 0.01; ***p< 0.001).
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GFAP (Cox proportional hazards model HR = 1.30, p-value = 0.036),

demonstrating their significant association with BCR after subtracting

the effect of Gleason score and chronological age (Supplementary Table

S2, Supplementary Materials).

Furthermore, to evaluate if the four genes could be utilized as a

group for clinical purposes, we first assessed if there exists a

multicollinearity among them using VIF analysis (see Methods,
Frontiers in Oncology 07
no multicollinearity identified), followed by the multivariable

additive Cox proportional hazards model analysis (adjusted for

Gleason and chronological age, as above), which demonstrated a

significant benefit of evaluating the four genes as one additive model

(Wald test p-value = 2.014−e9).

Finally, to evaluate pathway membership for the four identified

genes, we employed the DAVID tool for pathway enrichment
B C

A

FIGURE 3

Stratified PC survival analysis identifies the significant predictive ability of four biological aging gene panel in the Taylor et al. cohort. (A) The overall
strategy for stratified survival analysis in the Taylor et al. patient cohort. Patients are divided into lower and higher Gleason score groups (left) and
younger and older chronological age groups (right), with subsequent analysis carried out for each group. (B) Cox proportional hazards model
analysis for the lower Gleason score patient subgroup (left) and the higher Gleason score patient subgroup (right). Wald test p-values and number of
patients in each subgroup are indicated. (C) Cox proportional hazards model analysis for the younger chronological age patient subgroup (left) and
the older chronological age patient subgroup (right). Wald test p-values and number of patients in each subgroup are indicated.
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B C

D E

A

FIGURE 4

Stratified validation PC analysis indicates the significant predictive ability of four biological aging genes for patients with higher Gleason scores and
younger ages. (A) Overall strategy for stratified validation analysis in TCGA and DKFZ PRAD test patient cohort. Patients are divided into lower and
higher Gleason score groups (top) and younger and older chronological age groups (bottom), with subsequent analysis carried out for each group.
(B) Cox proportional hazards model analysis for the lower Gleason score patient subgroup (left) and the higher Gleason score patient subgroup
(right) in TCGA and DKFZ PRAD cohorts. Wald test p-values are indicated. (C) Cox proportional hazards model analysis for the younger
chronological age patient subgroup (left) and the older chronological age patient subgroup (right) in TCGA and DKFZ PRAD cohorts. Wald test p-
values are indicated. (D) Cox proportional hazards model analysis for the lower Gleason score patient subgroup (left) and the higher Gleason score
patient subgroup (right) across Taylor et al., TCGA PRAD, and DKFZ PRAD cohorts. Wald test p-values for each dataset and integrated (harmonic
mean) p-values with and without FDR correction are indicated. (E) Cox proportional hazards model analysis for the younger chronological age
patient subgroup (left) and the older chronological age patient subgroup (right) across Taylor et al., TCGA PRAD, and DKFZ PRAD cohorts. Wald test
p-values for each dataset and integrated (harmonic mean) p-values with and without FDR correction are indicated.
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analysis (13) and identified two significant molecular pathways: the

JAK-STAT and the FoxO signaling pathways (FDR-corrected chi-

square test p-value of< 0.05). The JAK-STAT signaling pathway is

involved in a wide range of cellular processes, including cell

proliferation, differentiation, and survival (17, 18). The FoxO

signaling pathway has been shown to regulate cellular processes

such as apoptosis, cell cycle arrest, and DNA damage repair, which

are important in maintaining genomic stability and preventing

cancer development (19, 20). Both of these pathways have

previously been shown to be implicated in biological age-related

deterioration and disorders (21–23), and their further investigation

might provide valuable insights into the underlying molecular

mechanisms involved in prostate cancer biological age-

related changes.
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3.2.2 Stratified survival analysis
To further investigate if the significant association of the four

biological aging genes with BCR is attributed to specific patient

subgroups (that is driving significance of the association), we have

performed stratified Cox proportional hazards analysis on the

patient subgroups stratified by the (1) Gleason score, which is a

commonly used prognostic factor for prostate cancer, and (2)

chronological age, which is a known diagnostic factor for prostate

cancer (Figure 3A).

For stratified analysis based on the Gleason score, we divided

the Taylor et al. patient cohort into two patient subgroups: (i) lower

Gleason score (3 + 3 and 3 + 4, commonly utilized in clinic as an

indicator of favorable prognosis, n = 94) and (ii) a higher Gleason

score (higher than 3 + 4, n = 44). A multivariable additive Cox
B C

A

FIGURE 5

A biological aging analysis of AML cohorts identifies three genes with significant predictive ability in patients with favorable cytogenetic risk scores
and of older age. (A) A composite hazards plot, where the analysis for each gene was adjusted for cytogenetic risk and chronological age. Central
squares indicate the hazard ratio (HR), and whiskers indicate the HR confidence interval. Hazard p-values are indicated (*p< 0.05; **p< 0.01). (B) Cox
proportional hazards model analysis for favorable cytogenetic risk patient subgroup (left) and unfavorable cytogenetic risk patient subgroups (right)
in the BEAT AML and TCGA AML cohorts. Wald test p-values for each dataset and integrated (harmonic mean) p-values with and without FDR
correction are indicated. (C) Cox proportional hazards model analysis for the younger chronological age patient subgroup (left) and the older
chronological age patient subgroup (right) in the BEAT AML and TCGA AML cohorts. Wald test p-values for each dataset and integrated (harmonic
mean) p-values with and without FDR correction are indicated.
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proportional hazards model utilizing four identified genes as

predictors and time to BCR as response was then performed for

each subset separately (Figure 3B). This analysis demonstrated a

significant association with BCR in a subset of patients with higher

Gleason scores (Cox proportional hazards model Wald test p-value

= 0.007).

For stratified analysis based on chronological age, we divided

the Taylor et al. patient cohort into two patient subgroups: (i)

younger chronological age (≤ 60, n = 87) and older age (> 60, n =

51), where 60 years of age is a commonly utilized threshold to

estimate prostate cancer risk and also corresponds to the mean and

median for the chronological age for this cohort. Multivariable

additive Cox proportional hazards model on each chronological age

subgroup separately (Figure 3C) demonstrated a significant

association between the four identified biological aging genes and

BCR (Cox proportional hazards model Wald p-value = 0.019 for

younger chronological age group and p-value = 0.0045 for older

chronological age group).

3.2.3 Model testing/validation
To validate our findings in independent patient cohorts, we

have utilized (i) TCGA PRAD patient cohort (n = 384, see Methods)

and (ii) the DKFZ PRAD patient cohort (n = 100, see Methods),

both with comparable to the Taylor et al. sample collection protocol

(i.e., primary prostatectomy samples) and clinical endpoint (i.e.,

time to biochemical recurrence).

For testing the predictive ability of the identified four biological

aging genes in TCGA PRAD dataset, it was stratified on Gleason

score, similarly to training, into (i) Gleason scores 3 + 3 and 3 + 4 (n

= 159); and (ii) Gleason scores higher than 3 + 4 (n = 225)

(Figure 4A). Similarly to the Taylor et al. dataset, chronological

age stratification on TCGA PRAD cohort defined (i) a group

characterized by age ≤ 60 (n = 175) and (ii) a group characterized

by age > 60 (n = 209) (Figure 4A).

Stratified analysis on the Gleason score demonstrated a

significant association of the four biological aging genes to BCR

in the higher Gleason score group in TCGA PRAD cohort (Cox

proportional hazards model Wald test p-value = 0.049, Figure 4B).

Stratified analysis on chronological age, demonstrated a significant

association of four biological aging gene panel with BCR in the

younger age (≤ 60) in TCGA PRAD dataset (Cox proportional

hazards model Wald test p-value = 0.029, Figure 4C).

To confirm these findings in another PC patient cohort, we

utilized the DKFZ PRAD dataset that was similarly stratified on

Gleason score into (i) groups with Gleason scores 3 + 3 and 3 + 4 (n

= 68); and (ii) groups with Gleason scores higher than 3 + 4 (n = 32)

(Figure 4A). The DKFZ PRAD cohort only included patients aged

below or at 60 (n = 100). The stratified analysis demonstrated

significant association of the four biological aging genes to BCR in

the higher Gleason score group (Cox proportional hazards model

Wald test p-value = 0.011, Figure 4B) and in the younger age group

(≤ 60) (Cox proportional hazards model Wald test p-value = 0.0019,

Figure 4C), confirming results from TCGA PRAD dataset.

To make final conclusions, we have further integrated our

findings from all three cohorts (Taylor et al., TCGA PRAD, and
Frontiers in Oncology 10
DKFZ PRAD) using FDR-corrected harmonic mean method

(Figures 4D, E; Methods), which nominated a significant

association of the identified genes with BCR in the PC patient

group with a higher Gleason score (FDR-corrected integrated p-

value = 0.023) (Figure 4D) and younger age (≤ 60) subgroup (FDR-

corrected integrated p-value = 0.019) (Figure 4E), indicating that

the four biological aging genes could be utilized as markers to

predict BCR in patients with a higher Gleason score and with a

younger age, potentially allowing for personalized disease

management and therapeutic planning in PC patients.

Furthermore, we expanded our investigations in TCGA dataset

to evaluate if our four genes could predict PFS (defined as the

progression of cancer, local recurrence, distant metastases, or PC-

specific death). Our analysis demonstrated the ability of the four

identified genes to predict PFS in the whole TCGA PRAD cohort in

an additive Cox proportional hazards model (Wald test p-value =

0.034). Even though we observed a significant association with PFS,

we anticipate that different biological aging genes might be involved

in processes that govern BCR, PFS, or OS, requiring

further investigations.
3.3 AML analysis

To test the generalizability of our method, we applied the

analysis of biological aging genes to AML, with overall survival as

the clinical endpoint. For training purposes, we employed the BEAT

AML patient cohort (n = 127, see Methods), which comprised

primary de novo bone marrow samples for patients with AML with

a wide chronological age range (2.0–84.0) and the most balanced

favorable and unfavorable cytogenetic risk groups (40:60, Methods).

To identify AML-specific biological aging genes, we utilized 52

genes as input variables in the univariable Cox proportional hazards

model analysis (adjusted for cytogenetic risk and chronological

age), with overall survival as a clinical endpoint. This analysis

identified three genes with a Cox proportional hazards p-value<

0.05 significantly positively associated with AML overall survival

(HR > 1, the higher the gene expression the more favorable

prognosis the patient will have) (Figure 5A, Supplementary Table

S3, Supplementary Materials): CDC42EP2 (Cox proportional

hazards model HR = 1.4887, p-value = 0.0071), CDC42 (Cox

proportional hazards model HR = 1.5161, p-value = 0.0144), and

ALOX15B (Cox proportional hazards model HR = 1.228, p-value =

0.0452). VIF analysis did not identify any multicollinearity among

the three genes (see Methods), allowing for a multivariable additive

Cox proportional hazards model (adjusted for cytogenetic risk and

chronological aging), which demonstrated the significant benefit of

evaluating the three genes as one additive model (Wald test p-value

= 3e−06).

Gene ontology and pathway enrichment analyses of the three

genes identified RHOQ GTPase Cycle, MAPK6/MAPK4 signaling,

and CDC42 GTPase cycle as significant (FDR-corrected chi-square

test p-value< 0.05). MAPK6/MAPK4 signaling regulates cell

morphology, migration, endocytosis, and cell cycle progression,

and its dysregulation is a known marker of cancer (24).
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Interestingly, cell polarity determinant CDC42 controls division

symmetry to block leukemia cell differentiation and is involved in

AML development (25), while CDC42 GTPase cycle signaling is a

known player in aging and age-related diseases (26), nominating

these genes as valuable markers for further investigation.

To investigate if a significant association of the three biological

aging genes with overall survival is attributed to a specific patient

subgroup (that might be driving significance of the association), we

have performed stratified Cox proportional hazards model analysis

on the patient subgroups stratified by the (1) cytogenetic risk at

diagnosis and (2) chronological age, which are known prognostic

factors for AML (Figures 5B, C).

For stratified analysis based on the cytogenetic risk, the BEAT

AML cohort was divided into two patient subgroups: (i) with

favorable cytogenetic risk (n = 53) and (ii) with unfavorable

cytogenetic risk (n = 74). Multivariable additive Cox proportional

hazards model demonstrated a significant association of the three

identified genes with overall survival in patient groups with
Frontiers in Oncology 11
favorable cytogenetic risk (Cox proportional hazards model Wald

test p-value = 0.01) and unfavorable cytogenetic risk (Cox

proportional hazards model Wald test p-value = 0.02).

For stratified analysis based on chronological age, the BEAT

AML cohort was divided into two patient subgroups: (i) younger

chronological age (≤ 56, n = 64) and older age (>56, n = 63), with 56

years as the median age in the BEAT AML cohort. Multivariable

additive Cox proportional hazards model demonstrated a

significant association of the three identified genes with overall

survival for the older chronological age group (Cox proportional

hazard model Wald test p-value = 0.008).

To confirm these findings, we utilized TCGA AML patient

cohort (n = 151, see Methods), which had a comparable to BEAT

AML sample collection protocol (i.e., primary de novo bone marrow

samples) and clinical endpoint (i.e., overall survival). TCGA AML

dataset was similarly stratified on cytogenetic risk into (i) favorable

(n = 30) and (ii) unfavorable (n = 121) subgroups (Figure 5B).

Similarly to the BEAT AML dataset, chronological age stratification
B

C

A

FIGURE 6

Comparison to randomly selected genes and known markers of progression demonstrated the robustness of PC and AML results. (A) A random
model plot depicting the distribution of p-values for a random set of (left) four genes for PC and (right) three genes for AML ran 10,000 times. p-
values were estimated using the Wald test from the Cox proportional hazards model (x-axis) applied to four or three random genes, respectively.
The original Wald test p-value for the identified four or three biological aging genes, respectively, is indicated with a vertical black line. (B) Plot
comparing the predictive ability of the known markers of prostate cancer aggressiveness to predict time to BCR to the predictive ability of the four
identified biological aging genes (four most right vertical bars). The predictive ability was evaluated using the Cox proportional hazards model,
adjusted for Gleason and chronological age. Hazards p-values are indicated. The horizontal black bar indicates a p-value threshold of 0.05. (C) Plot
comparing the predictive ability of the known markers of AML aggressiveness to predict time to overall survival to the predictive ability of the three
identified biological aging genes (three most right vertical bars). The predictive ability was evaluated using the Cox proportional hazards model,
adjusted for cytogenetic risk and chronological age. Hazard p-values are indicated. The horizontal black bar indicates a p-value threshold of 0.05.
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on TCGA AML cohort defined patients with (i) age below or at 56

(n = 76) and (ii) age above 56 (n = 75) (Figure 5C).

Stratified analysis on cytogenetic risk demonstrated a significant

association of the three biological aging genes to overall survival in the

cytogenetic favorable group (multivariable additive Cox proportional

hazards model Wald test p-value = 0.04, Figure 5B). Stratified analysis

on chronological age, demonstrated significant association in the older

age (> 56) subgroup (multivariable additive Cox proportional hazards

model Wald test p-value = 0.01, Figure 5C).

To make final conclusions (as in PC analysis), we have further

integrated our findings from both cohorts using FDR-corrected

harmonic mean (Figures 5B, C, Methods), which nominated a

significant association of the identified genes with overall survival

in AML in the favorable cytogenetic risk subgroup (FDR-corrected

integrated p-value = 0.04) (Figure 5B) and the older age (> 56)

subgroup (FDR-corrected integrated p-value = 0.035) (Figure 5C),

which builds a foundation for further patient stratification in these

patient groups using identified three biological aging genes,

allowing for personalized disease management and therapeutic

planning in AML patients.
3.4 Robustness analysis: comparison to
randomly selected genes and other
markers of PC and AML progression

To ensure the robustness of our predictions in both PC and AML,

we performed (i) a comparison of the predictive ability of our findings

to the predictive ability of the equally sized (i.e., four or three,

respectively) gene group selected at random; and (ii) a comparison

of the predictive ability of our findings to the predictive ability of the

known markers of PC and AML progression, as appropriate.

3.4.1 Random modeling
First, to ensure that the biological aging genes outperform the

predictive ability of the genes chosen at random, we built a random

model using the Taylor et al. cohort for prostate cancer and the

BEAT AML cohort for AML. In such a model, genes (either four or

three, respectively) were selected at random from the list of all

available genes in each dataset and subjected to Cox proportional

hazards model analysis as a group. The Wald p-value was reported,

and the process was repeated 10,000 times (Figure 6A). For prostate

cancer, this analysis confirmed a highly nonrandom ability of the

identified four biological aging genes to predict prostate cancer

progression (Figure 6A, left, nominal random model p-value =

0.001), and for AML, it confirmed a highly nonrandom ability of the

three identified genes to predict AML overall survival (Figure 6A,

right, nominal random model p-value = 0.048).

3.4.2 Comparison to markers of PC and
AML progression

In PC analysis, to compare the predictive ability of the identified

four biological aging genes to the predictive ability of the known

transcriptomic markers of prostate cancer progression (27–39)
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(Figure 6B), we utilized Cox proportional hazards model analysis on

the Taylor et al. dataset. Known prostate cancer genes associated

with cancer progression were utilized as input variables, adjusted

for Gleason score and chronological aging, with time to BCR as a

clinical endpoint. The only known PC aggressiveness gene that

remained significant after adjusted analysis was FOXM1 (adjusted

Cox proportional hazards model p-value = 0.048), which was less

significant compared to the identified four biological aging genes

(Figure 5B, right-most genes: CD44 adjusted p-value = 0.00054,

GADD45B adjusted p-value = 0.0084, STAT3 adjusted p-value =

0.0167, GFAP adjusted p-value = 0.036). Following this result, we

investigated the possibility of utilizing FOXM1 [previously

identified by our group as a transcriptional regulator of prostate

cancer progression (40, 41)] and the four biological aging genes

together for enhanced predictive ability using a multivariable Cox

proportional hazards model. Interestingly, when combined into a

group of five, in the crude multivariable analysis, FOXM1 remained

significant (hazard p-value = 0.01) but did not significantly reduce

the predictive ability of the four biological aging genes, indicating

their independent ability to predict prostate cancer progression.

Yet, in the adjusted multivariable analysis for the group of five

genes, FOXM1 lost its significance, while the biological aging genes

remained significant. Furthermore, in the stratified multivariable

analysis (i.e., analysis for the group of patients with higher Gleason

scores and for the group of patients of younger age), FOXM1 did

not show significance for the higher Gleason score (while the four

biological aging genes remained significant) but demonstrated

significance for the younger patient group, alongside biological

aging genes. Taken together, this PC-specific analysis indicates

that biological aging genes in PC offer independent predictive

evidence compared to known markers of PC progression,

especially for patients with higher Gleason scores, and could be

effectively utilized alongside FOXM1 for patients of younger age for

enhanced predictions of PC progression.

In the AML analysis (Figure 6C), we compared the predictive

ability of the identified three biological aging genes to the predictive

ability of the known markers of AML aggressiveness (42). Several

genes have demonstrated significance in the adjusted analysis: IL-

1R2 (adjusted Cox proportional hazards model p-value = 0.0024),

RBP7 (adjusted Cox proportional hazards model p-value = 0.0269),

and ZNF750 (adjusted Cox proportional hazards model p-value =

0.0467). Following this result, we investigated the possibility of

utilizing these three genes (IL-1R2, ZNF750, and RBP7) and the

three biological aging genes together to enhance their predictive

ability using a multivariable Cox proportional hazards model.

Interestingly, when utilized together, IL-1R2, ZNF750, and RBP7

showed significant ability to predict overall survival in a younger

age group, as opposed to the CDC42EP2, CDC42, and ALOX15B,

which showed a stronger predictive ability in older age group,

indicating that both gene groups provide independent evidence and

predictive ability for different patient populations. Taken together,

this AML-specific analysis indicates that biological aging genes in

AML offer independent predictive evidence, compared to known

markers of AML progression, especially for older patients.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1222168
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ramakrishnan et al. 10.3389/fonc.2023.1222168
4 Discussion

In this work, we have investigated the role of the biological

aging genes in prostate cancer progression and identified four

prostate cancer-specific genes (CD44, GADD45B, STAT3, and

GFAP) having a significant ability to predict time to BCR in

prostate cancer patients, especially for patients with a higher

Gleason score and for patients of younger chronological age. Our

analysis demonstrated the unique independent predictive ability of

these genes compared to currently known markers of prostate

cancer progression, nominating them as valuable markers of time

to BCR in prostate cancer.

CD44 is a multifunctional cell surface adhesion receptor that is

expressed in many cancers [including prostate cancer (43)] and

promotes the migration and invasion involved in metastases (44,

45). It is a known prostate cancer stem cell marker (46) that has

been nominated as a potential therapeutic target (47) and has been

shown to play a role in chemo- and radiotherapy response and

resistance in prostate cancer (48, 49), nominating CD44 as a

valuable marker and potential therapeutic target, requiring further

in-depth investigations.

GADD45B is a growth arrest and DNA-damage-inducible beta

gene known as a prognostic biomarker in colorectal

adenocarcinoma (50, 51) and a facilitator of metastasis in ovarian

cancer through epithelial–mesenchymal transition (52). In prostate

cancer, it has been demonstrated to be implicated in the mechanism

of therapeutic inhibition of prostate cancer (53) and as a therapeutic

target in chemotherapy-resistant prostate cancer (54), opening new

potential avenues for therapeutic intervention for patients with

dysregulation of biological aging mechanisms.

STAT3 is a transcription factor oncogene involved in the IL-6-

JAK-STAT3 signaling cascade that mediates gene expression in

response to cell stimuli and thus plays a central role in cell growth

and apoptosis across multiple cancers (55–57), and their targeting

has shown therapeutic benefits (58–60). In prostate cancer, it has

been shown to activate stemness and metastatic progression (61–

65), be involved in the regulation of tumor microenvironment (66),

and has been shown as an effective therapeutic target (67) and

sensitizer to radiation therapy (68), nominating it as a central axis

for potential therapeutic interventions in biological age-related

prostate cancer progression.

GFAP is a glial fibrillary acidic protein that is a promising

biomarker and therapeutic target in glioblastoma (69) and other

cancers (70, 71); however, its role in prostate cancer has not been

fully explored. One of the bioinformatics investigations nominated

GFAP as a potential regulator of immune phenotypes in prostate

cancer (72), yet its role in prostate cancer progression provides a

new exciting avenue for further investigation, especially in

combination with GADD45B, STAT3, and GFAP (and,

potentially, FOXM1).

Furthermore, we have generalized our methodology and

applied our investigations to AML, which identified three AML-

specific genes (CDC42EP2, CDC42, and ALOX15B) with significant

ability to predict AML overall survival, especially for patients with
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favorable cytogenet ic r isk and for pat ients of older

chronological age.

CDC42EP2 belongs to the Rho GTPase family and is a member

of the Borg family of CDC42 effector proteins (73). It is identified in

gastrointestinal stromal tumors (74) and is a potential prognostic

biomarker in nonsmall cell lung cancer survival (75) and in

hepatocellular carcinoma (76). However, its role in AML cancer

has not been fully explored yet.

CDC42 also belongs to the GTPase family of the Rho subfamily

and is a key downstream regulator of multiple cell signaling

receptors, including RAS/MAPK and PI3K/Akt. CDC42 is known

for its involvement in myeloid and erythroid cell development in

mouse models (77). Therapeutic targeting of CDC42 affects the

proliferation and survival of multiple myeloma cells (78) and the

spread of metastasis in breast cancer models with HER2 and triple-

negative subtypes of breast cancer (79). Furthermore, Wnt signaling

inhibition affects hematopoietic stem-cell aging via activation of

CDC42 (80, 81), all together nominating it as a potential therapeutic

intervention in biological age-related AML progression.

ALOX15B belongs to the lipoxygenase family of nonheme iron

dioxygenases, which leads to fatty acid hydroperoxide production.

ALOX15B is expressed in human monocyte-derived macrophages,

and it is believed that the progression of cytogenetically normal

AML could be a dysfunction of immune cells in the bone marrow

microenvironment (82, 83), directly connecting it to AML

progression and nominating it as a possible mechanism of age-

related AML therapeutic intervention.

In this work, we focused on transcriptomic markers of

biological aging in prostate cancer and AML; however, we

understand that biological age is a complex notion and, in

addition to changes in gene expression, includes widely explored

DNA methylation and telomere length (84–86), among others. Yet,

we have not been able to identify prostate cancer or AML datasets

with either DNA methylation or telomere length data available that

have appropriate sizes and statistical power for training and testing

purposes. However, we foresee that such data will be available in the

future, and we will utilize these additional sources of information to

refine our analysis.

In summary, genome-wide investigations of biological aging

demonstrated their high potential to predict cancer progression and

cancer-specific overall survival in PC and AML, respectively. We

foresee further investigations of the role of biological aging in cancer

and the potential utilization of these genes as biomarkers of prostate

cancer and AML progression, which could lead to personalized

therapeutic planning and open new avenues for novel therapeutic

targeting for patients with mechanisms involved in dysregulated

biological aging.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1222168
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ramakrishnan et al. 10.3389/fonc.2023.1222168
Author contributions

AR downloaded PC data from cBioPortal, processed and

performed analysis on PC data, and wrote PC sections of the

manuscript. ID downloaded AML data from dbGap and GDC

portals, processed and analyzed AML data, and wrote AML sections

of the manuscript. SP downloaded PC data from dbGap, processed and

performed data analysis for PC datasets and advised on statistical

analysis for the manuscript. HP performed a literature search to

identify 52 biological aging genes. YL performed random model

analysis. MC analyzed pathway enrichment data and contributed to

the literature review. CC performed a literature search on biological

aging genes. GJ-M ran pathway enrichment analysis and performed a

literature review for PC genes. A-RO ran pathway enrichment analysis

and performed a literature review for AML genes. IK contributed to the

discussion section and advised on the clinical significance of the

identified biological aging genes. AM conceived and wrote

the manuscript. All authors contributed to the article and approved

the submitted version.
Funding

AM is supported by R01LM013236-01, ACS RSG-21-023-01-TBG,

the American Cancer Society (ACS) Research Scholar Award, and the

NJCCR COCR21RBG00 grant. MC is supported by the National

Science Foundation under Grant No. 2127309 to the Computing

Research Association for the CIFellows Project. GJ-M and A-RO

were supported by the Rutgers Youth Enjoy Science Program

(RUYES) through the National Institutes of Health (NIH) Grant No.

NCI 1R25CA247785.
Frontiers in Oncology 14
Acknowledgments

We are thankful to Mitrofanova Lab for useful discussions.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1222168/

full#supplementary-material
References
1. Lanke V, Moolamalla STR, Roy D, Vinod PK. Integrative analysis of hippocampus
gene expression profiles identifies network alterations in aging and alzheimer’s disease.
Front Aging Neurosci (2018) 10:153. doi: 10.3389/fnagi.2018.00153

2. Sood S, Gallagher IJ, Lunnon K, Rullman E, Keohane A, Crossland H, et al. A
novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status.
Genome Biol (2015) 16(1):185. doi: 10.1186/s13059-015-0750-x

3. Tumasian RA 3rd, Harish A, Kundu G, Yang JH, Ubaida-Mohien C, Gonzalez-
Freire M, et al. Skeletal muscle transcriptome in healthy aging. Nat Commun (2021) 12
(1):2014. doi: 10.1038/s41467-021-22168-2

4. Kerber RA, O’Brien E, Cawthon RM. Gene expression profiles associated with
aging and mortality in humans. Aging Cell (2009) 8(3):239–50. doi: 10.1111/j.1474-
9726.2009.00467.x

5. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al.
Functional genomic landscape of acute myeloid leukaemia. Nature (2018) 562
(7728):526–31. doi: 10.1038/s41586-018-0623-z

6. The molecular taxonomy of primary prostate cancer. Cell (2015) 163(4):1011–25.
doi: 10.1016/j.cell.2015.10.025

7. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al.
Integrative genomic profiling of human prostate cancer. Cancer Cell (2010) 18(1):11–
22. doi: 10.1016/j.ccr.2010.05.026

8. Gerhauser C, Favero F, Risch T, Simon R, Feuerbach L, Assenov Y, et al. Molecular
evolution of early-onset prostate cancer identifies molecular risk markers and clinical
trajectories. Cancer Cell (2018) 34(6):996–1011.e8. doi: 10.1016/j.ccell.2018.10.016

9. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics (2013) 29(1):15–21. doi: 10.1093/
bioinformatics/bts635
10. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol (2014) 15(12):550. doi:
10.1186/s13059-014-0550-8

11. Borgan Ø. Modeling survival data: extending the cox model. Terry M. Therneau
and Patricia M. Grambsch, Springer-Verlag, New York, 2000. No. of pages: xiii + 350.
Price: $69.95. ISBN 0-387-98784-3. Stat Med (2001) 20(13):2053–4. doi: 10.1002/
sim.956

12. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al.
Diagnosis and management of AML in adults: 2017 ELN recommendations from an
international expert panel. Blood (2017) 129(4):424–47. doi: 10.1182/blood-2016-08-
733196

13. Jiao X, Sherman BT, Huang da W, Stephens R, Baseler MW, Lane HC, et al.
DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics
(2012) 28(13):1805–6. doi: 10.1093/bioinformatics/bts251
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