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Abstract: Particle swarm optimization (PSO) has been successfully applied to various complex 
optimization problems due to its simplicity and efficiency. However, the update strategy of the standard 
PSO algorithm is to learn from the global best particle, making it difficult to maintain diversity in the 
population and prone to premature convergence due to being trapped in local optima. Chaos search 
mechanism is an optimization technique based on chaotic dynamics, which utilizes the randomness 
and nonlinearity of a chaotic system for global search and can escape from local optima. To overcome 
the limitations of PSO, an improved particle swarm optimization combined with double-chaos search 
(DCS-PSO) is proposed in this paper. In DCS-PSO, we first introduce double-chaos search mechanism 
to narrow the search space, which enables PSO to focus on the neighborhood of the optimal solution 
and reduces the probability that the swarm gets trapped into a local optimum. Second, to enhance the 
population diversity, the logistic map is employed to perform a global search in the narrowed search 
space and the best solution found by both the logistic and population search guides the population to 
converge. Experimental results show that DCS-PSO can effectively narrow the search space and has 
better convergence accuracy and speed in most cases. 

Keywords: chaos optimization algorithm; particle swarm optimization; chaotic dynamics; 
optimization problem 
 

1. Introduction 

In the past few decades, many meta-heuristic algorithms have been proposed to handle complex 
optimization problems, which are usually difficult to solve with traditional optimization methods 
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relying on gradients. Meta-heuristic algorithms are problem-solving methods that mimic natural or 
abstract processes to efficiently explore solution spaces and find near-optimal solutions for complex 
optimization problems. Kennedy and Eberhart [1] developed particle swarm optimization algorithm 
(PSO), a population-based optimization algorithm inspired by social behavior and collective 
intelligence, where particles iteratively update their positions based on their own experience and the 
information from the best-performing particles in the swarm. Holland [2] proposed genetic algorithm 
(GA) that imitates the process of natural selection and genetic evolution to iteratively search for optimal 
solutions to complex problems. Wang et al. [3] proposed a monarch butterfly optimization algorithm (MBO) 
that imitates the migration behavior of monarch butterflies, where the search process is guided by a 
combination of exploration and exploitation strategies to find optimal solutions. Li et al. [4] presented a 
slime mold algorithm (SMA) that simulates the foraging behavior of slime mold to efficiently explore 
and exploit search spaces by forming networks of interconnected pathways. Wang [5] presented a moth 
search algorithm (MSA) that mimics the behavior of moths to navigate toward the optimal solution by 
adjusting their flight direction based on attraction and repulsion forces. Yang et al. [6] proposed a 
hunger games search (HGS) algorithm, where individuals compete for resources and survival. 
Ahmadianfar et al. [7] presented Runge-Kutta optimizer (RUN) that utilizes the logic of slope 
variations computed by the Runge-Kutta method to perform active exploration and exploitation for 
global optimization with an enhanced solution quality mechanism to avoid local optima and improve 
convergence speed. Tu et al. [8] proposed colony predation algorithm (CPA) that mimics the collective 
hunting behavior of predators to explore and exploit the solution space for optimization efficiently. 
Ahmadianfar et al. [9] presented INFO which utilizes the weighted mean concept, enhanced updating 
rules, vector combining and local search to optimize various problems. Heidari et al. [10] proposed 
Harris hawks optimization (HHO), which is inspired by the hunting behavior of Harris hawks, utilizing 
different strategies such as exploration, exploitation and cooperative hunting to solve optimization 
problems. Su et al. [11] proposed a RIME optimization algorithm, a nature-inspired metaheuristic 
algorithm based on the freezing process of water droplets in rime formation, utilizing dynamic freezing 
and melting mechanisms for efficient optimization. Compared with conventional algorithms, these 
meta-heuristic algorithms can handle non-differentiable, multimodal, hybrid and high-dimensional 
problems without requiring explicit gradient information. 

After they are proposed, many researchers successfully solve complex optimization problems by 
using them in intelligent systems. Li et al. [12] introduced ACO-S, a bionic optimization algorithm-
based dimension reduction method specifically designed for high-dimensional datasets like microarray 
data, demonstrating its ability to generate compact and informative gene subsets with high 
classification accuracy compared to existing bionic optimization algorithms. Thawkar et al. [13] 
presented a hybrid feature selection method, combining the butterfly optimization algorithm (BOA) 
and the ant lion optimizer (ALO) to effectively predict the benign or malignant status of breast tissue 
using mammogram images. Chakraborty et al. [14] developed a computational tool using a modified 
whale optimization method (WOA) to quickly and accurately determine the severity of COVID-19 
illness through chest X-ray image analysis. Gao et al. [15] introduced a multi-objective optimization 
model and an improved genetic algorithm for cooperative mission assignment of heterogeneous UAVs, 
considering the balance between mission gains and UAV losses. Yu et al. [16] presented a multi-
objective optimization problem and an improved genetic algorithm for cooperative mission planning 
of heterogeneous UAVs in cross-regional joint operations, considering makespan minimization, value 
expectation maximization, flexible base return and ammunition inventory constraints. Li et al. [17] 
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investigated the scheduling problem of maintenance and repair tasks for carrier-based aircraft fleets in 
hangar bays, proposing a model and an improved teaching-learning-based optimization algorithm to 
enhance maintenance efficiency and reduce manual scheduling burden. 

Among the algorithms mentioned above, PSO is popular because of its fast convergence, few 
parameters and easy programming implementation. However, the performance of the standard PSO 
depends mainly on its parameter settings [18] and different parameter settings may lead to different 
convergence outcomes. In addition, the update strategy of particles during the search process is mainly 
aimed at the global best, which leads the population to lose diversity in the population and increases 
the risk of being trapped in local optima [19–21]. To address these drawbacks and improve the 
performance of PSO, many PSO variants have been developed. Generally, research on PSO variants 
can be classified into three parts: parameter modification, population topology structure modification 
and novel learning strategy. 

1) Parameter modification. PSO has some parameters such as inertia weight and acceleration 
coefficients. They have been modified in many ways. Shi and Eberhart [22] introduced the concept of 
inertia weight in PSO to improve velocity control and search effectiveness. Afterward, various 
adjustment strategies were advocated, including defining it as a time-varying function called global 
PSO (GPSO) [23]. Liu et al. [24] proposed a PSO algorithm with chaos inertia weight to enlarge the 
search range and increase population diversity. Chen et al. [25] proposed a hybrid PSO with sine 
cosine acceleration coefficients where the performance of PSO is improved by introducing sine 
and cosine acceleration coefficients. By using these strategies, the performance of PSO can be 
improved to some extent. 

2) Population topology structure modification. In the standard PSO, the population size is fixed. 
A larger population size may increase computation costs, resulting in slow convergence, while a 
smaller size may converge in local optima. Some researchers have improved the performance of PSO 
by modifying the population topology structure. Kennedy and Mendes [26] proposed the local version 
of PSO (LPSO) with ring topology, in which different topologies based on neighborhood connections 
are used to maintain the diversity of the population. Liang and Suganthan [27] presented a dynamic 
multi-swarm PSO (DMS-PSO), in which the population comprises many small subgroups and a 
dynamic strategy is used to maintain population diversity. 

3) Novel learning strategy. A well-designed learning strategy can enhance the efficiency and 
effectiveness of the PSO algorithm. Liang et al. [28] proposed the CLPSO, in which each particle 
updates its velocity by incorporating historical best information from different particles. This approach 
enables particles to acquire valuable information and improves their search behavior. Wang et al. [29] 
proposed a PSO-HLM algorithm that balances exploration and exploitation by utilizing a hybrid 
learning model and a multi-pools fusion strategy, improving convergence speed and avoiding local 
optima. Zhou et al. [30] proposed a LFIACL-PSO algorithm that enhances PSO by incorporating Lévy 
flight-based inverse learning, comprehensive learning strategy, ring-type topology and adaptive update 
of acceleration coefficients. 

In this paper, an improved PSO combined with double-chaos search (DCS-PSO) is proposed. 
Chaotic dynamics is a branch of nonlinear dynamical systems. Chaos motion exhibits ergodicity, 
randomness and regularity properties and can traverse all states without repetition. For optimization 
problems, these properties of chaos can be used as a mechanism to avoid getting trapped in local optima 
during the search process. In DCS-PSO, we utilize two distinct chaotic systems to explore the search 
space globally and narrow it down, enabling PSO to focus on the vicinity of the optimal solution and 



15740 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 15737–15764. 

alleviate its premature convergence caused by getting trapped in local optima. Additionally, we 
incorporate a chaotic motion search in parallel with the PSO search. If the solution obtained through 
the chaotic search outperforms the PSO’s global best, it will be replaced with the solution from the 
chaotic motion to enhance population diversity. This strategy prevents all particles in the PSO from 
relying solely on the global optimal particle for learning, thereby facilitating escape from local optima. 

The main contributions of this paper are described as follows. 
1) Introducing a novel approach, DCS-PSO, which combines the strengths of PSO and chaotic 

dynamics. 
2) Addressing the issue of premature convergence by narrowing down the search space using 

double-chaos search and enhancing population diversity through the logistic map, resulting in 
improved convergence accuracy and speed. 

3) Conducting extensive experimental evaluations to demonstrate the effectiveness and 
superiority of DCS-PSO compared to standard PSO and other optimization algorithms commonly used 
in the field. 

The rest of this paper is organized as follows. Section 2 introduces the related work. Section 3 
describes the proposed DCS-PSO. Section 4 is the experimental studies. Conclusion and future work 
are provided in Section 5. 

2. Related works 

2.1. Standard PSO 

PSO is an optimization algorithm based on swarm intelligence inspired by collective behavior in 
ecosystems such as bird foraging. In PSO, the problem is treated as an optimization problem of finding 
the optimal solution in a D-dimensional search space, where each particle i   in the population 

represents a possible solution and has two vectors: a position vector ,1 ,2 ,, , ,i i i i DX x x x      and a 

velocity vector ,1 ,2 ,, , ,i i i i DV v v v      . In searching for the optimal solution, particles move and 

interact with each other in the search space. The particle i  adjusts its position based on the optimal 

position vector ,1 ,2 ,, ,i i i Dpbest pbest pbest    ipbest   it has reached in the past and the globally 

optimal position vector  1 2, , , Dgbest gbest gbest  gbest   discovered by the entire swarm. PSO 

attempts to find a balance between local search and global search in this way. The update rules for the 
velocity and position of particle i  in the d th dimension are as follows: 

        1
, , 1 1 , , 2 2 , ,n n

i d i d i d i d d i dv v c r pbest x c r gbest x            (2.1) 

      1 1
, , ,
n n n

i d i d i dx x v     (2.2) 

where 1c  and 2c  denote the acceleration coefficients, usually set to 2, 1r  and 2r  are two uniformly 

distributed values in the range [0,1]. The parameters minV   and maxV   can be used to determine an 

appropriate range of velocity values for each particle to prevent it from wandering too far outside the 
search space. 

The global minimum optimization problem (2.3) for a D-dimensional continuous object can be 
described as: 
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   

 
1min    ,   , , ,

s.t.     , ,  1, ,
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d d d

f X X x x

x a b d D

 

  
  (2.3) 

The standard PSO can be described in the following steps: 
Step 1: Initialize N  particles. For each particle i  in the population: 
Step 1.1: Initialize iX  randomly in the range  ,a b . 

Step 1.2: Initialize iV  randomly in the range  min max,V V . 

Step 1.3: Evaluate the fitness value if . 

Step 1.4: Set ipbest  as the particle’s current position and gbest  as the particle with the best 

fitness value in the population. 
Step 2: Loop until the stop condition is satisfied: 
Step 2.1: Update the velocity iV  and position iX  for each particle i  according to Eqs (2.1) 

and (2.2). 
Step 2.2: Evaluate the fitness value if  of each particle i . 

Step 2.3: Update     ,iif f f i N  
ii pbestpbest  for each particle i . 

Step 2.4: Update the global optimal position    ,   if f i N  gbestgbest . 

2.2. Chaos algorithms 

2.2.1. Chaos optimization algorithm 

Chaos is one of the most exciting properties exhibited by the brain [31]. It is the phenomenon of 
complex, unpredictable and random-like behavior arising from simple deterministic nonlinear systems 
rather than a state of disorder [32]. Researchers have recently developed many optimization algorithms 
based on chaos theory to address complex optimization problems [33–35]. 

COA was first proposed by Li and Jiang [32,35] in 1997. Its core idea is to introduce the chaotic 
state into optimization variables via the carrier wave method, map the traversal range of chaos motion 
to the value range of optimization variables and then search for the global optimal solution using 
chaotic dynamics instead of random search. The chaotic dynamics equation chosen in COA is the 
Logistic map [36], which is defined as follows: 

         1 01 ,   0 1n n nx x x x       (2.4) 

where   is the control parameter, 0,1, 2,...n  . Although the above equation is definite, it exhibits 

chaotic dynamics when 4   and    0 0,0.25,0.5,0.75,1x  , the property that a minute difference 

in the initial value of the chaotic variable would lead to significant differences in output. This is the 
sensitive dependence on initial conditions, the basic characteristic of chaos. This property enables the 
trajectory of chaotic variables to traverse the entire search space. The process of COA can be defined 
through the following equation. 

 
      1 4 1 ,   1,2, , ,k k k
d d dcx cx cx d D    

  (2.5) 

where dcx  is the d th chaotic variable and k  represents the number of iterations. Obviously,  k
dcx  
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is distributed in the range (0,1) when the initial    0 0,1dcx   and    0 0.25,0.5,0.75dcx  . 

For the optimization problem (2.3), the procedures of COA are as follows. 

Step 1: Set 0k  , and initialize D  chaotic variables  0
dcx  in the range (0,1) with very small 

differences. The current optimal function value f    is initialized to a large value, with 

1 2, DX x x x       ，  representing the corresponding optimal variables. 

Step 2: Map the D   chaotic variables dcx   to the D   optimization variables dx   of the 

optimization problem (2.3) through the carrier wave method of Eq (2.6). 

      k k
d d d d dx cx b a a     (2.6) 

Step 3: Iterative search using chaotic variables. 

If   kf X f  , then     ,    k kf f X X X   . Else if   kf X f  , then give up  kX . 

Step 4: Let 1k k   and continue the chaotic traversal through Eq (2.5). 
Step 5: Repeat steps 2 to 4. If the best function value f    remains unchanged after several 

iterations, the second carrier wave is applied according to Eq (2.7). 

 
   1 1*k k
d d dx x cx      (2.7) 

where dx  is the current optimal solution,   is an adjusting constant which can be less than 1 and 
 1k
dcx   generates i  chaotic states with small ergodic ranges around dx . 

Step 6: Continue the iterative search using the chaotic variables after the second carrier wave until 
the stop criterion is satisfied. 

2.2.2. Some representative variants of COA 

As a simple and efficient optimization algorithm, COA has garnered the attention of many 
researchers for further improvement. Its primary disadvantage is that the sensitive dependence of 
chaotic motion on the initial values will cause the algorithm’s instability and a large number of traversal 
searches are required before the search space is reduced. Moreover, the lack of an explicit search stop 
condition results in the need for parameter tuning according to specific problems, limiting the 
algorithm’s generality. Therefore, many variants of COA aimed at these problems have emerged. 

Xiu et al. [37] proposed a double-chaos optimization algorithm (DCOA) that uses two different 
chaotic systems to explore the search space independently and in parallel and narrows down the search 
space when the distance between the optimal positions of the two systems satisfies specific criteria. 
Therefore, DCOA overcomes some of the deficiencies of COA. Additionally, DCOA provides a condition 
for narrowing the search space, which improves the algorithm’s generality, avoids multiple blind searches 
and reduces its running cost. Liang and Gu [38] developed a chaos optimization algorithm based on parallel 
computing (PCOA), which performs parallel searches using several different sets of chaotic variables, 
effectively reducing the sensitive dependence of chaotic motion on initial values. 

3. Proposed method 

Based on in-depth research of the chaos algorithms and the PSO algorithm, we combined the 
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advantages of the two types of algorithms and proposed DCS-PSO. The details are as follows: 

3.1. Space reduction based on double-chaos search mechanism 

Although a single chaos search mechanism is easy to implement and can avoid being trapped in 
local optima, it often requires a large number of iterations to narrow down the search space to ensure 
that the optimal solution is within the narrowed area. 

Additionally, the stop condition of the search needs to be adjusted based on the specific problem, 
limiting the algorithm’s generality. In contrast, the DCOA determines the requirement for narrowing 
the space based on the distance between the optimal positions found by each chaotic system, which 
improves the algorithm’s generality. However, there is a risk that the algorithm may continuously 
narrow down the search space, making it difficult to converge accurately to a point and potentially 
excluding the global optimal solution from the search space. Nonetheless, experimental verification 
(see Section 4.1) suggests that the double-chaos search mechanism can narrow the search space to the 
neighborhood of the global optimum after only one sufficient search. 

In the double-chaos search mechanism, we select two chaotic systems: The logistic map and the 
tent map. The orbit points of the logistic map are distributed near the edges, which to some extent can 
explain why chaotic motion has the advantage of escaping from local optima [39]. However, several 
breakpoints  0,0.25,0.5,0.75,1  in the logistic map make it difficult to traverse specific chaos states 

during the search process. The orbit points of the tent map are distributed more evenly. Its equation is 
defined in Eq (3.1). Figure 1(a) and (b) show the scatter plots of the two chaos maps for 2000 iterations, 
respectively and (c) and (d) show their chaotic dynamics. 

  
   

      
1

/ ,                  0

1 / 1 ,  1

n n

n

n n

x x
x

x x

 

 


  
  




   (3.1) 

where 0.4  . 

The double-chaos search mechanism is illustrated in Figure 2. In the search space A, two chaotic 
systems cx  and cy  are used to perform independent parallel searches. When the distance between 

the optimal solutions cx  and cy  found by cx  and cy  is small enough, namely, 

 
22

X Y    a b   (3.2) 

where X   and Y   represent the corresponding optimization variables, (0,0.25]   and is set to 0.15 

in this study, the search space is narrowed down from A to B according to Eqs (3.3) and (3.4). 

    2
max , min ,d d d da a x y X Y           (3.3) 

    2
min , max ,d d d db b x y X Y           (3.4) 

where  1, 2   and it is set to 1.5 in this study. 
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(a) (b) 

  

(c) (d) 

Figure 1. Scatter plots and chaotic dynamics diagrams of two types of chaos maps. 
(a)Logistic map. (b)Tent map. (c)Logistic dynamics. (d)Tent dynamics. 

 

Figure 2. Diagram of the double-chaos search mechanism with the contour lines of a 2-
dimensional multimodal function projected onto the XOY plane in the background. 
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3.2. An improved particle swarm optimization combined with double-chaos search 

Based on the chaos search mechanism, we propose a two-stage iteration strategy named DCS-
PSO. The algorithm employs the double-chaos search mechanism for global exploration and narrowing 
the search space and then uses the improved PSO for further fine search in the narrowed search space. 

For the D-dimensional optimization problem (2.3), the detailed steps of the first stage of DCS-
PSO are listed in Algorithm 1: 

Algorithm 1 Space reduction based on double-chaos search mechanism. 

1. Initialize two chaotic systems  0cx  and  0cy  in the range (0,1); 

2. Initialize the optimal function values of the two chaotic systems xf
  and yf

  with large values; 

3. Initialize the corresponding optimization variables X   and Y  ; 

4. set 0k  ; 

5. while True do: 

6.   Map  kcx  and  kcy  to optimization variables  kX  and  kY ; 

7.   Update   * kf f Xx  and  kX X  , if   k
xf X f  ; 

8.   Update   * kf f Yy  and  kY Y  , if   k
yf Y f  ; 

9.   if k h  then 

10.    if 
22

X Y    a b  then 

11.    Narrow down the search space  ,a b  according to Eqs (3.3) and (3.4); 

12.    break 

13.    end if 

14.  end if 

15.  Update  kcx  and  kcy  according to Eqs (2.5) and (3.1), respectively; 

16.  k   ; 

17. end while 

18. Output the narrowed search space    1 2 1 2, , , , , ,d da a a b b b   a b  

19. Output cbest , one of X   and Y   that has the smallest fitness value 

The flowchart of the first stage of DCS-PSO is shown in Figure 3(a). 
In conventional PSO, all particles learn from the global optimal particle in the population to 

update their positions and velocities. This mechanism is advantageous in achieving fast convergence, 
but it also leads to the need for more diversity and often causes premature convergence due to falling 
into local optimum [40]. The conventional PSO may require longer to find the optimal solution when 
dealing with multimodal optimization problems with a large search space. 

Although the risk of being trapped in local optima can be reduced by narrowing the search space, 
PSO may still fall into a local optimum in the reduced search space. To enhance the population’s 
diversity, in the narrowed search space, we perform a chaos search on the best solution found by the 
two chaotic systems using the logistic map. The best solution found by the logistic map and the 
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population guides the algorithm to converge toward the global optimum. The velocity of particle i  on 
dimension d  is updated according to the following rules. 

 
   ,     

,    

if f f

else

 


cbest cbest gbest
best

gbest

≤
  (3.5) 

        1
, , 1 1 , , 2 2 ,
n n

i d i d i d i d d i dv w v c r pbest x c r best x             (3.6) 

where best  denotes the best solution between chaos search and population search,  f cbest  is the 

optimal fitness value found by chaos search and cbest  is the corresponding solution. 
The detailed steps of the second stage of DCS-PSO are listed in Algorithm 2: 

Algorithm 2 Improved PSO combined with chaos 

1. Input the narrowed search space  ,a b  and cbest  

2. Transform cbest  to chaotic variables cx ; 

3. Initialize N  particles’ position and velocity within the new search space; 

4. Evaluate the fitness value of every particle; 

5. Update ipbest  and gbest ; 

6. for 1 :  Max_Iteri   do 

7.   Implement chaos search globally and update cbest  via logistic map; 

8.   if    f fcbest gbest  then 

9.     best cbest ; 

10.  else best gbest ; 

11.  end if 

12.  Update particles’ velocity and position according to Eqs (3.6) and (2.2), respectively; 

13.  Evaluate the fitness value of every particle; 

14.  Update ipbest  and gbest ; 

15. end for 

The flowchart of the second stage of DCS-PSO is shown in Figure 3(b). 
It is worth noting that many researchers have attempted to introduce the chaos search mechanism 

into intelligent optimization algorithms [39,41]. The most common strategy is to use chaotic local 
search (CLS) after each iteration to conduct a fine search near the current optimum. Although this 
approach improves the convergence accuracy of the algorithm, it needs to address the problem of the 
population falling into local optima. Therefore, in addition to CLS, other strategies are often required 
to maintain the diversity of the population. However, some of these strategies may sacrifice the 
performance of convergence speed. 
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(a) (b) 

Figure 3. The flowcharts of DCS-PSO. (a) The first stage. (b) The second stage. 

4. Experimental studies 

In this chapter, simulation experiments are conducted to validate the performance of DCS-PSO. 
We first conduct experiments using six 2-dimensional benchmark functions to validate the 
effectiveness of the DCS-PSO search space narrowing mechanism. After that, the performance of the 
DCS-PSO algorithm is compared with five typical PSO variants placed on ten benchmark functions in 
terms of solution accuracy, statistical significance test and convergence speed. Finally, to verify the 
performance of DCS-PSO in complex and multimodal conditions, an authoritative test suite CEC2017 
is selected in this paper. 

All simulation experiments were conducted on the same PC. The configuration information of 
the PC is shown in Table 1. 
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Table 1. The computer configuration. 

PC configuration Information 
CPU Inter(R) Core(TM) i7-8700 
Frequency 3.2GHz CPU 
RAM 16.0GB 
Operating system Windows 10(64Bit) 
Language Python 3.9.13 

4.1. Experiments on DCS-PSO and other chaos algorithms 

4.1.1. Six 2-Dim benchmark functions 

To validate the effectiveness of the search space narrowing mechanism in DCS-PSO, we 
conducted experiments using six 2-dimensional benchmark functions [38,42]. DCS-PSO was 
compared with other chaos-based algorithms, namely COA, DCOA and PCOA. The narrowed search 
space can be visually observed through the contour map of the 2-dimensional function. The six 
benchmark functions are listed below. 
(1) Jong function:  

    2 22
1 2 1 1 2100 1 ,    2.048 , 2.048.Jf x x x x x          (4.1) 

The function has a global minimum of 0 at (1,1). 
(2) Camel function: 

  
4

2 2 2 21
1 1 1 2 2 2 1 24 2.1 4 4 ,    2 , 2.

3C

x
f x x x x x x x x

 
               
 

  (4.2) 

The function has a global minimum of −1.031628 at two points (−0.0898, 0.7126) and (0.0898, 
−0.7126). 
(3) GP-Goldstein-Price: 

 
     

   

2 2 2
1 2 1 1 2 1 2 2

2 2 2
1 2 1 1 2 1 2 2 1 2

1 1 19 14 3 14 6 3

             30 2 3 18 32 12 48 36 27 ,    2 , 2.

Gf x x x x x x x x x

x x x x x x x x x x

          
            

  (4.3) 

The function has a global minimum of 3 at (0,−1) and there are four local minima in the 
minimization region. 
(4) BR-Branin: 

  
2

2
2 1 1 1 1 22

5.1 5 1
6 10 1 cos 10,    5 10,   0 15.

4 8Bf x x x x x x x
  

                 
   

  (4.4) 

The global minimum of this function is approximately equal to 0.398 at three points (−3.142, 
12.275), (3.142, 2.275) and (9.425, 2.425). 
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(5) RA-Rastrigin: 

   2 2
1 2 1 2 1 2cos18 cos18 ,    1 , 1Rf x x x x x x x         (4.5) 

The function has a global minimum of −2 at (0,0) and its lattice structure has about 50 local 
minima. 
(6) SH-Shuber: 

        
5 5

1 2 1 2
1 1

cos 1 cos 1 ,    10 , 10.s
i i

f x i i x i i i x i x x
 

  
         
  
    (4.6) 

The function has 760 local minima, 18 of which are global with a value of −186.7309. 
The RA-Rastrigin function and the SH-Shuber function are relatively complex and have a large 

number of local minima, which can effectively test the algorithm’s ability to escape from the local 
optima. Their 3D stereograms are shown in Figure 4. 

  

(a) (b) 

Figure 4. The 3D stereograms of the RA-Rastrigin function and the SH-Shuber function. 
(a) RA-Rastrigin function. (b) SH-Shuber function. 

4.1.2. Experimental strategies 

To ensure the fairness of the experimental results, each algorithm will run on each benchmark function 
independently 50 times and the mean execution time, the mean optimal values and the standard deviations 
will be provided. The specific parameter settings of all algorithms are listed in Table 2. 

Table 2. Parameters settings of the four algorithms. 

Algorithm Parameters 

COA 
5 5max_ 1 10 ,  max_ 2 1.5 10 ,  0.3iter iter      

DCOA 3000,  0.25,  =1.5h     

PCOA 
5 5_ 3,  max_ 1 10 ,  max_ 2 1.5 10 ,  0.3n group iter iter       

DCS-PSO max20,  0.4,  1 2 2,  0.2 ,  max_ 1000N w c c V Range iter        
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4.1.3. Results and discussion 

Table 3 shows the execution time (E.T.), the mean optimal values (Mean) and standard deviations 
(S.D.) of COA, DCOA, PCOA and DCS-PSO. The best results of each algorithm on each test function 
are indicated in bold and the second-best results are marked with an underline. 

Table 3. Test results of the four algorithms. 

Function Criteria COA DCOA PCOA DCS-PSO 

Jf  
E.T. 30.8898 0.5753 17.2234 0.2793 

Mean 0.0000 0.0005 0.0000 0.0000 

S.D. 0.0000 0.0014 0.0000 0.0000 

Cf  
E.T. 7.6564 0.6478 10.3990 0.3610 

Mean −1.0316 −1.0312 −1.0316 −1.0316 

S.D. 0.0000 0.0012 0.0000 0.0000 

Gf  
E.T. 14.1867 1.0656 14.0814 0.6097 

Mean 3.0022 3.0100 3.0024 3.0000 

S.D. 0.0022 0.0126 0.0022 0.0000 

Bf  
E.T. 1.5663 0.8653 5.7455 0.4513 

Mean 0.3983 0.4003 0.3980 0.3979 

S.D. 0.0003 0.0039 0.0001 0.0000 

Rf  
E.T. 4.4150 0.6652 5.8342 0.4366 

Mean −1.9993 −1.9652 −1.9992 −2.0000 

S.D. 0.0006 0.0558 0.0008 0.0000 

Sf  
E.T. 5.8609 2.1743 13.8397 2.0615 

Mean −186.6428 -186.4517 −186.6861 −186.7309 

S.D. 0.0711 0.4203 0.0680 0.0000 

Based on the mean values in Table 3, the proposed DCS-PSO outperforms the other three chaos-
based methods. Compared with COA, DCOA and PCOA, DCS-PSO achieves superior results on five 
functions ( Jf , Cf , Gf , Rf  and Sf ). COA performs well in solving simple optimization problems and 

acquires the theoretically optimal solutions on both functions Jf   and Cf  . However, it performs 

poorly on function Sf , which has multiple local minima, possibly due to the challenge of attaining 

certain chaos states in a large search space. The convergence accuracy of DCOA is relatively poor. As 
mentioned earlier, DCOA may exclude the optimal solution while continuously narrowing the search 
space. However, compared with COA and PCOA, DCOA shows a shorter convergence time, which 
reflects its efficiency in narrowing the search space. The overall performance of PCOA is comparable 
to COA and it is the only algorithm that converges to the global optimum on function Bf . DCS-PSO 

has a faster convergence speed due to the combination of double-chaos search and PSO. The S.D. 
values in Table 3 show that DCS-PSO has the smallest S.D. values among the six benchmark functions, 
indicating that DCS-PSO is more stable and reliable. 

Figure 5(a) and (b) show the contour plots of functions Rf  and Sf  projected onto the XOY 

plane, respectively. The red rectangle in each plot represents the narrowed search space, demonstrating 
the ability of DCS-PSO to reduce the search space of complex optimization problems. These plots 
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visually display that DCS-PSO can accurately converge to the vicinity of the global optimum, 
validating the effectiveness of the proposed method. 

  

(a) (b) 

Figure 5. Diagrams of DCS-PSO narrow the search space in the RA-Rastrigin and the SH-
Shuber functions. (a) RA-Rastrigin function. (b) SH-Shuber function. 

4.2. Experiments on DCS-PSO and other PSO variants 

In this subsection, five representative PSO variants are selected for comparison. The first one is 
the PSO with inertia weight (PSO-w) [22], which can better control the search process and is 
characteristic of fast convergence when dealing with unimodal problems. The second one is the global 
version of PSO (GPSO) [23], whose inertia weight is decreased linearly from 0.9 to 0.4, improving the 
population’s global search ability. The third one is the local version of PSO (LPSO) [26] with ring 
topology, in which different topologies based on neighborhood connections are used to maintain the 
diversity of the population. The fourth one is the Comprehensive Learning PSO (CLPSO) [28], in 
which each particle updates its velocity by learning the historical best information of different particles. 
The fifth is the dynamic multi-swarm PSO (DMS-PSO) [27], in which the population comprises many 
small subgroups and a dynamic strategy is used to maintain population diversity. CLPSO and DMS-
PSO are designed to improve the performance of PSO on multimodal problems. 

4.2.1. Benchmark functions 

To investigate the performance of DCS-PSO on different optimization problems, ten benchmark 
functions are tested. Based on the properties of these functions, they are divided into two groups. The 
first group consists of 5 unimodal benchmark functions with only one global optimum value, mainly 
used to test the convergence accuracy and speed. The second group consists of 5 multimodal 
benchmark functions used to test the algorithm’s global search ability and its ability to escape from 
local optima. These benchmark functions are widely used in the literature [25,43,44]. The details of 
these benchmarks are shown in Table 4. 

In the first group, the global optimal position of function 4f  is  1 D
.The global optimal position 

of the remaining four functions is  0
D

 and the theoretical optimal values of the five functions are 0. 

1f  is the sphere function and is easy to solve. 2f  and 3f  are the Schwefel functions. 4f  is the 
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Rosenbrock function, it becomes a simple multimodal problem when its dimension is more than three 
and has a narrow gap between the perceived local optima and the global optimum. 5f  is the noise 

function, which is challenging to find the global optimum because there is a perturbation factor. 

In the second group, the global optimal positions of all functions are  0
D

 and the global optimal 

values are 0. Rastrigin’s function ( 6f ) has a large number of local optima. 7f  has a narrow global 

basin and a large number of local optima. 8f   is the Griewank’s function. 9f   and 10f   are the 

penalized functions.  

In 9f , the iy  is updated by  1
1 1
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4.2.2. Experimental strategies 

In the experiments, a population size of 40 and a maximum number of iterations of 2000 were 
used for all algorithms. The parameters for the five PSO variants were kept consistent with their 
respective literature. The benchmark functions were tested with dimensionalities of 10, 30 and 50 and 
each benchmark function was independently run 50 times in different dimensions to ensure the fairness 
of the experimental results. The error between the best optimum found by the algorithm and the actual 
global optimum was recorded and the mean error and standard deviation were displayed. The specific 
parameter settings for all algorithms can be found in Table 5. 

Furthermore, the nonparametric Wilcoxon rank-sum tests were executed for each benchmark 
function to determine whether the results obtained by DCS-PSO are significantly different from the 
best results achieved by the other algorithms 

Table 5. Parameters settings of the six algorithms. 

Algorithm Parameters 

PSO-w 1 2 max: 0.4,  2.0,  0.2w c c V Range     

GPSO 1 2 max: 0.9 ~ 0.4,  2.0,  0.2w c c V Range     

LPSO 1 2 max0.7298,  1.49445,  0.2c c V Range       

CLPSO max: 0.9 ~ 0.4,  1.49445,  0.2 ,  7w c V Range m     

DMS-PSO 1 2 max0.7298,  1.49445,  0.2 ,  4,  10c c V Range M R         

DCS-PSO 1 2 max: 0.4, 2.0, 0.2 ,  3000, 0.15, 1.5w c c V Range h          

4.2.3. Results and discussion 

Tables 6, 7 and 8 display the means (Mean) and standard deviations (S.D.) of six algorithms on 10 
test functions with dimensions of 10, 30 and 50, respectively. The k value presented in the second 
column of each table is the outcome of the nonparametric Wilcoxon rank-sum tests on our proposed 
algorithm and the second-best algorithms (indicated with underlining in tables). A k value of 1 indicates 
a significant difference in the performances of the two algorithms with 95% certainty, while a k value 
of 0 suggests no significant difference. Moreover, Table 7 ranks the algorithms according to their mean 
solution accuracy. The best results for each benchmark function are denoted in bold and the second-
best results are underlined. 

1) Results for the 10-D problems: For 1f , the performance of DCS-PSO is second only to LPSO, 

which maintains population diversity based on different neighborhood topologies, so its performance 
varies greatly on problems with different topologies. For 2f   and 3f  , our DCS-PSO very clearly 

outperforms all other algorithms, in solution accuracy. DCS-PSO achieves comparable result to other 
algorithms on 4f  with CLPSO and DMS-PSO exceeding it. 5f  is a noise function that is difficult to 

solve due to the perturbation factor. However, DCS-PSO still gets the best result on this problem. 
For multimodal problems, comparing DCS-PSO with CLPSO and DMS-PSO, which are 

algorithms proposed to improve the performance of PSO on multimodal problems, can demonstrate 
the competitiveness of DCS-PSO. DCS-PSO and CLPSO perform equally well with zero error on 
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Rastrigin’s function ( 6f ), which has many local optima. For 7f , DCS-PSO achieves the best result, 

but according to the statistical test result, its performance is comparable to that of DMS-PSO. For 8f , 

PSO-w, GPSO, DMS-PSO and DCS-PSO perform similarly, but CLPSO performs relatively better. 
For two penalized functions 9f  and 10f , although the performance of DCS-PSO on 9f  is not as good 

as that of GPSO, CLPSO and DMS-PSO, DCS-PSO achieves the lowest error on 10f . 

Overall, DCS-PSO obtains the best results in solving three unimodal functions ( 2f , 3f  and 5f ) 

and three multimodal functions ( 6f , 7f  and 10f ). Additionally, Table 6 shows that the S.D. values 

of DCS-PSO on most test functions are much smaller than those of other algorithms, indicating that 
DCS-PSO is more stable during the convergence process. 

Table 6. Test results of the six algorithms for 10-D problems. 

Function k Criteria PSO-w GPSO LPSO CLPSO DMS-PSO DCS-PSO 

1f  1 
Mean 1.84 × 10−144 1.47 × 10−73 2.78 × 10−169 2.18 × 10−21 6.30 × 10−62 2.35 × 10−151 

S.D. 9.13 × 10−144 1.04 × 10−72 0.00 5.44 × 10−21 4.25 × 10−61 7.75 × 10−151 

2f  1 
Mean 1.89 × 10−81 6.24 × 10−38 7.59 × 10−09 4.30 × 10−14 3.45 × 10−20 9.65 × 10−84 

S.D. 1.26 × 10−80 2.99 × 10−37 3.80 × 10−08 1.39 × 10−13 5.86 × 10−20 4.81 × 10−83 

3f  1 
Mean 1.22 × 10−44 9.93 × 10−17 6.11 × 10−13 2.18 × 10−20 6.13 × 10−10 1.21 × 10−48 

S.D. 7.42 × 10−44 3.36 × 10−16 4.32 × 10−12 3.25 × 10−20 3.33 × 10−09 2.38 × 10−48 

4f  1 
Mean 2.79 2.80 4.00 2.49 1.60 9.11 

S.D. 1.39 1.16 2.56 4.95 × 10−01 9.79 × 10−01 1.89 

5f  1 
Mean 7.23 × 10−04 1.02 × 10−03 3.25 × 10−03 1.49 × 10−03 8.80 × 10−04 2.15 × 10−04 

S.D. 3.90 × 10−04 5.46 × 10−04 2.43 × 10−03 7.09 × 10−04 4.49 × 10−04 1.58 × 10−04 

6f  0 
Mean 5.99 2.13 9.35 0.00 2.67 0.00 

S.D. 2.74 1.15 3.53 0.00 1.36 0.00 

7f  0 
Mean 4.14 × 10−15 4.07 × 10−15 4.67 × 10−15 3.16 × 10−14 4.00 × 10−15 3.91 × 10−15 

S.D. 7.03 × 10−16 5.02 × 10−16 1.62 × 10−15 5.29 × 10−14 0.00 5.62 × 10−16 

8f  1 
Mean 7.44 × 10−02 6.88 × 10−02 1.06 × 10−01 1.64 × 10−03 7.12 × 10−02 6.65 × 10−02 

S.D. 3.41 × 10−02 3.13 × 10−02 5.81 × 10−02 7.61 × 10−04 3.55 × 10−02 3.75 × 10−02 

9f  1 
Mean 1.24 × 10−02 4.71 × 10−32 6.22 × 10−03 2.99 × 10−30 1.38 × 10−28 1.78 × 10−01 

S.D. 6.16 × 10−02 1.11 × 10−47 4.40 × 10−02 3.07 × 10−30 2.65 × 10−28 6.11 × 10−02 

10f  1 
Mean 3.56 × 10−04 9.33 × 10−20 9.80 × 10−04 3.16 × 10−27 2.57 × 10−13 1.35 × 10−32 

S.D. 2.52 × 10−03 1.90 × 10−19 6.86 × 10−03 6.79 × 10−27 4.33 × 10−13 8.29 × 10−48 

2) Results for the 30-D and 50-D problems: The experiments conducted on 10-D problems are 
repeated for 30-D and 50-D problems and the results are presented in Tables 7 and 8. All algorithms 
exhibited similar characteristics as on the 10-D problems. However, high dimensionality leads to 
increased complexity, resulting in a decline in the performance of optimization algorithms on most 
problems. As shown in Tables 7 and 8, for 1f , 2f  and 5f  with 30 and 50 dimensions, DCS-PSO 

consistently outperforms all other algorithms, particularly on 2f  . Notably, for the Rosenbrock 

function ( 4f ), DCS-PSO performs similarly to other algorithms in 10 dimensionalities. However, its 

performance does not deteriorate as the dimension increases, illustrating that high dimensionality does 
not significantly decrease the performance of DCS-PSO on this problem. 
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For 6f  with 30 and 50 dimensions, CLPSO always performs best among all algorithms. DCS-

PSO is still best on 7f  with 30 dimensionalities, while GPSO performs better on this problem with 

50 dimensions. CLPSO and DMS-PSO retain their superiority on 8f   and 9f   with 30 and 50 

dimensionalities, respectively. However, the nonparametric Wilcoxon rank-sum test results indicate 
that DCS-PSO is not statistically significantly poorer than CLPSO and DMS-PSO. DCS-PSO remains 
the best-performing algorithm on 10f  , which suggests that its performance is not affected by the 

increased dimensionality of this function. 

Table 7. Test results of the six algorithms for 30-D problems. 

Function k Criteria PSO-w GPSO LPSO CLPSO DMS-PSO DCS-PSO 

1f  1 

Mean 1.28 × 10−39 3.42 × 10−14 3.82 3.83 × 10−13 6.76 × 10−28 1.05 × 10−40 

S.D. 2.48 × 10−39 1.20 × 10−13 2.18× 10+01 9.48 × 10−13 5.49 × 10−28 2.01 × 10−40 

Rank 2 4 6 5 3 1 

2f  1 

Mean 1.67 × 10−09 1.27 × 10−08 1.83 4.45 × 10−08 3.74 × 10−13 2.49 × 10−23 

S.D. 1.15 × 10−08 2.46 × 10−08 1.83 2.84 × 10−08 2.33 × 10−13 5.70 × 10−23 

Rank 3 4 6 5 2 1 

3f  1 

Mean 6.50 × 10−01 9.58 × 10+01 4.79× 10+02 4.37 × 10−04 1.16 × 10+01 5.90 

S.D. 5.22 × 10−01 5.10 × 10+01 3.08× 10+02 3.04 × 10−04 5.95 4.45 

Rank 2 5 6 1 4 3 

4f  1 

Mean 2.98× 10+01 4.17 × 10+01 9.42× 10+01 1.81 × 10 +01 2.26 × 10+01 2.21 × 10+01 

S.D. 2.16× 10+01 2.87 × 10+01 5.46× 10+01 3.80 2.29 6.32 × 10−01 

Rank 4 5 6 1 3 2 

5f  1 

Mean 8.74 × 10−03 1.89 × 10−02 8.00 × 10−02 3.83 × 10−02 9.99 × 10−03 5.12 × 10−03 

S.D. 3.28 × 10−03 6.58 × 10−03 3.51 × 10−02 1.47 × 10−02 3.98 × 10−03 1.69 × 10−03 

Rank 2 4 6 5 3 1 

6f  1 

Mean 3.88 × 10+01 3.34 × 10+01 5.12 × 10+01 4.40 × 10−11 2.73 × 10+01 1.31 × 10+02 

S.D. 8.06 8.19 1.62 × 10+01 6.58 × 10−11 8.88 × 10+00 1.01 × 10+01 

Rank 4 3 5 1 2 6 

7f  1 

Mean 3.81 × 10−01 1.14 × 10−06 4.32 3.15 × 10−03 4.37 × 10−14 1.20 × 10−14 

S.D. 6.47 × 10−01 1.04 × 10−06 1.16 2.18 × 10−02 4.86 × 10−14 3.90 × 10−15 

Rank 5 3 6 4 2 1 

8f  0 

Mean 1.46 × 10−02 1.38 × 10−02 4.14 × 10−01 1.41 × 10−12 4.44 × 10−03 1.15 × 10−02 

S.D. 1.70 × 10−02 1.55 × 10−02 3.12 × 10−01 2.52 × 10−12 4.99 × 10−03 1.40 × 10−02 

Rank 5 4 6 1 2 3 

9f  0 

Mean 1.39 × 10−01 1.04 × 10−02 3.87 2.32 × 10−14 1.08 × 10−26 2.96 × 10−02 

S.D. 2.62 × 10−01 3.14 × 10−02 2.66 5.72 × 10−14 2.24 × 10−26 4.74 × 10−02 

Rank 4 3 6 2 1 4 

10f  1 

Mean 2.28 × 10−01 1.10 × 10−02 2.16× 10+01 1.03 × 10−11 5.31 × 10−03 6.22 × 10−32 

S.D. 6.63 × 10−01 4.43 × 10−02 1.12× 10+01 1.45 × 10−11 4.13 × 10−04 7.45 × 10−32 

Rank 5 4 6 2 3 1 

Ave. rank 3.6 3.9 5.9 2.7 2.5 2.3 

Final rank 4 5 6 3 2 1 
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Table 8. Test results of the six algorithms for 50-D problems. 

Function k Criteria PSO-w GPSO LPSO CLPSO DMS-PSO DCS-PSO 

1f  1 
Mean 5.20 × 10−17 3.68 × 10−04 1.30 × 10+03 5.70 × 10−05 1.26 × 10−06 3.93 × 10−18 

S.D. 1.91 × 10−16 4.22 × 10−04 4.91 × 10+02 6.50 × 10−05 3.14 × 10−06 1.05 × 10−17 

2f  0 
Mean 9.06 × 10−06 2.01 × 10−01 2.26 × 10+01 2.00 × 10−01 1.48 × 10−04 5.87 × 10−07 

S.D. 5.83 × 10−05 1.41 4.26 1.41 6.99 × 10−04 2.82 × 10−06 

3f  1 
Mean 4.52 × 10+02 4.38 × 10+03 7.71 × 10+03 1.55 1.90 × 10+03 1.33 × 10+03 

S.D. 1.68 × 10+02 1.88× 10+03 2.11 × 10+03 9.59 × 10−01 2.30 × 10+03 5.06× 10+02 

4f  1 
Mean 7.59 × 10+01 1.34× 10+02 3.19 × 10+03 1.69 × 10+02 1.46 × 10+02 4.52 × 10−02 

S.D. 4.33 × 10+01 1.52× 10+02 1.65 × 10+03 2.75 × 10+02 1.41 × 10+02 2.98 × 10−02 

5f  1 
Mean 3.75 × 10−02 7.50 × 10−02 9.04 × 10−01 1.72 × 10−01 4.52 × 10−02 1.85 × 10−02 

S.D. 1.12 × 10−02 2.09 × 10−02 3.67 × 10−01 4.36 × 10−02 1.67 × 10−02 6.22 × 10−03 

6f  1 
Mean 7.48 × 10+01 8.78× 10+01 1.16 × 10+02 1.32 × 10−03 7.67 × 10+01 4.79 × 10+01 

S.D. 1.62 × 10+01 1.83× 10+01 2.04 × 10+01 6.87 × 10−03 1.60 × 10+01 3.18 

7f  0 
Mean 1.38 1.40 × 10−01 9.00 1.22 1.14 9.05 × 10−01 

S.D. 8.89 × 10−01 3.52 × 10−01 1.08 5.83 × 10−01 7.77 × 10−01 8.47 × 10−01 

8f  0 
Mean 1.36 × 10−02 8.18 × 10−03 1.22 × 10+01 3.18 × 10−04 3.79 × 10−02 1.43 × 10−02 

S.D. 2.61 × 10−02 1.02 × 10−02 4.71 1.41 × 10−03 7.54 × 10−02 1.76 × 10−02 

9f  0 
Mean 1.60 × 10−01 1.04 × 10−01 2.08 × 10+01 8.95 × 10−02 7.84 × 10−08 2.99 × 10−02 

S.D. 2.65 × 10−01 1.96 × 10−01 8.57 1.44 × 10−01 4.22 × 10−07 4.91 × 10−02 

10f  1 
Mean 4.07 9.60 × 10−01 4.06 × 10+02 1.35 8.78 3.53 × 10−01 

S.D. 3.36 1.12 3.10 × 10+02 1.87 6.03 3.69 × 10−01 

3) Comparison of convergence speed: Figure 6 shows the convergence characteristics in terms of 
the error between the best fitness value found and the actual best function value of the median run of 
each algorithm for each test function with 30 dimensions. Since the convergence characteristics for the 
10-D and 50-D cases are similar to those in the 30-D case, they are not presented. 

Combining the numerical results and convergence plots, it can be concluded that all algorithms 
perform well in solving 1f   and 2f   with three different dimensionalities. However, DCS-PSO is 

faster than other algorithms. PSO exhibits similar convergence characteristics as DCS-PSO on 2f . 

The convergence characteristics of each algorithm on 1f  and 2f  are shown in Figure 6(a) and (b). 

Figure 6(c) indicates that CLPSO has better convergence speed and accuracy than other algorithms on 

3f . Although DCS-PSO has slightly lower convergence accuracy than CLPSO on 4f , it has the fastest 

convergence speed as illustrated in Figure 6(d). All algorithms perform similarly on the noise problem 
( 5f ). Figure 6(e) displays that these algorithms show a slow decrease in error, but DCS-PSO has the 

fastest convergence speed and the lowest error. 
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(a) 1f  (b) 2f  

  
(c) 3f  (d) 4f  

  
(e) 5f  (f) 6f  

  
(g) 7f  (h) 8f  

  
(i) 9f  (j) 10f  

Figure 6. Convergence curves of the six algorithms in 30-D benchmark functions. 
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The advantages of CLPSO and DMS-PSO are revealed through some multimodal problems. As 
shown in Figure 6(f), although the convergence speed is slow, CLPSO has the best search accuracy on 

6f . In contrast, other algorithms cannot continue to search effectively after reaching a certain accuracy. 

From the convergence characteristics in Figure 6(g), the performances of DCS-PSO and DMS-PSO 
are also excellent on 7f , but DCS-PSO has the fastest convergence speed. Although DCS-PSO is not 

as good as CLPSO and DMS-PSO in terms of average errors on 8f  and 9f , there is no statistically 

significant difference according to the Wilcoxon tests, as verified in Figure 6(h, i). It can be seen from 
Figure 6(j) that DCS-PSO has the best search efficiency on 10f . Considering the numerical results and 

the convergence speeds, DCS-PSO performs best among all tested algorithms. 
4) Discussion: The nonparametric Wilcoxon rank-sum tests indicate that DCS-PSO is 

significantly better than or equivalent to the other algorithms on most problems with three different 
dimensionality cases. When the problems are 10-dimensional, DCS-PSO is significantly better than 
other algorithms on 2f , 3f , 5f  and 10f , and is equivalent to CLPSO and DMS-PSO on 6f  and 

7f , respectively. For 8f  and 9f , with 30 and 50 dimensionalities, DCS-PSO performs equivalently 

to CLPSO and DMS-PSO, respectively. All statistical results demonstrate that DCS-PSO performs 
very well overall. 

In the above experiments, DCS-PSO shows better convergence speed and accuracy on most 
unimodal problems, indicating that it is more effective in solving such problems. Simultaneously, 
the performance of DCS-PSO on most multimodal problems is comparable to that of CLPSO and 
DMS-PSO, demonstrating its ideal global search performance and ability to escape local optima. 

4.3. Experiments on CEC2017 

This section further uses a widely recognized CEC2017 test suite to confirm the performance 
of DCS-PSO with PSO variants. In CEC2017, there are 29 functions (F2 has been excluded 
because it shows unstable behavior, especially for higher dimensions) which can be classified into 
four categories: unimodal functions ( 1f , 3f ), multimodal functions ( 4f – 10f ), hybrid functions 

( 11f – 20f ) and composition functions ( 21f – 30f ). Due to space constraints, we only select D = 30 

for analysis and discussion. The best value for each function is shown in bold. 

4.3.1. Results comparison 

Table 9 shows that CLPSO and DMS-PSO obtain the best result in unimodal functions, 
followed by DCS-PSO. In multimodal functions, DCS-PSO achieves the best performance on 4f , 

5f , 8f  and 9f , 4 of 7 multimodal functions in terms of mean value, followed by GPSO, CLPSO, 

and DMS-PSO, which all obtain the best solutions on one function. 
For the 10 hybrid functions, DCS-PSO reaches the best solutions on 13f , 14f , 15f  and 18f , 

4 of 10 hybrid functions. DMS-PSO also performs remarkably since it reaches the best solutions 
on 3 out of 10 functions, followed by GPSO, LPSO and CLPSO, which all obtain the best solutions 
on one function. In the ten composition functions, DMS-PSO attains remarkable results on 21f , 

22f , 23f , 24f , 26f  and 27f , 6 out of 10 composition functions. The comparison results indicate 

that DCS-PSO works well in complex and multimodal situations. 
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Table 9. Results of comparison algorithms on CEC2017 test suite (D = 30). 

Function Criteria PSO-w GPSO LPSO CLPSO DMS-PSO DCS-PSO 

F1 Mean 5.73 × 10+08 9.15 × 10+09 5.24 × 10+09 1.01 × 10+02 3.26 × 10+03 6.44 × 10+03 

S.D. 2.36 × 10+09 1.29 × 10+10 9.65 × 10+09 5.12 × 10−01 4.53 × 10+03 1.93 × 10+03 

F3 Mean 2.52 × 10+03 5.01 × 10+03 9.58 × 10+03 4.90 × 10+02 2.16 × 10+02 5.45 × 10+02 

S.D. 1.23 × 10+03 2.38 × 10+03 5.11 × 10+03 1.39 × 10+01 3.43 × 10+02 3.90 × 10−13 

F4 Mean 1.03 × 10+02 1.73 × 10+02 2.15 × 10+02 5.53 × 10+02 7.39 × 10+01 1.22 

S.D. 3.19 × 10+01 1.02 × 10+02 1.92 × 10+02 7.54 2.39 × 10+01 1.75 

F5 Mean 1.43 × 10+02 7.61 × 10+01 1.42 × 10+02 6.00 × 10+02 5.88 × 10+01 2.09 × 10+01 

S.D. 3.11 × 10+01 2.08 × 10+01 3.78 × 10+01 0.00 1.30 × 10+01 7.01 

F6 Mean 4.01 × 10+01 1.43 × 10+01 5.14 × 10+01 7.87 × 10+02 9.86 × 10−04 3.75 

S.D. 1.49 × 10+01 5.47 1.39 × 10+01 6.43 2.47 × 10−03 3.17 

F7 Mean 1.29 × 10+02 1.12 × 10+01 1.91 × 10+02 8.49 × 10+02 9.76 × 10+01 1.28 × 10+02 

S.D. 3.46 × 10+01 1.03 × 10+01 4.86 × 10+01 1.03 × 10+01 1.99 × 10+01 9.23 

F8 Mean 1.20 × 10+02 6.83 × 10+01 1.24 × 10+02 9.09 × 10+02 5.94 × 10+01 1.62 × 10+01 

S.D. 3.18 × 10+01 1.66 × 10+01 2.95 × 10+01 3.05 1.68 × 10+01 5.52 

F9 Mean 1.38 × 10+03 1.53 × 10+02 2.26 × 10+03 3.27 × 10+03 2.33 × 10+01 6.09 × 10−01 

S.D. 1.18 × 10+03 1.64 × 10+02 9.36 × 10+02 2.89 × 10+02 5.63 × 10+01 1.83 

F10 Mean 3.61 × 10+03 3.19 × 10+03 3.91 × 10+03 1.18 × 10+03 2.97 × 10+03 1.99 × 10+03 

S.D. 5.67 × 10+02 6.28 × 10+02 7.81 × 10+02 4.51 5.89 × 10+02 2.87 × 10+02 

F11 Mean 1.30 × 10+02 1.71 × 10+02 1.76 × 10+02 5.97 × 10+05 4.74 × 10+01 1.12 × 10+02 

S.D. 4.18 × 10+01 5.41 × 10+01 5.11 × 10+01 3.96 × 10+05 3.12 × 10+01 2.44 × 10+01 

F12 Mean 4.56 × 10+07 6.40 × 10+07 1.76 × 10+08 2.62 × 10+03 8.25 × 10+04 2.79 × 10+03 

S.D. 2.83 × 10+08 1.12 × 10+08 5.00 × 10+08 1.55 × 10+03 2.16 × 10+04 2.07 × 10+03 

F13 Mean 1.77 × 10+06 5.01 × 10+07 1.88 × 10+07 1.75 × 10+04 1.55 × 10+04 1.27 × 10+04 

S.D. 8.67 × 10+06 1.71 × 10+08 1.02 × 10+08 9.65 × 10+03 1.65 × 10+04 3.86 × 10+03 

F14 Mean 1.80 × 10+04 3.70 × 10+04 1.10 × 10+04 1.61 × 10+03 1.32 × 10+04 1.02 × 10+02 

S.D. 2.36 × 10+04 4.40 × 10+04 1.30 × 10+04 2.70 × 10+01 1.23 × 10+04 2.45 × 10+01 

F15 Mean 3.99 × 10+03 1.97 × 10+04 1.07 × 10+04 2.16 × 10+03 6.90 × 10+03 1.09 × 10+02 

S.D. 3.96 × 10+03 3.05 × 10+04 1.25 × 10+04 1.32 × 10+02 9.16 × 10+03 1.14 × 10+02 

F16 Mean 1.04 × 10+03 7.61 × 10+02 1.13 × 10+03 1.84 × 10+03 7.95 × 10+02 1.79 × 10+03 

S.D. 2.73 × 10+02 2.47 × 10+02 2.95 × 10+02 4.18 × 10+01 2.10 × 10+02 1.25 × 10+02 

F17 Mean 4.00 × 10+04 1.57 × 10+04 1.21 × 10+04 2.16 × 10+05 1.89 × 10+02 4.62 × 10+03 

S.D. 6.54 × 10+02 1.54 × 10+03 2.56 × 10+03 1.61 × 10+05 1.14 × 10+02 6.54 × 10+02 

F18 Mean 1.41 × 10+05 4.45 × 10+05 1.12 × 10+05 1.95 × 10+03 1.27 × 10+05 5.56 × 10+02 

S.D. 1.04 × 10+05 3.62 × 10+05 1.15 × 10+05 1.88 × 10+01 1.06 × 10+05 8.59 × 10+02 

F19 Mean 6.20 × 10+03 4.47 × 10+05 6.10 × 10+03 6.30 × 10+03 9.39 × 10+03 7.78 × 10+03 

S.D. 6.09 × 10+03 2.71 × 10+06 6.37 × 10+03 2.64 × 10+01 1.28 × 10+04 1.08 × 10+03 

F20 Mean 1.70 × 10+04 1.45 × 10+04 1.92 × 10+04 2.36 × 10+03 2.73 × 10+02 6.00 × 10+03 

S.D. 3.26 × 10+03 3.44 × 10+02 2.75 × 10+03 5.04 1.41 × 10+02 5.32 × 10+02 

F21 Mean 3.39 × 10+02 2.80 × 10+02 3.34 × 10+02 2.65 × 10+03 2.62 × 10+02 1.03 × 10+02 

S.D. 5.45 × 10+01 4.25 × 10+01 4.90 × 10+01 5.40 × 10+02 2.11 × 10+01 8.18 × 10−01 

     Continued on next page 
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Function Criteria PSO-w GPSO LPSO CLPSO DMS-PSO DCS-PSO 

F22 Mean 4.15 × 10+02 6.72 × 10+02 1.00 × 10+03 2.72 × 10+03 2.38 × 10+02 1.09 × 10+02 

S.D. 9.94 × 10+02 7.48 × 10+02 1.50 × 10+03 1.15 × 10+01 5.92 × 10+02 1.44 

F23 Mean 6.42 × 10+02 5.82 × 10+02 6.73 × 10+02 2.92 × 10+03 4.30 × 10+02 3.25 × 10+02 

S.D. 1.01 × 10+02 9.36 × 10+01 1.10 × 10+02 1.21 × 10+01 2.10 × 10+01 7.91 

F24 Mean 6.61 × 10+02 6.34 × 10+02 7.14 × 10+02 2.89 × 10+03 4.94 × 10+02 3.53 × 10+02 

S.D. 7.19 × 10+01 8.33 × 10+01 8.07 × 10+01 2.23 × 10−01 2.60 × 10+01 1.09 × 10+01 

F25 Mean 3.95 × 10+02 4.13 × 10+02 4.47 × 10+02 3.47 × 10+03 3.97 × 10+02 4.26 × 10+02 

S.D. 1.50 × 10+01 3.64 × 10+01 3.05 × 10+01 7.89 × 10+02 1.53 2.34 × 10+01 

F26 Mean 1.24 × 10+03 1.51 × 10+03 2.45 × 10+03 3.21 × 10+03 1.49 × 10+03 4.02 × 10+02 

S.D. 1.29 × 10+03 7.71 × 10+02 1.36 × 10+03 6.70 5.18 × 10+02 5.94 × 10+01 

F27 Mean 5.88 × 10+02 5.80 × 10+02 6.21 × 10+02 3.21 × 10+03 5.38 × 10+02 4.03 × 10+02 

S.D. 5.87 × 10+01 5.54 × 10+01 5.36 × 10+01 5.65 1.25 × 10+01 4.45 

F28 Mean 4.34 × 10+02 5.05 × 10+02 5.49 × 10+02 3.45 × 10+03 3.40 × 10+02 3.88 × 10+02 

S.D. 4.76 × 10+01 7.23 × 10+01 1.46 × 10+02 4.85 5.79 × 10+01 8.36 

F29 Mean 6.25 × 10+02 8.71 × 10+02 6.24 × 10+02 8.91 × 10+02 6.03 × 10+02 6.38 × 10+02 

S.D. 4.87 × 10+01 6.31 × 10+01 2.17 × 10+02 7.46 × 10+01 1.55 × 10+02 7.88 × 10+01 

F30 Mean 4.52 × 10+04 4.50 × 10+05 3.78 × 10+05 1.12 × 10+03 5.81 × 10+03 3.14 × 10+05 

S.D. 1.10 × 10+05 1.41 × 10+06 4.93 × 10+05 2.22 × 10+03 2.34 × 10+03 5.14 × 10+05 

4.3.2. Friedman test results 

Friedman test is used in this section to compare the performance of DCS-PSO and other PSO 
variants. The results of the Friedman test are shown in Table 10. It can be seen from Table 10 that 
DCS-PSO achieves a remarkable result on the CEC2017, followed by DMS-PSO, PSO-w, GPSO, 
CLPSO and LPSO. The overall performance in CEC2017 reveals that DCS-PSO has a distinct 
advantage over other compared algorithms. 

Table 10. Friedman test of all compared algorithms on the CEC2017 test suite. 

Average rank Algorithm Ranking 

1 DCS-PSO 2.03 

2 DMS-PSO 2.17 

3 PSO-w 3.69 

4 GPSO 4.07 

5 CLPSO 4.45 

6 LPSO 4.59 

5. Conclusions and future works 

In this paper, we propose an improved particle swarm optimization combined with double-chaos 
search mechanism, namely DCS-PSO. The standard PSO is simple and efficient, but it is difficult to 
maintain population diversity when dealing with complex problems with a large search space, leading 
to premature convergence and getting trapped in local optima. The chaos search mechanism has the 
advantages of global traversal and avoiding falling into local optima. 
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In the first stage of DCS-PSO, we adopt the double-chaos search mechanism to narrow the search 
space to the vicinity of the optimal solution, effectively reducing the risk of PSO getting trapped in 
local optima. In the second stage, to enhance the population diversity, the logistic map is utilized to 
perform a global search in the narrowed search space and the best solution obtained from both chaos 
search and population search will guide the population to converge. Experimental studies show that 
the algorithm can effectively narrow the search space and has better convergence accuracy and speed 
for most functions. 

Of course, according to the no free lunch theorem, DCS-PSO cannot optimally solve every kind 
of global optimization problem. Although we use the chaos search mechanism to improve the 
convergence speed and ability to escape the local optima of DCS-PSO, it also brings about a problem 
worth further investigation: how to ensure that the optimal solution must exist in the narrowed search 
space. In the future, we will continue conducting in-depth research on chaos theory, optimize our DCS-
PSO algorithm and try to apply DCS-PSO to solving these real-world problems. 

Use of AI tools declaration  

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 
article. 

Acknowledgments 

This research was supported by the National Natural Science Foundation of China (Grant No 
82260849); the National Natural Science Foundation of China (Grant No 61562045); and Jiangxi 
University of Chinese Medicine Science and Technology Innovation Team Development Program 
(Grant No CXTD22015). 

References 

1. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95-international 
conference on neural networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 

2. J. H. Holland, Genetic algorithms, Sci. Am., 21 (1992), 66–73. 
https://doi.org/10.1038/scientificamerican0792-66 

3. G. G. Wang, S. Deb, Z. Cui, Monarch butterfly optimization, Neural Comput. Appl., 31 (2019), 
1995–2014. https://doi.org/10.1007/s00521-015-1923-y 

4. S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for 
stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. 
https://doi.org/10.1016/j.future.2020.03.055 

5. G. G. Wang, Moth search algorithm: a bio-inspired metaheuristic algorithm for global 
optimization problems, Memetic Comput., 10 (2018), 151–164. https://doi.org/10.1007/s12293-
016-0212-3 

6. Y. Yang, H. Chen, A. A. Heidari, A. H. Gandomi, Hunger games search: Visions, conception, 
implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl., 
177 (2021), 114864. https://doi.org/10.1016/j.eswa.2021.114864 



15762 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 15737–15764. 

7. I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X. Chu, H. Chen, RUN beyond the metaphor: An 
efficient optimization algorithm based on Runge Kutta method, Expert Syst. Appl., 181 (2021), 
115079. https://doi.org/10.1016/j.eswa.2021.115079 

8. J. Tu, H. Chen, M. Wang, A. H. Gandomi, The colony predation algorithm, J. Bionic. Eng., 18 
(2021), 674–710. https://doi.org/10.1007/s42235-021-0050-y 

9. I. Ahmadianfar, A. A. Heidari, S. Noshadian, H. Chen, A. H. Gandomi, INFO: An efficient 
optimization algorithm based on weighted mean of vectors, Expert Syst. Appl., 195 (2022), 116516. 
https://doi.org/10.1016/j.eswa.2022.116516 

10. A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: 
Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. 
https://doi.org/10.1016/j.future.2019.02.028 

11. H. Su, D. Zhao, A. A. Heidari, L. Liu, X. Zhang, M. Mafarja, et al., RIME: A physics-based 
optimization, Neurocomputing, 532 (2023), 183–214. 
https://doi.org/10.1016/j.neucom.2023.02.010 

12. Y. Li, G. Wang, H. Chen, L. Shi, L. Qin, An ant colony optimization based dimension reduction 
method for high-dimensional datasets, J. Bionic. Eng., 10 (2013), 231–241. 
https://doi.org/10.1016/S1672-6529(13)60219-X 

13. S. Thawkar, S. Sharma, M. Khanna, L. K. Singh, Breast cancer prediction using a hybrid method 
based on Butterfly Optimization Algorithm and Ant Lion Optimizer, Comput. Biol. Med., 139 
(2021), 104968. https://doi.org/10.1016/j.compbiomed.2021.104968 

14. S. Chakraborty, A. K. Saha, S. Nama, S. Debnath, COVID-19 X-ray image segmentation by 
modified whale optimization algorithm with population reduction, Comput. Biol. Med., 139 
(2021), 104984. https://doi.org/10.1016/j.compbiomed.2021.104984 

15. X. Gao, L. Wang, X. Yu, X. Su, Y. Ding, C. Lu, et al., Conditional probability based multi-
objective cooperative task assignment for heterogeneous UAVs, Eng. Appl. Artif. Intell., 123 
(2023), 106404. https://doi.org/10.1016/j.engappai.2023.106404 

16. X. Yu, X. Gao, L. Wang, X. Wang, Y. Ding, C. Lu, et al., Cooperative multi-uav task assignment 
in cross-regional joint operations considering ammunition inventory, Drones, 6 (2022), 77. 
https://doi.org/10.3390/drones6030077 

17. C. Li, Y. Zhang, X. Su, X. Wang, An improved optimization algorithm for aeronautical 
maintenance and repair task scheduling problem, Mathematics, 10 (2022), 3777. 
https://doi.org/10.3390/math10203777 

18. F. Wang, H. Zhang, K. Li, Z. Lin, J. Yang, X. L. Shen, A hybrid particle swarm optimization 
algorithm using adaptive learning strategy, Inf. Sci., 436 (2018), 162–177. 
https://doi.org/10.1016/j.ins.2018.01.027 

19. A. Ratnaweera, S. K. Halgamuge, H. C. Watson, Self-organizing hierarchical particle swarm 
optimizer with time-varying acceleration coefficients, IEEE Trans. Evol. Comput., 8 (2004), 240–
255. https://doi.org/10.1109/TEVC.2004.826071 

20. B. Y. Qu, P. N. Suganthan, S. Das, A distance-based locally informed particle swarm model for 
multimodal optimization, IEEE Trans. Evol. Comput., 17 (2013), 387–402. 
https://doi.org/10.1109/TEVC.2012.2203138 

21. R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler, maybe better, IEEE 
Trans. Evol. Comput., 8 (2004), 204–210. https://doi.org/10.1109/TEVC.2004.826074 



15763 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 15737–15764. 

22. Y. Shi, R. Eberhart, A modified particle swarm optimizer, in 1998 IEEE international conference 
on evolutionary computation proceedings. IEEE world congress on computational intelligence 
(Cat. No. 98TH8360), (1998), 69–73. https://doi.org/10.1109/ICEC.1998.699146 

23. Y. Shi, R. C. Eberhart, Empirical study of particle swarm optimization, in Proceedings of the 1999 
congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), 3 (1999), 1945–1950. 
https://doi.org/10.1109/CEC.1999.785511 

24. H. Liu, X. W. Zhang, L. P. Tu, A modified particle swarm optimization using adaptive strategy, 
Expert Syst. Appl., 152 (2020), 113353. https://doi.org/10.1016/j.eswa.2020.113353 

25. K. Chen, F. Zhou, L. Yin, S. Wang, Y. Wang, F. Wan, A hybrid particle swarm optimizer with sine 
cosine acceleration coefficients, Inf. Sci., 422 (2018), 218–241. 
https://doi.org/10.1016/j.ins.2017.09.015 

26. J. Kennedy, R. Mendes, Population structure and particle swarm performance, in Proceedings of 
the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), 2 (2002), 1671–
1676. https://doi.org/10.1109/CEC.2002.1004493 

27. J. J. Liang, P. N. Suganthan, Dynamic multi-swarm particle swarm optimizer with a novel 
constraint-handling mechanism, in 2006 IEEE International Conference on Evolutionary 
Computation, (2006), 9–16. https://doi.org/10.1109/CEC.2006.1688284 

28. J. J. Liang, A. K. Qin, P. N. Suganthan, S. Baskar, Comprehensive learning particle swarm 
optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Comput., 103 
(2006), 281–295. https://doi.org/10.1109/TEVC.2005.857610 

29. Y. Wang, B. Wang, Z. Li, C. Xu, A novel particle swarm optimization based on hybrid-learning 
model, Math. Biosci. Eng., 20 (2023), 7056–7087. https://doi.org/10.3934/mbe.2023305 

30. X. Zhou, S. Zhou, Y. Han, S. Zhu, Lévy flight-based inverse adaptive comprehensive learning 
particle swarm optimization, Math. Biosci. Eng., 19 (2022), 5241–5268. 
https://doi.org/10.3934/mbe.2022246 

31. K. T. Alligood, T. D. Sauer, J. A. Yorke, D. Chillingworth, Chaos: an introduction to dynamical 
systems, Phys. Today, 50 (1997), 67–68. https://doi.org/10.1063/1.882006 

32. B. Li, W. S. Jiang, Chaotic optimization method and its application, Control Theory Appl., 14 
(1997), 613–615. 

33. M. Ji, H. Tang, Application of chaos in simulated annealing, Chaos Solitons Fractals, 21 (2004), 
933–941. https://doi.org/10.1016/j.chaos.2003.12.032 

34. K. Aihara, T. Takabe, M. Toyoda, Chaotic neural networks, Phys. Lett. A, 144 (1990), 333–340. 
https://doi.org/10.1016/0375-9601(90)90136-C 

35. B. L. W. Jiang, Optimizing complex functions by chaos search, Cybern. Syst., 29 (1998), 409–
419. https://doi.org/10.1080/019697298125678 

36. R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 
459–467. https://doi.org/10.1038/261459a0 

37. C. B. Xiu, X. D. Liu, Y. H. Zhang, Optimization algorithm using two kinds of chaos and its 
application, Control Decis., 6 (2003), 724–726. 

38. H. Y. Liang, X. S. Gu, A novel chaos optimization algorithm based on parallel computing, J. East 
China Univ Sci. Technol., 4 (2004), 450–453. 

39. B. Liu, L. Wang, Y. H. Jin, F. Tang, D. X. Huang, Improved particle swarm optimization combined 
with chaos, Chaos Solitons Fractals, 25 (2005), 1261–1271. 
https://doi.org/10.1016/j.chaos.2004.11.095 



15764 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 15737–15764. 

40. P. J. Angeline, Evolutionary optimization versus particle swarm optimization: Philosophy and 
performance differences, in International conference on evolutionary programming, (1998), 601–
610. https://doi.org/10.1007/BFb0040811 

41. Y. Yu, S. Gao, S. Cheng, Y. Wang, S. Song, F. Yuan, CBSO: a memetic brain storm optimization 
with chaotic local search, Memetic Comput., 10 (2018), 353–367. https://doi.org/10.1007/s12293-
017-0247-0 

42. L. Wang, Intelligent Optimization Algorithms with Applications, Tsinghua University Press, 
Beijing, 2001. 

43. Z. Tu, Y. Lu, A robust stochastic genetic algorithm (StGA) for global numerical optimization, 
IEEE Trans. Evol. Comput., 8 (2004), 456–470. https://doi.org/10.1109/TEVC.2004.831258 

44. C. Y. Lee, X. Yao, Evolutionary programming using mutations based on the Levy probability 
distribution, IEEE Trans. Evol. Comput., 8 (2004), 1–13. 
https://doi.org/10.1109/TEVC.2003.816583 

©2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


