
MBE, 20(9): 15830–15858.

DOI: 10.3934/mbe.2023705

Received: 13 April 2023

Revised: 13 July 2023

Accepted: 20 July 2023

Published: 31 July 2023

http://www.aimspress.com/journal/MBE

Research article

Fast clustering algorithm based on MST of representative points

Hui Du1, Depeng Lu1,*, Zhihe Wang1, Cuntao Ma1, Xinxin Shi1 and Xiaoli Wang2

1 The School of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070,
China

2 School of Computer Science and Technology, Xidian University, Xi’an 710071, China

* Correspondence: Email: 2021222222@nwnu.edu.cn; Tel: +86 18609434184.

Abstract: Minimum spanning tree (MST)-based clustering algorithms are widely used to detect
clusters with diverse densities and irregular shapes. However, most algorithms require the entire
dataset to construct an MST, which leads to significant computational overhead. To alleviate this issue,
our proposed algorithm R-MST utilizes representative points instead of all sample points for
constructing MST. Additionally, based on the density and nearest neighbor distance, we improved the
representative point selection strategy to enhance the uniform distribution of representative points in
sparse areas, enabling the algorithm to perform well on datasets with varying densities. Furthermore,
traditional methods for eliminating inconsistent edges generally require prior knowledge about the
number of clusters, which is not always readily available in practical applications. Therefore, we
propose an adaptive method that employs mutual neighbors to identify inconsistent edges and
determine the optimal number of clusters automatically. The experimental results indicate that the R-
MST algorithm not only improves the efficiency of clustering but also enhances its accuracy.

Keywords: minimum spanning tree; inconsistent edges; mutual neighbors; clustering; density

1. Introduction

The rapid development of big data technology has been driving research progress in fields such
as biomedicine [1,2] and geography [3]. Clustering is an important tool for big data analysis, which
can help researchers extract useful information from complex and massive data. The existing clustering
algorithms can be broadly categorized into partitional clustering, hierarchical clustering, density-based
clustering, deep clustering and so on [4]. Partitional clustering approaches optimize an objective

15831

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

function by iteratively controlling the division of N data points into K clusters until the optimal solution
is found or the termination condition is met, where K is much less than N [5]. While the partitional
clustering algorithm performs well on datasets with spherical structures and has a linear time
complexity, it is not suitable for non-convex datasets [6]. The hierarchical clustering and density-based
clustering algorithms exhibit good performance when dealing with datasets that are non-convex in
shape. Hierarchical clustering techniques cluster datasets through either aggregation or splitting [7].
Aggregation methods merge closely related data points in a tree structure until reaching a specific
threshold of similarity between nodes [8]. Conversely, splitting methods recursively divide vast
datasets based on the distinction between two groups of points according to certain thresholds [9].
Density-based noisy application space clustering (DBSCAN) is a classical clustering algorithm based
on density that can cluster datasets of any shape effectively and detect noise points [10]. However, it
depends on two input parameters, and its convergence time tends to be long when dealing with large
dataset sizes [11]. Density Peak Clustering (DPC) is a density-based clustering algorithm that can
quickly identify non-spherical clusters by estimating cluster centers based on the assumption that they
are surrounded by neighboring points with low local densities and located in scattered distribution [12].
However, the quadratic time complexity of DPC is a drawback that renders it unsuitable for processing
large-scale datasets. Sami and Pasi [13] proposed a fast density peaks algorithm, called FastDP, which
utilizes an efficient and adaptable construction of an approximate k-nearest neighbor graph for swift
density and increment computation. Utilizing this mechanism, FastDP addresses the quadratic time
complexity limitation of DPC. Traditional clustering algorithms rely on geometric concepts such as
distance or density. However, they are less effective in clustering non-linear high-dimensional data and
identifying complex embedded features and hierarchical structures. This limitation has paved the way
for the development of deep clustering algorithms [14]. Xie et al. [15] proposed deep embedded
clustering (DEC) based on the automatic encoder, which is a commonly used technique in deep
clustering algorithms. DEC enables joint unsupervised representation learning and clustering tasks,
and it has exhibited improved clustering accuracy for large-scale high-dimensional datasets. However,
the performance of this algorithm heavily relies on the quality of the learned representations via the
automatic encoding process. To better extract structural and attribute information from graph data,
there has been a surge of interest in researching Graph Neural Networks [16]. Wang et al. [17] proposed
deep attentional embedded graph clustering (DAEGC), which uses the graph neural network to obtain
the structure information of the graph data, adds the attribute information of the node in the input at
the same time, fuses the node information and structure information for representation learning and
uses the attention mechanism to more effectively aggregate the neighbor nodes of the node.

Minimum spanning tree (MST) is a highly popular graph structure in graph theory and is
extensively employed in clustering analysis owing to its ability to detect clusters with irregular
boundaries [18]. Gower and Ross [19] introduced the MST to clustering algorithms in 1969, proposing
a single linkage clustering analysis achieved by pruning the MST. This method initially constructs the
MST and then removes the longest k-1 edges to obtain single linkage k-partitions. In 1971, Zahn [20]
formally introduced a clustering algorithm based on MST, which constructs the MST and iteratively
removes inconsistent edges according to the edge weight features. Grygorash et al. [21] proposed
HEMST, which removes edges from MST to achieve a reduction in standard deviation of the best
possible edge weights. Müller et al. [22] proposed the ITM algorithm, which employs an entropy-
based information-theoretical criterion to identify inconsistent edges, considering both cluster size and
the average weight of intra-cluster edges. The Genie [23] is an example of a single linkage clustering

15832

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

optimization variant, greedily optimizing the total edge length but only allowing the smallest clusters
to merge under the constraint that the Gini index of cluster size is higher than a given threshold. The
CTCEHC [24] constructs an initial partition based on vertex degree, and then merges clusters based
on geodesic distance between cluster centroids. Mishra et al. [25] proposed a hybrid fast MST-based
clustering method to improve efficiency. The method first divides the data into a large number of sub-
clusters based on discreteness, constructs an MST for sub-cluster centroids and identifies adjacent pairs
and finally merges adjacent pairs based on their internal similarity and cohesion. A clustering algorithm
based on MST and the Critical Distance Method (MST-CDC) [26] uses a critical distance value as a
threshold, removing inconsistent edges from the MST to obtain sub-clusters. Subsequently, it employs
shorter inter-cluster distances for merging these sub-clusters. Among these MST-based clustering
algorithms, there are mostly two types of problems. First, the computational cost of constructing the
MST is too high, especially when dealing with large data sets. The HEMST, ITM, Genie, CTCEHC
and MST-CDC all need to construct an MST using a complete graph generated from the entire data set
at the initial stage of the algorithm, which is a key factor that affects the low efficiency of the algorithm.
The hybrid fast MST-based clustering method use a very small number of sub-cluster centroids to
construct MST, so the efficiency of this algorithm is less affected by the construction of MST. The
second problem is that identifying inconsistent edges is very challenging, which is the key to the
quality of clustering. In the case of the single linkage scheme, the goal is to maximize the sum of the
weights of the excised inconsistent edges. This method requires a specified number of clusters, is
sensitive to noise and is extremely ineffective on datasets with large differences in density distribution.
The MST-based clustering algorithm proposed by Zahn considers the weights of inconsistent edges to
be significantly larger than the average weights of nearby edges. This method cannot easily control the
number of inconsistent edges and may result in obtaining too many or too few clusters. The HEMST
removes inconsistent edges based on the standard deviation of the edge weights, and this method also
requires specifying the number of clusters. The ITM utilizes information theory based on entropy to
accurately identify inconsistent edges, but it relies on knowing the number of clusters. The MST-CDC
uses a critical distance value as a threshold to remove inconsistent edges and obtain sub-clusters,
making the algorithm more robust in the presence of outliers. However, this method may overlook
density changes within a region. The Genie, CTCEHC, and the hybrid fast MST-based clustering
method do not require identifying inconsistent edges. The Genie adopts an agglomerative strategy,
but the limitation is that finding a suitable threshold is difficult. The partitioning strategy of
CTCEHC based on MST reduces the complexity of the merging process. However, the clustering
results of the method based on mixed fast MST are easily influenced by initial partitioning. It is very
valuable to research how to improve the efficiency of MST-based clustering algorithms while also
achieving automatic identification of inconsistent edges without the need to specify the number of
clusters beforehand.

If the information of some key points in the dataset can reflect the overall structure of the dataset,
then in some efficiency focused algorithms, these key points can be used to replace the entire dataset
to complete the main work. This replacement idea can reduce the computational cost of the algorithm
without significantly affecting the clustering quality. Motivated by this idea, we propose an algorithm
that constructs the MST of representative points instead of all sample points. The proposed algorithm
performs the following major steps and contributions. First, it divides the dataset into two categories,
core points and noncore points. Second, it uses a novel selection strategy to pick a set of representative
points from the core points. Third, it constructs an MST of representative points, and then uses adaptive

15833

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

methods to identify and eliminate inconsistent edges. Finally, the algorithm first assigns each non-
representative point in the core point, and then assigns the non-core point. Experimental analyses were
performed on eight synthetic datasets and twelve UCI datasets. The results show that the algorithm has
relatively low execution time and significantly improved clustering quality.

2. The MST-based clustering algorithm

The most basic MST-based clustering algorithm consists of two steps. First, construct an MST on
the complete graph of all points. Then, remove inconsistent edges from the MST to complete the
clustering. Inconsistent edges are the longest edges under ideal conditions, where there are no outliers
and the clusters are well separated. The MST-based clustering algorithm is usually divided into three
phases: 1) constructing the MST; 2) eliminating inconsistent edges from the MST graph to create the set
of connected components; 3) repeating phase 2 until the termination condition is satisfied. Figure 1
shows the main steps of the MST-based clustering algorithm. Figure 1(a) is the initial graph of the
spiral dataset. Figure 1(b) constructs a minimum spanning tree using all the points in the dataset. The
black and yellow lines are the edges of MST, and the two yellow lines (E1 and E2) are the two longest
edges of the minimum spanning tree. After cutting off these two longest edges, three subtrees are
obtained, each representing a cluster. Figure 1(c) shows the final clustering result, which is divided
into three clusters.

 （a） (b) (c)

Figure 1. The main steps of the MST-based clustering algorithm. (a) Spiral dataset; (b)
Constructing an MST using all points; (c) Final clustering results.

However, in the presence of outliers in the dataset, the longest edge does not necessarily
correspond to the inconsistent edge. Therefore, a drawback of this algorithm is its vulnerability to
outliers. Figure 2 shows a simple example of the impact of outliers on the MST-based clustering
algorithm. Figure 2(a) is the initial graph of the Flame dataset. Figure 2(b) constructs an MST using
all the points in the dataset. The black lines, red lines and yellow lines are all edges of the MST. Among
them, the red edge is the longest edge in the MST. If we cut off this longest edge, it is obvious that we
will not obtain the correct clustering result. In this MST, we should remove the yellow edge to achieve
the desired result, but this yellow edge is often difficult to find. To solve this problem, our algorithm
first eliminates some noises and boundary point that are not conducive to finding inconsistent edges
before constructing the minimum spanning tree, creating an ideal environment to alleviate the
difficulty of finding inconsistent edges.

15834

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

(a) (b)

Figure 2. The impact of outliers on the MST-based clustering algorithm. (a) Flame dataset; (b)
Constructing an MST using all points.

For n data points, 𝑂ሺ𝑛ଶሻ is the total cost of constructing an MST. The key step of MST-based
clustering algorithm is to construct an MST, which is the reason for the low efficiency of the MST-
based clustering algorithm. To address this issue, our proposed algorithm uses selected representative
points to replace all points to construct an MST, significantly reducing data size without affecting
clustering quality, thereby improving the efficiency of the MST-based clustering algorithm.

3. The proposed algorithm

 (a) (b) (c)

(d) (e) (f)

Figure 3. The major steps of the R-MST. (a) Dividing the dataset into core points and noncore
points; (b) Selecting representative points from the core points; (c) Constructing an MST of
representative points; (d) Cutting out inconsistent edges in MST; (e) Assigning nonrepresentative
points from core points; (f) Assigning noncore points.

15835

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

Most MST-based clustering algorithms use the entire dataset to construct the MST, which leads
to high computational overhead and sensitivity to outliers. Therefore, we propose a clustering
algorithm based on an MST of representative points (R-MST). A simple example is given in Figure 3.
First, we find the core points, which are shown by the circular points (sky-blue points) in Figure 3(a).
The square points (black points) in Figure 3(a) are noncore points. Second, we select representative
points from the core points, which are shown by the star-shaped points (red points) in Figure 3(b). The
circular points (sky-blue points) in Figure 3(b) are the nonrepresentative points from the core points.
Third, we construct an MST of representative points, as shown in Figure 3(c). Then, the inconsistent
edges in the MST are identified and cut off. Figure 3(d) shows two subtrees obtained by cutting off an
inconsistent edge. Each subtree represents a cluster, and the representative points on the subtree belong
to the same cluster. Finally, each nonrepresentative point from the core points is assigned to the cluster
to which its representative point belongs, as shown in Figure 3(e). Each noncore point is assigned to
the cluster to which the nearest core point belongs, as shown in Figure 3(f). The specific process of R-
MST is illustrated in Algorithm 4.

3.1. Core points

The MST-based clustering algorithm is difficult to find the correct inconsistent edges under the
interference of some noises and boundary point. Therefore, we eliminate noise and boundary point
before constructing MST and create a relatively ideal environment, which makes it easier for the
algorithm to find inconsistent edges. As shown in Figure 2, the two clusters in the Flame dataset are
tightly connected, making it difficult to find suitable inconsistent edges. By removing the noise and
boundary point, the core points of the two clusters are clearly separated, which is very conducive to
the subsequent search for inconsistent edges. In our algorithm, noise and boundary point are classified
as noncore points, and all points except noise and boundary point are classified as core points. The
subsequent steps are mainly completed at the core point, and the noncore point can be allocated nearby
at the final stage of the algorithm.

The reverse nearest neighbors of a point refer to the set of data objects in the dataset that consider
this data point as one of their nearest neighbors. According to the concept of natural neighborhood, the
number of reverse neighbors of noise and boundary point is relatively small, which means that there
are fewer points around them. On the contrary, the core points have relatively many reverse neighbors,
and the core points are closer to the points around them. Therefore, we screen the core points based on
reverse nearest neighbor and critical distance.

Let 𝑋 ൌ 𝑥ଵ,𝑥ଶ,…,𝑥௡ be a data set containing n samples. For each point 𝑥௜, 𝑁௞ሺ𝑥௜ሻ denotes the
𝑘th point closest to the 𝑥௜, 𝑑ሺ𝑥௜, 𝑥௝ሻ is the Euclidean distance between the point 𝑥௜ and point 𝑥௝.
The set of k nearest neighbors to the 𝑥௜ , denoted by 𝐾𝑁௞ሺ𝑥௜ሻ [27], can be further expressed as
Definition 1. If point 𝑥௜ is one of the neighbors of point 𝑥௠ in its 𝐾𝑁௞ሺ𝑥௠ሻ, then 𝑥௠ is a reverse
neighbor of 𝑥௜. The set of reverse nearest neighbors to point 𝑥௜, denoted by 𝑅𝑁௞ሺ𝑥௜ሻ [27], can be
further expressed as Definition 2. The sum of the distances from 𝑥௜ to the k nearest points is 𝐷𝑁௞ሺ𝑥௜ሻ,
can be further expressed as Definition 3. 𝐿𝑅𝑁௞ሺ𝑥௜ሻ denotes the number of the reverse nearest
neighbors of point 𝑥௜, can be further expressed as Definition 4. 𝐿𝑅𝑁௞_𝑚𝑒𝑑 denotes the median of the
number of the reverse nearest neighbors of all points, can be further expressed as Definition 5.

15836

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

Definition 1: (k nearest neighbors)

        k i j i j i k iKN x x X | d x ,x d x ,N x   (1)

Definition 2: (Reverse nearest neighbors)

     |k i m i k mRN x x X x KN x   (2)

Definition 3: (The sum of the distances from 𝒙𝒊 to the k nearest points)

     
1

,
k

k i i j i
j

DN x d x N x


 (3)

Definition 4: (The number of the reverse nearest neighbors of point 𝒙𝒊)

    k i k iLRN x | RN x | (4)

Definition 5: (The median of the number of the reverse nearest neighbors of all points)

    k k i iLRN _ med Median LRN x | x X  (5)

Definition 6: (Core point) For any point 𝑥௜ ∈ 𝐷, 𝐷 ൌ 𝑥ଵ,𝑥ଶ,…,𝑥௡ denotes the initial dataset
comprising n samples. If a point satisfies Condition 1 or Condition 2, it is considered a core point.
Additionally, if a point satisfies neither Condition 1 nor Condition 2, it is considered as a noncore point.
Condition 1 is to discover the core point from the perspective of reverse nearest neighbors, which is
specifically represented as the number of the reverse nearest neighbors of point 𝑥௜ is not less than the
median of the reverse nearest neighbors of all points. Condition 2 is to discover the core point from
the perspective of distance, which is specifically represented as the 𝐷𝑁௞భ

ሺ𝑥௜ሻ is not greater than the
average of the sum of the distances of all points to their nearest 𝑘ଵ neighbors. The parameter 𝑘ଵ
refers to the value of the number of nearest neighbors in the initial dataset (𝐷).

Condition 1:

  
1 1

_k i kLRN x LRN med (6)

Condition 2:

    
1 1

1

/
n

k i k j
j

ND x ND x n

 (7)

Let 𝐶 ൌ ሼ𝑐ଵ, 𝑐ଶ, … , 𝑐௠ሽ denote the set of core points, where m denotes the number of core points.
The algorithm for dividing the dataset into core points and noncore points is shown in Algorithm 1.

15837

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

Algorithm 1: Dividing the dataset into core points and noncore points

Input: Dataset 𝐷=ሼ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … 𝑥௡ሽ, 𝑘ଵ
Output: The set of core points 𝐶 ൌ ሼ𝑐ଵ, 𝑐ଶ, 𝑐ଷ, … 𝑐௠ሽ, the set of noncore points 𝑂 ൌ

ሼ𝑜ଵ, 𝑜ଶ, 𝑜ଷ, … 𝑜௡ି௠ሽ
/* Obtain 𝑘ଵ nearest neighbors for each point in the initial dataset. */
For each 𝑥௜ in 𝐷 do

Calculate 𝐾𝑁௞భ
ሺ𝑥௜ሻ

End for
/* Obtain reverse neighbors for each point in the initial dataset. */
For each 𝑥௜ in 𝐷 do

Calculate 𝑅𝑁௞భ
ሺ𝑥௜ሻ

End for
Create 𝐶 ൌ ∅, 𝑂 ൌ ∅
/*Determine whether each point is a core point or a noncore point sequentially. */
For each 𝑥௜ in 𝐷 do

If 𝑥௜ meets Condition 1 or Condition 2 then
 𝐶 ← 𝐶 ∪ 𝑥௜

Else
 𝑂 ← 𝑂 ∪ 𝑥௜
 End if
End for

3.2. Representative points

Representative points can be seen as an important subset of a dataset, as they often have higher
information value or representativeness, allowing for a reduction in computational and storage costs
without sacrificing accuracy. When selecting representative points, it is important to consider factors
such as the distribution, data density and distance measurement of the dataset to ensure an effective
representation of its diversity. In addition, the number of representative points should be significantly
smaller than the size of the original dataset. Inspired by the concept of representative points,
Chowdhury et al. treat each representative point found as a subcluster, and they then complete the
clustering by merging the subclusters [27]. The method they proposed for selecting representative
points is to find the point with the highest density within a neighborhood of a point as its representative
point. This method is effective for datasets with relatively uniform density distributions. However, in
datasets with varying densities, it may lead to the scarcity and dispersion of representative points within
clusters composed of low-density points. Therefore, we propose an improved strategy for selecting
representative points, aiming to achieve a more uniform distribution of representative points within
clusters composed of low-density points.

Our improved selection strategy for representative points considers both density and nearest
neighbor distance. Based on the strategy of selecting the highest density points in the neighborhood as
representative points, an additional criterion is added to allow some points with low density and a large
average distance between them and their surrounding neighbors to select themselves as representative
points. If any point chooses the point with the highest density within its nearest neighbor range as the
representative point, it may result in abnormally large distances between adjacent representative points.

15838

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

For example, the adjacent representative points v3 and v4 in Figure 5(d). If point v0 between points
v3 and v4 is chosen as the representative point, this problem can be avoided, as shown in Figure 5(b).
The characteristics of key points like v0 are low density and large average distance from surrounding
neighbors. They play a very important role in sparse areas. If these points are lost, it will damage the
overall structure of the sparse area, causing abnormal long edges to be generated inside the sparse
cluster during MST construction, which may result in incorrect clustering results when a sparse cluster
is divided into multiple clusters. Therefore, selecting such points as representative points will greatly
improve the distribution uniformity of representative points in sparse areas. In addition, our improved
strategy has almost no impact on the selection of representative points for dense regions, because the
point density in this region is generally high, so it does not meet our additional criteria. The flow
diagram illustrating our improved method for selecting representative points is shown in Figure 4.
Algorithm 2 shows the details of selecting representative points.

Figure 4. Flow diagram for selecting representative points.

15839

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

Algorithm 2: Selecting representative points

Input: The set of core points Cൌ ሼ𝑐ଵ, 𝑐ଶ, 𝑐ଷ, … 𝑐௠ሽ, 𝑘ଶ
Output: The set of representative points 𝐷𝑅𝐸𝑃 ൌ ሼ𝑑𝑟𝑒𝑝ଵ, 𝑑𝑟𝑒𝑝ଶ, . . . , 𝑑𝑟𝑒𝑝௡௥௘௣ሽ , the set of

nonrepresentative points 𝑁𝐷𝑅𝐸𝑃 ൌ ሼ𝑛𝑑𝑟𝑒𝑝ଵ, 𝑛𝑑𝑟𝑒𝑝ଶ, . . . , 𝑛𝑑𝑟𝑒𝑝௠ି௡௥௘௣ሽ
/* Obtain the 𝑘ଶ nearest neighbors for each core point in the set C. */
For 𝑐௜ in C do

Calculate 𝐾𝑁௞మ
ሺ𝑐௜ሻ

End for
/* Obtain the reverse neighbors for each core point in the set C. */
/* Obtain the sum of distances between each core point and its 𝑘ଶ nearest neighbors within the

set C. */
For 𝑐௜ in C do

Calculate 𝑅𝑁௞మ
ሺ𝑐௜ሻ

Calculate 𝐷𝑁௞మ
ሺ𝑐௜ሻ

End for
/* Obtain the density of each core point*/
For 𝑐௜ in C do

Calculate 𝜌ሺ𝑐௜ሻ
End for
Calculate 𝜌ି𝑚𝑒𝑑，𝑚𝑎𝑥ି𝑑，𝑚𝑒𝑎𝑛ି𝑑
/* The set REP stores the representative points corresponding to each core point. */
Create a set 𝑅𝐸𝑃 ൌ ∅
For 𝑐௜ in C do

If 𝑐௜ meets Condition 3 then /*Scenario (1) for selecting representative points. */
 𝑅ሺ𝑐௜ሻ ൌ 𝑐௜

Else if 𝑐௜ meets Condition 4 then /*Scenario (2) for selecting representative points. */
 𝑅ሺ𝑐௜ሻ ൌ 𝑐௜

Else /*Scenario (3) for selecting representative points. */
 Calculate 𝑅ሺ𝑐௜ሻ according to Eq (9)
 End if
 End if

/*Add the representative point corresponding to core point to the REP. */
 𝑅𝐸𝑃 ← 𝑅𝐸𝑃 ∪ 𝑅ሺ𝑐௜ሻ
End for
Remove duplicate elements from REP to obtain the final representative point set DREP.
Obtain the set of nonrepresentative points NDREP according to Eq (16).

We specify the representative points for each core point in three different scenarios. Scenario (1):
if the density of a point is low and it is far from its neighbors, its representative point is also itself.
Scenario (2): if a point does not satisfy scenario (1), but its density is higher than the density of any
point within its 𝑘ଶ nearest neighbor range, its representative point remains itself. Scenario (3): if a
point does not satisfy scenarios (1) and (2), its representative point is chosen as the neighbor within
the 𝑘ଶ nearest neighbor range with the highest density. The density is represented by Definition 7.
The representative point is described as shown in Definition 8. Algorithm 2 shows the details of

15840

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

selecting a representative point. For any point 𝑐௜ ∈ 𝐶, 𝐶 ൌ 𝑐ଵ,𝑐ଶ,…,𝑐௠ denotes the core point set
comprising m core points. The parameter 𝑘ଶ refers to the value of the number of nearest neighbors
in the core point set (𝐶).

Definition 7: (Density) The traditional radius-based density estimation method is difficult to
accurately evaluate the density level of each data point. Therefore, in order to better adapt to the dataset
with different densities, the nearest neighbor characteristics of adjacent points around each point are
comprehensively considered when evaluating the density of each point. If the number of the reverse
nearest neighbors of the point is greater than 0, the density is the number of the reverse nearest neighbors
of this point plus the number of the reverse nearest neighbors for each of its reverse nearest neighbors.
If the number of the reverse nearest neighbors of the point is 0, the density of the point is 0. 𝜌ሺ𝑐௜ሻ
represents the density of point 𝑐௜.

  
   

 
 

 

2 2 2

2

2

, 0

0 , 0
j k i

k i k j k i
c RN c

i

k i

LRN c LRN c LRN c
c

LRN c



  
 
 


 (8)

Definition 8: (Representative points) ∀ 𝑐௜ ∈ 𝐶, 𝑅ሺ𝑐௜ሻ represents the representative point of 𝑐௜.
If 𝑐௜ satisfies Condition 3, then 𝑅ሺ𝑐௜ሻ ൌ 𝑐௜ . If 𝑐௜ does not satisfy Condition 3, but satisfies
Condition 4, then 𝑅ሺ𝑐௜ሻ ൌ 𝑐௜. If 𝑐௜ does not satisfy Condition 3 and does not satisfy Condition 4, then

  
 

 
2j k i

i j
c KN c

R c arg max c


  (9)

Condition 3:

  ic _med  (10)

 And  
2 2k i

max_ d mean _ d
DN c mean _ d

   
 

 (11)

Condition 4:

      
2j k i i jc KN c , c c    (12)

where the constant 2 in Eq (11) was obtained based on a large number of experiments. 𝜌ି𝑚𝑒𝑑 is the
median of the density of all points in the core point set C. 𝑚𝑎𝑥ି𝑑 is the maximum value of the sum
of distances between a point in the core point set C and the points within its 𝑘ଶ nearest neighbor range.
𝑚𝑒𝑎𝑛ି𝑑 is the average of the sum of distances between all core points and points within their 𝑘ଶ
nearest neighbor range.

    i i_ med Median c | c C   (13)

  
2

j
k j

c C
max_ d max DN c


 (14)

15841

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

  
2

1

m

k i
i

mean _ d DN c / m


  (15)

Get a set of representative points 𝑅𝐸𝑃 ൌ ሼ𝑅ሺ𝑐ଵሻ, 𝑅ሺ𝑐ଶሻ, . . . , 𝑅ሺ𝑐௠ሻሽ until the end of the election.
Some points with higher density may serve as representative points for multiple points, as shown in
Figure 5. Therefore, the number of representative points is much smaller than the number of sample
points. By removing redundant duplicate elements from the REP, we can obtain the final set of
representative points, denoted as 𝐷𝑅𝐸𝑃 ൌ ሼ𝑑𝑟𝑒𝑝ଵ, 𝑑𝑟𝑒𝑝ଶ, . . . , 𝑑𝑟𝑒𝑝௡௥௘௣ሽ, where 𝑛𝑟𝑒𝑝 is the number
of representative points. In the set 𝐶, all nonrepresentative points are considered as the set 𝑁𝐷𝑅𝐸𝑃,
which is denoted as:

  i iNDREP c C c DREP    (16)

(a) (b)

(c) (d)

Figure 5. The selection result of the representative point. (a) The selection results of our improved
representative point selection method; (b) Construct an MST using the representative points from
Figure 5(a); (c) The selection results of the representative point method based solely on density.
(d) Construct an MST using the representative points from Figure 5(c).

15842

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

In Figure 5(a),(c), the black lines with arrows point to the representative points of each point. If
a point is not pointing to any other point, it means that it has chosen itself as the representative point.
All selected representative points are denoted by red star-shaped points, while nonrepresentative points
are represented by blue circular points. In Figure 5(b), the yellow edge connecting vertex v1 and vertex
v2 is the longest edge on MST, and in Figure 5(d), the yellow edge connecting vertex v3 and vertex
v4 is the longest edge on MST.

3.3. Constructing an MST of representative points and identifying inconsistent edges

We use the selected representative points to construct the MST. The MST of representative points
is described by Definition 9. The specific algorithm for constructing MST adopts Prim [28] algorithm,
which is an algorithm based on greedy strategy to obtain the MST in a weighted connected graph. The
basic flow of the algorithm includes the following steps: randomly select a node from the graph as the
starting point, add it to the minimum spanning tree and then add the node connected with the edge with
the minimum weight among the adjacent nodes to the minimum spanning tree, and repeat this process
until the minimum spanning tree contains all nodes.

Definition 9: (The MST of representative points) Assume that 𝐺ሺ𝑋ሻ ൌ൏ 𝑉, 𝐸 ൐ denotes a

weighted undirected connected graph with edge set 𝐸 ൌ ሼ𝑒௜௝ ൌ ൛𝑥௜, 𝑥௝ൟ|𝑥௜, 𝑥௝ ∈ 𝐷𝑅𝐸𝑃, 𝑖 ് 𝑗ሽ, point

set 𝑉 ൌ 𝐷𝑅𝐸𝑃, the weight of each edge 𝑒௜௝ in graph 𝐺ሺ𝑋ሻ is denoted as 𝑤ሺ𝑥௜, 𝑥௝ሻ. The MST of the

graph 𝐺ሺ𝑋ሻ is denoted by 𝑊ሺ𝑀𝑆𝑇ሻ ൌ 𝑚𝑖𝑛ሼ∑ 𝑤ሺ𝑥௜, 𝑥௝ሻ௫೔,௫ೕ∈௏,௘೔ೕ∈ா ሽ , defined as a subset of 𝐸 ,

connecting all vertices in 𝑉 with minimum total weight and without cycles.
In most MST-based clustering algorithms, it is often necessary to provide the number of clusters

or a distance threshold when cutting inconsistent edges. However, in reality, we may not know the
number of clusters in advance and find it difficult to find a suitable distance threshold. Therefore, the
current challenge is how to adaptively identify inconsistent edges. As we mentioned earlier, before
building the minimum spanning tree, after removing the noise and some boundary point, the core
points of two adjacent clusters are obviously separated, which creates favorable conditions for
identifying inconsistent edges. At this point, we can easily achieve adaptive recognition of
inconsistent edges using the nearest neighbor method, without the need to provide the number of
clusters and distance thresholds. The main steps of our proposed adaptive recognition of inconsistent
edges include: 1) Arranging all edges in MST in descending order of edge length. 2) Starting from the
longest edge, determine whether the condition for inconsistent edges is met. 3) Determine the
remaining edges in the order sorted by their length until the first time an edge does not meet the
condition for inconsistent edges, and then end the search for inconsistent edges. After the search for
inconsistent edges ends, the number of clusters will be automatically obtained. We set the initial cluster
number to 1, and each time an inconsistent edge is cut, the number of clusters will increase by 1.
Therefore, the number of clusters equals to the number of inconsistent edges plus 1. The specific
algorithm process is shown in Algorithm 3.

Definition 10: (mutual k nearest neighbor)

∃ 𝑝𝑜𝑖𝑛𝑡 𝑐௜, 𝑝𝑜𝑖𝑛𝑡 𝑐௝, 𝑖𝑓 𝑐௜ ∈ 𝐾𝑁௞൫𝑐௝൯ ∧ 𝑐௝ ∈ 𝐾𝑁௞ሺ𝑐௜ሻ , then 𝑐௜ and 𝑐௝ are mutual 𝑘 nearest

neighbors.
The condition for determining inconsistent edges: As shown in Figure 6, assuming that two

vertices connecting an edge are 𝑝ଵ and 𝑝ଶ, 𝑝ଵ and its affiliated points (a point whose representative

15843

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

point is 𝑝ଵ is called an affiliated point of 𝑝ଵ, such as 𝑝ଷ, 𝑝ସ, 𝑝଻, 𝑝଼ in Figure 6) form the set 𝑆1,
and 𝑝ଶ and its affiliated points (a point whose representative point is 𝑝ଶ is called an affiliated point
of 𝑝ଶ, such as 𝑝ହ, 𝑝଺, 𝑝ଽ in Figure 6) form the set 𝑆2. If any point in the set 𝑆1 has no mutual 𝑘ଶ
neighbor relationship with any point in set 𝑆2, then the edge is inconsistent. As long as there is a point
in set 𝑆1 and any point in set 𝑆2 that have a mutual 𝑘ଶ neighbor relationship, then that edge is not
an inconsistent edge. Mutual k nearest neighbor [29] is represented by definition 10.

Algorithm 3: Identifying inconsistent edges

Input: An MST of representative points, 𝑘ଶ

Output: The set of inconsistent edges 𝑆, the number of clusters 𝑛𝑐

/*E denotes the set of edges of the MST, 𝑒൫𝑑𝑟𝑒𝑝௜, 𝑑𝑟𝑒𝑝௝൯ ∈ 𝐸 and 𝑤൫𝑑𝑟𝑒𝑝௜, 𝑑𝑟𝑒𝑝௝൯ is the

weight corresponding to 𝑒൫𝑑𝑟𝑒𝑝௜, 𝑑𝑟𝑒𝑝௝൯*/

Sort all MST edges in descending order by weight size to get a weight list 𝑤௦௢௥௧௘ௗ

Create 𝑆 ൌ ∅, 𝑆1 ൌ ∅, 𝑆2 ൌ ∅, 𝑛𝑐 ൌ 1

For 𝑤൫𝑑𝑟𝑒𝑝௜, 𝑑𝑟𝑒𝑝௝൯ in 𝑤௦௢௥௧௘ௗ do

 /*The edge 𝑒൫𝑑𝑟𝑒𝑝௜, 𝑑𝑟𝑒𝑝௝൯ associated with weight 𝑤൫𝑑𝑟𝑒𝑝௜, 𝑑𝑟𝑒𝑝௝൯ , connects two

representative points 𝑑𝑟𝑒𝑝௜ and 𝑑𝑟𝑒𝑝௝, which are subsequently added to the empty sets S1 and S2,

respectively. */

 𝑆1 ← 𝑆1 ∪ 𝑑𝑟𝑒𝑝௜

 𝑆2 ← 𝑆2 ∪ 𝑑𝑟𝑒𝑝௝

 Add all the points in the core point set whose representative point is 𝑑𝑟𝑒𝑝௜ to S1.

 Add all the points in the core point set whose representative point is 𝑑𝑟𝑒𝑝௝ to S2.

/*When an edge is not found to be inconsistent for the first time, the iteration is halted,

marking the conclusion of the process of identifying inconsistent edges. */

If exists 𝑐௜ ∈ 𝑆1, 𝑐௝ ∈ 𝑆2, 𝑐௜ ∈ 𝐾𝑁௞మ
൫𝑐௝൯ ∧ 𝑐௝ ∈ 𝐾𝑁௞మ

ሺ𝑐௜ሻ then

 break

Else

 /*The identified inconsistent edges are added to the set S of inconsistent edges. */

 𝑆 ← 𝑆 ∪ 𝑒൫𝑑𝑟𝑒𝑝௜, 𝑑𝑟𝑒𝑝௝൯

 /*S1 and S2 are emptied to be used for the next iteration. */

 𝑆1 ൌ ∅

 𝑆2 ൌ ∅

 /*Each time an inconsistent edge is detected, the number of clusters increases by 1. */

 𝑛𝑐 ൌ 𝑛𝑐 ൅ 1

 End if

End for

15844

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

Figure 6. Identify inconsistent edges.

3.4. Assigning nonrepresentative points and noncore points

Assuming that the number of inconsistent edges is m, then m + 1 subtrees are obtained by cutting
these inconsistent edges from the MST. Each subtree represents a cluster, so the number of clusters is
also m + 1. Representative points on the same subtree belong to a cluster, and representative points on
different subtrees are not in a cluster. The next step is to assign each nonrepresentative point to the
cluster to which their representative points belong. If point 𝑥௜ is a nonrepresentative point, its
representative point is 𝑥௝, that is, 𝑅ሺ𝑥௜ሻ ൌ 𝑥௝. If 𝑥௝ belongs to cluster c, then 𝑥௜ will join c. The last
step is to assign noncore points (noise and some boundary points). For the processing of such points,
we adopt the measure of assigning them to the cluster where the nearest core point belongs. If point
𝑥௜ is a noncore point, the closest core point to it is 𝑥௝. If 𝑥௝ belongs to cluster c, then 𝑥௜ will join c.
After introducing all the steps, we provide Algorithm 4 to describe the entire process of R-MST.

Algorithm 4: R-MST: fast clustering algorithm based on MST of representative points
Input: Dataset 𝐷=ሼ𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … 𝑥௡ሽ, 𝑘ଵ, 𝑘ଶ
Output: Clustering results of dataset D
Step1: According to Algorithm 1, the points in the dataset D are divided into core points and

noncore points.
/* At the end of step 1, the set of core points 𝐶 ൌ ሼ𝑐ଵ, 𝑐ଶ, 𝑐ଷ, … 𝑐௠ሽ and the set of noncore points

𝑂 ൌ ሼ𝑜ଵ, 𝑜ଶ, 𝑜ଷ, … 𝑜௡ି௠ሽ are obtained, where m is the number of core points and n-m is the number of
noncore points. */

Step2: According to Algorithm 2, the representative points for each core point are selected.
/*At the end of step 2, the set of representative points 𝐷𝑅𝐸𝑃 ൌ ሼ𝑑𝑟𝑒𝑝ଵ, 𝑑𝑟𝑒𝑝ଶ, . . . , 𝑑𝑟𝑒𝑝௡௥௘௣ሽ and

the set of nonrepresentative points 𝑁𝐷𝑅𝐸𝑃 ൌ ሼ𝑛𝑑𝑟𝑒𝑝ଵ, 𝑛𝑑𝑟𝑒𝑝ଶ, . . . , 𝑛𝑑𝑟𝑒𝑝௠ି௡௥௘௣ሽ are obtained, where
nrep is the number of representative points and m-nrep is the number of nonrepresentative points. */

Step3: Constructing an MST using the Prime algorithm on the complete graph generated by the
representative points.

Step4: Identifying inconsistent edges in MST according to Algorithm 3, and then remove all
inconsistent edges.

/* At the end of step 4, the clustering results of the representative points are obtained. */
Step5: Assigning each nonrepresentative point.
/* At the end of step 5, the clustering results of the core points are obtained. */
Step6: Assigning each noncore point.
/* At the end of step 6, the clustering results of dataset D are obtained. */

15845

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

3.5. Time complexity analysis

For a dataset containing n sample points, the time overhead of the R-MST to complete the clustering
is mainly in the following aspects: 1) The time complexity of finding core points is 0ሺ𝑛ሻ. 2) The time
complexity of selecting representative points is 0ሺ𝑚ሻ, where m is the number of core points and m is
less than n. 3) The time complexity of constructing an MST of representative points is 0ሺ𝑛𝑟𝑒𝑝ଶሻ,
where 𝑛𝑟𝑒𝑝 is the number of representative points and 𝑛𝑟𝑒𝑝 is much smaller than n. 4) The time
complexity of identifying inconsistent edges is 0ሺ𝑛𝑟𝑒𝑝ሻ . 5) The time complexity of assigning
nonrepresentative points is 0ሺ𝑚ሻ. 6) The time complexity of assigning noncore points is less than 0ሺ𝑛ሻ.
In summary, the time complexity of the R-MST is approximated as 0ሺ𝑛𝑟𝑒𝑝ଶሻ.

Based on the experimental analysis that follows, in an ideal state, the number of representative
points is approximately 1/20 of the entire dataset. That is, 𝑛𝑟𝑒𝑝: 𝑛 ൎ 1: 20, so 0ሺ𝑛𝑟𝑒𝑝ଶሻ ൎ 0ሺ𝑛ଶሻ/400.
Although the R-MST is relatively efficient, the number of representative points also increases
proportionally as the dataset grows, which limits the application of the algorithm on extremely large-
scale datasets. To alleviate this constraint, we will investigate in our future work how to reduce the
dependency of the number of representative points on dataset size, such that the number of
representative points can be kept very low even for very large datasets. Additionally, it is crucial to
avoid the quadratic time complexity of constructing minimum spanning trees, and this future work
will be discussed in detail in the conclusion.

4. Experimental result and analysis

4.1. Experiment preparation

For the experiment, we tested the R-MST on synthetic datasets and UCI datasets. The comparison
algorithms included DPC [12], FastDP [13], DBSCAN [10] and MST-CDC [26]. These four
comparison algorithms are all very distinctive and can be compared with our proposed algorithm (R-
MST) in a comprehensive manner from different perspectives. The advantage of the DPC is its ability
to handle non-spherical, complexly distributed data sets and does not require an artificially set number
of clusters. The FastDP is an optimization method based on the DPC and has the advantage of being
able to handle large data sets quickly and efficiently. The advantage of DBSCAN clustering algorithm
is that it can automatically handle clusters of arbitrary shape and size, and can efficiently handle noisy
data points. MST-CDC can also identify inconsistent edges on data sets containing noisy points to
obtain optimal clusters.

It is difficult to comprehensively assess the merits of clustering results with a single clustering
metric. Different clustering metrics focusing on different aspects can help us understand the clustering
results from different perspectives and help to better evaluate the effectiveness of clustering algorithms.
Therefore, we used three metrics. These evaluation metrics included the adjusted rand index (ARI) [30],
normalized mutual information (NMI) [31] and homogeneity (Homo) [32]. ARI is a metric used to
compare the similarity between the clustering algorithm results and the true clustering labels. When
comparing the clustering algorithm results, the ARI metric takes into account the different
arrangements of clustering labels, and thus can reflect the similarity between clustering results more
accurately. Furthermore, the ARI metric also considers the metric error due to random chance, which
improves the reliability of the comparison results. The NMI clustering metric calculates a score by

15846

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

measuring the similarity between two clustering results. It uses normalized mutual information from
information theory, which treats clustering results as random variables, and is used to represent the
mutual information between different clustering results on the same data set. Usually, higher NMI
values indicate higher quality of clustering results. The measurement goal of Homo is the score when
each cluster contains only a single sample category. This indicator calculates the proportion that all
samples in each real category belong to the same cluster, and averages the values of all real categories.
Simply put, the higher the Homo, the higher the probability that each cluster represents the clustering
result only contains one category, and the more accurate and feasible the clustering result is.

Table 1. Synthetic datasets.

Dataset Number of instances Dimension Number of categories

ED-Hexagon 361 2 2
Jain 373 2 2

Three-circles 299 2 3

Heart-shaped 213 2 3

Ls3 1735 2 6

D31 3100 2 31

2d-20c-no0 1517 2 20

T7 8000 2 9

Table 2. UCI datasets.

Dataset Number of instances Dimension Number of categories

Zoo 101 16 7
Cancer 683 9 2

Seeds 210 7 3

WBC 683 9 2

Wine 178 13 3

Ecoli 336 8 8

Iris 150 4 3

Vote 435 16 2

Vowel 871 3 6

WDBC 569 30 2

Dermatology 358 34 6

Pendigits 3498 16 10

We used datasets of different sizes and dimensions to examine the performances of our algorithms.
The eight synthetic datasets contain ED-Hexagon [33], Jain [34], Three-circles [34], Heart-shaped [33],
Ls3 [34], D31 [34], 2d-20c-no0 [34] and T7 [34]. The details of these synthetic datasets are shown in
Table 1. The twelve UCI datasets [35] contain Zoo, Cancer, Seeds, WBC, Wine, Ecoli, Vote, Vowel,
WDBC, Dermatology and Pendigits. The details of these UCI datasets are shown in Table 2. In addition,
in the efficiency test, we generated moons datasets with 2000, 4000, 6000, 8000, 10,000, 12,000

15847

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

sample points using the program. In discussing the effect of the parameter 𝑘ଶ on the number of
representative points and the running time of the algorithm, we generated a dataset with 10,000 sample
points for testing.

The experiments were conducted on a PC with an Intel Core i5 3.6 GHZ with 4 GB RAM,
Windows 10 and Python 3.7.

4.2. Experimental results on synthetic datasets

In this paper, we have chosen eight synthetic datasets to validate the clustering quality of R-MST
and four other algorithms. These eight datasets cover different types of datasets, including varying
density, rich noise interference, as well as datasets with diverse linearity, circularity and sphericity.
Such datasets can effectively simulate complex distribution scenarios in real-world settings,
facilitating the validation of algorithm generalizability. Additionally, in the presence of significant
noise, the robustness of the algorithm can be tested as well. The key information for these datasets is
shown in Table 1. The optimal parameters of the five algorithms for the eight synthetic datasets are
shown in Table 3.

Figure 7 shows the clustering result of ED-Hexagon. The ED-Hexagon dataset contains a convex
cluster and a non-convex cluster. The density distribution of this dataset is relatively uniform. Both the
R-MST and DBSCAN identified the appropriate clusters, while the DPC, FastDP and MST-CDC
produced incorrect clustering results.

Figure 8 shows the clustering results of Jain. Jain is composed of two clusters with large
differences in density distribution. The R-MST was able to correctly identify the clusters on this dataset.
The other four algorithms produced incorrect results.

Figure 9 shows the clustering results of Three-circles. Three-circles consist of two rings and one
solid circle. The R-MST and DBSCAN produced acceptable clustering results. The DPC, FastDP and
MST-CDC produced incorrect results. The concentration of multiple high-density points in a cluster
can easily lead to the biased selection of cluster centers, which, in turn, can lead to the incorrect
distribution of the noncentral points. MST-CDC cuts off too many inconsistent edges, which results in
the generation of multiple subtrees by the outermost circle points, and the merging process does not
merge all the outermost circle subtrees.

Figure 10 shows the clustering results of Heart-shaped. Heart-shaped consists of three heart
shapes with a large difference in density distribution. The R-MST, DPC, FastDP and DBSCAN
produced satisfactory clustering results on this dataset. The MST-CDC produced incorrect results
because it identified two normal points as noise.

Figure 11 shows the clustering results of Ls3. The Ls3 dataset contains four spherical clusters and
two linear clusters. Except for the DPC and FastDP, the other three algorithms obtained correct results.
Because the DPC could not choose the clustering centers reasonably, it produced incorrect results.

Figure 12 shows the clustering results of D31. The R-MST, DPC and FastDP produced
satisfactory clustering results on this dataset. DBSCAN identifies the noise, and the clustering results
are relatively good. The MST-CDC causes unsatisfactory results due to excessive noise interference.

Figure 13 shows the clustering results of 2d-20c-no0. 2d-20c-no0 is composed of a number of
linear clusters and blocky clusters. The DPC, FastDP and R-MST all obtained correct clustering results.
DBSCAN identified one of the clusters as noise and identified some close clusters as one cluster, but
the overall clustering results were relatively good. The MST-CDC produced incorrect clustering results.

15848

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

Figure 14 shows the clustering results of T7. T7 consists of 9 clusters of different shapes and
some noise. DBSCAN and R-MST achieved relatively good clustering results, while the other three
algorithms showed unsatisfactory clustering results. The clustering centers of DPC and FastDP were
selected incorrectly. MST-CDC identified the noise, but the clustering results were poor.

The performance of R-MST in clustering is demonstrated as excellent across these 8 different
types of datasets, exhibiting the capability to detect and aggregate clusters of diverse shapes and
densities. Additionally, R-MST shows remarkable results in complex datasets like T7, which contain
a considerable amount of noise, thereby highlighting the strong robustness of the algorithm.

Table 3. Optimal parameters of 5 algorithms on 8 synthetic datasets.

Algorithm

Parameters

DPC FastDP DBSCAN MST-CDC R-MST

dc k Eps/MinPts None 𝑘ଵ/𝑘ଶ

ED-Hexagon 15 18 20/4 --- 2/6

Jain 4.65 18 3.1/8 --- 2/9

Threecircles 0.08 18 0.06/4 --- 1/6

Heart-shaped 18 18 20/4 --- 9/6

Ls3 10.28 18 10/8 --- 1/7

D31 1.27 18 0.5/6 --- 15/5

2d-20c-no0 1.19 18 1.2/20 --- 10/20

T7 29.17 18 10/12 --- 80/9

(a) (b) (c) (d) (e)

Figure 7. The result of ED-Hexagon. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST.

(a) (b) (c) (d) (e)

Figure 8. The result of Jain. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST.

15849

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

(a) (b) (c) (d) (e)

Figure 9. The result of Three-circles. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST.

(a) (b) (c) (d) (e)

Figure 10. The result of Heart-shaped. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST.

(a) (b) (c) (d) (e)

Figure 11. The result of Ls3. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST.

(a) (b) (c) (d) (e)

Figure 12. The result of D31. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST.

15850

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

(a) (b) (c) (d) (e)

Figure 13. The result of 2d-20c-no0. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST.

(a) (b) (c) (d) (e)

Figure 14. The result of T7. (a) DPC; (b) FastDP; (c) DBSCAN; (d) MST-CDC; (e) R-MST.

Figure 15. The moons dataset.

It is necessary to test the efficiency of clustering algorithms, as the efficiency of the algorithm
directly affects its usability and practicality. In the efficiency test, we tested the runtime of R-MST and
four comparative algorithms on datasets with varying numbers of data points. To ensure fairness, we
generated moons datasets with 2000, 4000, 6000, 8000, 10,000 and 12,000 sample points. The five
algorithms achieved correct clustering results on different numbers of moons datasets. Figure 15 shows
the moons dataset. Table 4 shows the running times of the algorithms on the different numbers of
moons datasets. From Table 4, we can see that the fastest running algorithm is FastDP, because this
algorithm eliminates the quadratic time complexity limitation of DPC. The second fastest algorithm is
our proposed R-MST, which uses representative points instead of all points to construct the MST,
reducing the computational overhead to a certain extent. The time efficiency of the R-MST is not as
fast as FastDP, but the clustering quality is better than FastDP. The third fastest algorithm is DPC. The

15851

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

relatively slower algorithm is DBSCAN. The slowest algorithm is MST-CDC. As the number of
sample points gradually increases, the running time of all five algorithms increases to different degrees.
However, FastDP and R-MST change relatively slowly, while the other three algorithms change more
rapidly. In summary, R-MST has high efficiency and is capable of handling large datasets.

Table 4. Running time of 5 algorithms on moons datasets (s).

Algorithm 2000 4000 6000 8000 10,000 12,000

DPC 9 36 84 154 312 603

FastDP 0.1 0.4 0.7 0.9 1.3 1.6

DBSCAN 27 112 249 442 902 1872

MST-CDC 54 201 460 802 1532 3553

R-MST 2 6 14 24 54 89

As shown in Figure 16, we used the program to generate a 10-blobs (number of 10-blobs = 10,000)
for testing the effect of the parameter 𝑘ଶ on the number of representative points, and on the running
time of the algorithm. These experiments were carried out with constant parameter 𝑘ଵ. Figure 17
demonstrates the change in the number of representative points as 𝑘ଶ is increased. Figure 18
demonstrates the change in algorithm running time as 𝑘ଶ is increased.

Figure 16. The 10-blobs dataset.

As shown in Figure 17, when 𝑘ଶ gradually increases, the number of representative points
initially decreases, reaching a critical value (when 𝑘ଶ ൌ 150) and maintaining a relatively stable state.
Finally, reaching another critical value (when 𝑘ଶ ൌ 400), the number of representative points begins
to gradually increase. When the number of representative points reaches a stable state, its ratio to the
number of all points in the dataset is approximately 1:20. We know that the time complexity of
constructing MST for all points in the dataset using the Prime algorithm is 𝑂ሺ𝑛ଶሻ, where n represents
the number of all points in the dataset. So, the time complexity of constructing MST for representative
points is 𝑂ሺሺ𝑛/20ሻଶሻ. Therefore, the performance of R-MST has been significantly improved.

15852

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

As shown in Figure 18, when 𝑘ଶ gradually increases, the running time of the algorithm is kept
in a stable range at first, and after the critical value of 𝑘ଶ ൌ 450, the running time begins to increase
significantly. When 𝑘ଶ ൌ 50 and 𝑘ଶ ൌ 100, the number of representative points is relatively large,
but the running time of the algorithm is less, because when 𝑘ଶ becomes smaller, the time spent
calculating 𝑘ଶ neighbors decreases, so the overall time changes little. When 𝑘ଶ ൐ 450, the number
of representative points increases, and the time spent calculating 𝑘ଶ neighbors also increases, so the
overall time will increase significantly. Therefore, the optimal range for parameter 𝑘ଶ is
approximately 𝑛/200 ൑ 𝑘ଶ ൑ 𝑛/25, where 𝑛 represents the size of the original dataset. Within this
range, changes in the value of 𝑘ଶ have a relatively minor impact on the efficiency of the algorithm.

Figure 17. The influence of the value of 𝑘ଶ on the number of representative points.

Figure 18. The Influence of 𝑘ଶ value on Running Time.

4.3. Experimental results on UCI datasets

In this study, we conducted comparative experiments on 12 real high-dimensional UCI datasets
to verify the effectiveness of the R-MST algorithm on high-dimensional datasets. These datasets are
sourced from various real-world domains, including healthcare, biology, finance and others. As a result,
the dimensions and characteristics of the data are highly diverse, making them suitable for testing the

15853

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

generalizability of clustering algorithms. Additionally, UCI datasets often exhibit issues such as
outliers, missing values and duplicates, which provide opportunities to evaluate and assess the
robustness and resilience of clustering algorithms. The comparative algorithms involved in the
experiment include DPC, DBSCAN and MST-CDC. The FastDP aims to improve the efficiency of
DPC, and there is no significant change in clustering quality compared to DPC. Therefore, we did not
use it for clustering quality comparison in the UCI datasets. The basic information of the experimental
test dataset is shown in Table 2. The optimal parameters of the four algorithms on 12 UCI datasets are
shown in Table 5, and the specific clustering performance is shown in Table 6. The results of the four
algorithms based on measurements from the UCI dataset indicate that, except for the cancer and WBC
datasets, the three indicators of the algorithm proposed in this paper are superior to the other three
comparative algorithms on other datasets. For the Cancer and WBC datasets, the R-MST algorithm
achieved the highest ARI and NMI values, followed by the HOMO values. In summary, the R-MST
performs exceptionally well on UCI datasets, exhibiting better generalizability and robustness in
practical applications.

Table 5. Optimal parameters of 4 algorithms on 12 UCI datasets.

Algorithm DPC DBSCAN MST-CDC R-MST

Parameters dc Eps/MinPts None 𝑘ଵ/𝑘ଶ

Zoo 0.82 1.2/4 --- 16/3

Cancer 0.98 0.4/6 --- 10/19

Seeds 0.08 0.2/9 --- 5/16

WBC 1.01 0.4/6 --- 10/19

Wine 0.42 0.5/6 --- 7/6

Ecoil 0.48 0.2/10 --- 5/2

Iris 0.17 0.4/3 --- 9/6

Vote 0.03 0.9/10 --- 24/17

Vowel 0.15 0.1/10 --- 23/8

WDBC 0.08 0.4/20 --- 26/14

Dermatology 0.16 1.4/19 --- 20/4

Pendigits 0.28 0.3/5 --- 23/2

5. Discussion

This paper proposes a fast-clustering algorithm based on MST of representative points. The
algorithm replaces all points in the dataset with representative points to construct an MST, reducing a
significant amount of computational overhead. In addition, we propose an adaptive method to identify
inconsistent edges in the MST. After removing these inconsistent edges, the number of clusters can be
effectively obtained. Experimental results demonstrate that this algorithm has high efficiency and
clustering quality. However, as the amount of data increases, the number of representative points will
also increase. This is unfavorable for handling large-scale datasets.

15854

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

Table 6. Clustering performance of 4 algorithms on 12 UCI datasets.

Dataset Algorithm ARI NMI Homo

Zoo

DPC 0.4972 0.7224 0.7490
DBSCAN 0.9326 0.8968 0.8978
MST-CDC 0 0 0
R-MST 0.9515 0.9137 0.9109

Cancer

DPC 0.4934 0.4404 0.3964
DBSCAN 0.8362 0.7456 0.7537
MST-CDC 0.0050 0.0271 0.0048
R-MST 0.8522 0.7530 0.7530

Seeds

DPC 0.7448 0.7194 0.7169
DBSCAN 0.3693 0.5062 0.5788
MST-CDC 0 0.0233 0.0061
R-MST 0.8109 0.7707 0.7702

WBC

DPC 0.4934 0.4404 0.3964
DBSCAN 0.8362 0.7456 0.7537
MST-CDC 0.0050 0.0271 0.0048
R-MST 0.8522 0.7530 0.7530

Wine

DPC 0.6724 0.7104 0.7096
DBSCAN 0.4264 0.5266 0.4978
MST-CDC -0.0087 0.0881 0.0344
R-MST 0.7847 0.7872 0.7896

Ecoli

DPC 0.5618 0.5761 0.5017
DBSCAN 0.4999 0.5109 0.4104
MST-CDC 0.0610 0.1849 0.0796
R-MST 0.7691 0.7279 0.7048

Iris

DPC 0.8857 0.8642 0.8640
DBSCAN 0.5681 0.7337 0.5794
MST-CDC 0.5681 0.7337 0.5794
R-MST 0.9222 0.9011 0.9009

Vote

DPC 0.5921 0.5150 0.5241
DBSCAN 0.4481 0.3977 0.5035
MST-CDC 0.0746 0.0951 0.0349
R-MST 0.6353 0.5438 0.5520

Vowel

DPC 0.4596 0.5658 0.5564
DBSCAN 0.0076 0.0187 0.0105
MST-CDC 0.2487 0.4717 0.5834
R-MST 0.5132 0.6030 0.6603

WDBC

DPC 0.4964 0.4822 0.4374
DBSCAN 0.4515 0.3560 0.3622
MST-CDC 0.0048 0.0102 0.0053
R-MST 0.6879 0.5828 0.5680

Dermatology

DPC 0.5293 0.6851 0.5531
DBSCAN 0.4639 0.6522 0.5661
MST-CDC 0.2048 0.4514 0.2959
R-MST 0.7756 0.8484 0.8122

Pendigits

DPC 0.6478 0.7776 0.7630
DBSCAN 0.5633 0.7384 0.7922
MST-CDC 0.2053 0.0951 0.0349
R-MST 0.7356 0.8323 0.9020

15855

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

We have found that only a few edges in the complete graph play a role in constructing the MST,
and these useful edges mostly connect vertices and their neighbors. This gives us some ideas, and we
will try to construct a graph based on the neighbor relationship that can connect all vertices but has
very few edges. The number of edges in this graph is only a few times the number of vertices, and then
we will use the Kruskal algorithm [36] on this graph to obtain the minimum spanning tree. This will
reduce the time complexity of our algorithm to 0ሺ𝑛𝑙𝑜𝑔𝑛ሻ and break the quadratic time complexity
limitation of constructing MST in clustering algorithms. Because the time complexity of Kruskal
algorithm is 0ሺ𝑒𝑙𝑜𝑔𝑒ሻ, where e is the number of edges in the graph, this algorithm is particularly suitable
for finding the minimum spanning tree of graphs with sparse edges. The reason why Kruskal algorithm
is not used in complete graphs is that the number of edges in a complete graph is 𝑛ሺ𝑛 െ 1ሻ/2, which
would make the overall time complexity of clustering algorithms become 0ሺ𝑛ଶ𝑙𝑜𝑔𝑛ሻ. Furthermore,
preserving a small set of representative points for extremely large datasets poses a challenge. In our
future work, we plan to alleviate this problem by employing grid-based techniques. First, we divide
the data space into regular grid cells. Then, based on characteristics such as the data volume and density
within the grid cell, along with the features of adjacent grids, we select one or more suitable
representative points from each grid. We can efficiently control the number of representative points by
flexibly adjusting the grid size according to our needs. For instance, if we want to reduce the number
of representative points, we can achieve this by enlarging the grid. The trade-off between grid size and
accuracy is a challenge. On the one hand, a smaller grid size can provide more detailed information,
but it may increase computational complexity and memory requirements. On the other hand, larger
mesh sizes may sacrifice accuracy or fail to capture local changes. Finally, we will promote the
combination of “selecting core points + selecting representative points” to more clustering algorithms
to improve their performance. The essence of selecting core points is to roughly remove noise and
boundary points from the dataset, as these points can have a significant impact on the effectiveness of
clustering. Then, selecting representative points from the core points allows for reducing the data size
while preserving the characteristics of the clusters. This combination can be seen as a preprocessing
step for clustering algorithms, which not only mitigates the interference of noise and boundary points
on the algorithm but also improves clustering efficiency to some extent. However, this combination
also faces some challenges. First, the definition criteria for noise and boundary points may need to be
determined based on specific application scenarios and requirements, which can lead to unstable
selection of core points. For example, determining noise points and boundary points by setting distance
thresholds. In density-based clustering algorithm DBSCAN, if the number of points in the
neighborhood of a point is less than a certain threshold, the point is considered a noise point or
boundary point. The selection criteria for noise points and boundary points can also be defined based
on specialized knowledge in specific fields. For example, in image processing, changes in pixel
intensity or texture continuity can be considered to determine noise points and boundary points. Second,
selecting representative points requires balancing the preservation of key cluster features with the goal
of compressing data to avoid information loss. This may necessitate the adoption of different strategies
and metrics for selecting representative points. For example, spectral clustering can select nodes in
each partition that are highly connected to other partitions as representative points. These nodes cannot
only represent the characteristics of the partition they belong to, but also have some differences. The
density peak clustering selects the center point of each cluster as a representative point to better
represent the characteristics of the cluster.

15856

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The financial support for this project is provided by the National Natural Science Foundation of
China [61962054].

Conflict of interest

The authors declare there is no conflict of interest.

References

1. X. Xue, J. Chen, Matching biomedical ontologies through compact differential evolution
algorithm with compact adaption schemes on control parameters, Neurocomputing, 458 (2021),
526–534. https://doi.org/10.1016/j.neucom.2020.03.122

2. X. Xue, Y. Wang, Ontology alignment based on instance using NSGA-II, J. Inf. Sci., 41 (2015),
58–70. https://doi.org/10.1177/0165551514550142

3. D. S. Silva, M. Holanda, Applications of geospatial big data in the Internet of Things, Trans. GIS,
26 (2022), 41–71. https://doi.org/10.1111/tgis.12846

4. T. Xu, J. Jiang, A graph adaptive density peaks clustering algorithm for automatic centroid
selection and effective aggregation, Expert Syst. Appl., 195 (2022), 116539.
https://doi.org/10.1016/j.eswa.2022.116539

5. F. U. Siddiqui, A. Yahya, F. U. Siddiqui, A. Yahya, Partitioning clustering techniques, in
Clustering Techniques for Image Segmentation, Springer, (2022), 35–67.
https://doi.org/10.1007/978-3-030-81230-0_2

6. F. U. Siddiqui, A. Yahya, F. U. Siddiqui, A. Yahya, Novel partitioning clustering, in Clustering
Techniques for Image Segmentation, Springer, (2022), 69–91. https://doi.org/10.1007/978-3-030-
81230-0_3

7. C. K. Reddy, B. Vinzamuri, A survey of partitional and hierarchical clustering algorithms, in Data
Clustering, Chapman and Hall/CRC, (2018), 87–110. https://doi.org/10.1201/9781315373515-4

8. S. Zhou, Z. Xu, F. Liu, Method for determining the optimal number of clusters based on
agglomerative hierarchical clustering, IEEE Trans. Neural Networks Learn. Syst., 28 (2016),
3007–3017. https://doi.org/10.1109/TNNLS.2016.2608001

9. E. C. Chi, K. Lange, Splitting methods for convex clustering, J. Comput. Graphical Stat., 24
(2015), 994–1013. https://doi.org/10.1080/10618600.2014.948181

10. M. Ester, H. P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in
large spatial databases with noise, in kdd, 96 (1996), 226–231.

11. P. Bhattacharjee, P. Mitra, A survey of density based clustering algorithms, Front. Comput. Sci.,
15 (2021), 1–27. https://doi.org/10.1007/s11704-019-9059-3

12. A. Rodriguez, A. Laio, Clustering by fast search and find of density peaks, Science, 344 (2014),
1492–1496. https://doi.org/10.1126/science.1242072

15857

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

13. S. Sieranoja, P. Fränti, Fast and general density peaks clustering, Pattern Recognit. Lett., 128
(2019), 551–558. https://doi.org/10.1016/j.patrec.2019.10.019

14. A. Joshi, E. Fidalgo, E. Alegre, L. Fernández-Robles, SummCoder: An unsupervised framework
for extractive text summarization based on deep auto-encoders, Expert Syst. Appl., 129 (2019),
200–215. https://doi.org/10.1016/j.eswa.2019.03.045

15. J. Xie, R. Girshick, A. Farhadi, Unsupervised deep embedding for clustering analysis, in
International Conference on Machine Learning, PMLR, (2016), 478–487.
https://doi.org/10.48550/arXiv.1511.06335

16. M. Gori, G. Monfardini, F. Scarselli, A new model for learning in graph domains, in Proceedings.
2005 IEEE International Joint Conference on Neural Networks, IEEE, (2005), 729–734.
https://doi.org/10.1109/IJCNN.2005.1555942

17. C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, C. Zhang, Attributed graph clustering: A deep
attentional embedding approach, preprint, arXiv:1906.06532.

18. R. Jothi, S. K. Mohanty, A. Ojha, Fast approximate minimum spanning tree based clustering
algorithm, Neurocomputing, 272 (2018), 542–557. https://doi.org/10.1016/j.neucom.2017.07.038

19. J. C. Gower, G. J. Ross, Minimum spanning trees and single linkage cluster analysis, J. R. Stat.
Soc. C, 18 (1969), 54–64. https://doi.org/10.2307/2346439

20. C. T. Zahn, Graph-theoretical methods for detecting and describing gestalt clusters, IEEE Trans.
Comput., 100 (1971), 68–86. https://doi.org/10.1109/T-C.1971.223083

21. O. Grygorash, Y. Zhou, Z. Jorgensen, Minimum spanning tree based clustering algorithms, in
2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06), IEEE,
(2006), 73–81. https://doi.org/10.1109/ICTAI.2006.83

22. A. C. Müller, S. Nowozin, C. H. Lampert, Information theoretic clustering using minimum
spanning trees, in Joint DAGM (German Association for Pattern Recognition) and OAGM
Symposium, Springer, (2012), 205–215. https://doi.org/10.1007/978-3-642-32717-9_21

23. M. Gagolewski, M. Bartoszuk, A. Cena, Genie: A new, fast, and outlier-resistant hierarchical
clustering algorithm, Inf. Sci., 363 (2016), 8–23. https://doi.org/10.1016/j.ins.2016.05.003

24. Y. Ma, H. Lin, Y. Wang, H. Huang, X. He, A multi-stage hierarchical clustering algorithm based
on centroid of tree and cut edge constraint, Inf. Sci., 557 (2021), 194–219.
https://doi.org/10.1016/j.ins.2020.12.016

25. G. Mishra, S. K. Mohanty, A fast hybrid clustering technique based on local nearest neighbor
using minimum spanning tree, Expert Syst. Appl., 132 (2019), 28–43.
https://doi.org/10.1016/j.eswa.2019.04.048

26. F. Şaar, A. E. Topcu, Minimum spanning tree‐based cluster analysis: A new algorithm for
determining inconsistent edges, Concurrency Comput. Pract. Exper., 34 (2022), e6717.
https://doi.org/10.1002/cpe.6717

27. H. A. Chowdhury, D. K. Bhattacharyya, J. K. Kalita, UIFDBC: Effective density based clustering
to find clusters of arbitrary shapes without user input, Expert Syst. Appl., 186 (2021), 115746.
https://doi.org/10.1016/j.eswa.2021.115746

28. R. C. Prim, Shortest connection networks and some generalizations, Bell Syst. Tech. J., 36 (1957),
1389–1401. https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

29. F. Ros, S. Guillaume, Munec: a mutual neighbor-based clustering algorithm, Inf. Sci., 486 (2019),
148–170. https://doi.org/10.1016/j.ins.2019.02.051

15858

Mathematical Biosciences and Engineering Volume 20, Issue 9, 15830–15858.

30. D. Steinley, Properties of the hubert-arable adjusted rand index, Psychol. Methods, 9 (2004), 386.
https://doi.org/10.1037/1082-989X.9.3.386

31. P. A. Estévez, M. Tesmer, C. A. Perez, J. M. Zurada, Normalized mutual information feature
selection, IEEE Trans. Neural Networks, 20 (2009), 189–201.
https://doi.org/10.1109/TNN.2008.2005601

32. M. Sato-Ilic, On evaluation of clustering using homogeneity analysis, in IEEE International
Conference on Systems, Man and Cybernetics, IEEE, 5 (2000), 3588–3593.
https://doi.org/10.1109/ICSMC.2000.886566

33. P. Fränti, Clustering datasets, 2017. Available from: https://cs.uef.fi/sipu/datasets.
34. P. Fränti, S. Sieranoja, K-means properties on six clustering benchmark datasets, Appl. Intell., 48

(2018), 4743–4759. https://doi.org/10.1007/s10489-018-1238-7
35. D. Dua, C. Graff, UCI Machine Learning Repository, 2017. Available from:

https://archive.ics.uci.edu/ml.
36. J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem,

Proc. Am. Math. Soc., 7 (1956), 48–50.

©2023 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

