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Abstract: The aim of this paper is to deal with the Kirchhoff type equation involving fractional
Laplacian operator (

α + β

∫
R3
|(−∆)

s
2ψ|2 dx

)
(−∆)sψ + κψ = |ψ|p−2ψ in R3,

where α, β, κ > 0 are constants. By constructing a Palais-Smale-Pohozaev sequence at the minimax
value cmp, the existence of ground state solutions to this equation for all p ∈ (2, 2∗s) is established by
variational arguments. Furthermore, the decay property of the ground state solution is also investigated.
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1. Introduction

We are concerned with the existence and decay property of ground state solutions for the following
Kirchhoff equation involving fractional Laplacian operator:

(
α + β

∫
R3
|(−∆)

s
2ψ|2 dx

)
(−∆)sψ + κψ = |ψ|p−2ψ in R3,

ψ(x) ∈ H s(R3),
(1.1)

where α, β, κ > 0 are positive constants, s ∈ (0, 1), 2 < p < 2∗s =
6

3−2s and the fractional Laplacian
(−∆)s is given by

(−∆)sψ(x) = CsP.V.
∫
R3

ψ(x) − ψ(y)
|x − y|3+2s dy,
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where

Cs = s(1 − s)4s Γ(
3
2 + s)

π
3
2Γ(2 − s)

.

The fractional Laplacian operator (−∆)s has a wide range of applications arising in some physical
phenomena such as fractional quantum mechanics, flames propagation, etc. (see [10, 13]). In recent
years, problems involving fractional Laplacian operators and Kirchhoff-type nonlocal terms have been
discussed by lots of researchers for their broad applications. Some remarkable results have been
yielded, see [1, 2, 6–8, 12, 14, 15] and the references therein. In particular, when α = 1, β = 0 and R3 is
replaced by RN(N ≥ 2), equation (1.1) turns into the classical fractional Laplacian problem (−∆)sψ + κψ = |ψ|p−2ψ in RN ,

ψ(x) ∈ H s(RN).
(1.2)

In [4], employing the constrained variational methods, Dipierro et al. studied the existence and
symmetry of nontrivial solutions for (1.2) as s ∈ (0, 1) and p ∈ (2, 2N

N−2s ).
In this paper, we intend to consider the fractional Kirchhoff equation (1.1) with p ∈ (2, 2∗s) using

variational arguments, and we encounter several difficulties to overcome. First, note that solutions
of Eq (1.1) correspond to critical points of the following functional:

E(ψ) =
α

2

∫
R3
|(−∆)

s
2ψ|2 dx +

β

4

(∫
R3
|(−∆)

s
2ψ|2 dx

)2

+
κ

2

∫
R3
|ψ|2 dx −

1
p

∫
R3
|ψ|p dx.

Since the nonlocal term
( ∫
R3 |(−∆)

s
2ψ|2 dx

)2 included in the energy functional E(ψ) is homogeneous of
degree 4, and the nonlinearity |ψ|p−2ψ does not satisfy the global Ambrosetti-Rabinowitz type condition
for p ∈ (2, 2∗s), it would bring about more difficulties to establish the boundedness of (PS)-sequence
for E(ψ) when p ≤ 4. Second, in general, from ψn ⇀ ψ in H s(R3), we do not know whether there holds∫

R3
|(−∆)

s
2ψn|

2 dx
∫
R3

(−∆)
s
2ψn(−∆)

s
2 ξ dx→

∫
R3
|(−∆)

s
2ψ|2 dx

∫
R3

(−∆)
s
2ψ(−∆)

s
2 ξ dx, ∀ ξ ∈ H s(R3),

which is vital when we consider the convergence of the (PS)-sequence.
We now give the main result.

Theorem 1.1. Let s ∈ ( 3
4 , 1) and p ∈ (2, 2∗s). Then, Eq (1.1) has a ground state solution ψ0(x) ∈ H s(R3),

namely
E(ψ0) = m := inf

{
E(ψ) : E′(ψ) = 0, ψ ∈ H s(R3) \ {0}

}
.

Moreover, ψ0(x) ≤ C
1+|x|3+2s for some constant C > 0.

Remark 1.1. In Theorem 1.1, we give the existence result for all p ∈ (2, 2∗s), our result could be viewed
as an extension of one of the main results in [11] (see in particular Theorem 1.4 there), which only
dealt with the case p ∈ (3, 2∗s) with s = 1, the case p ∈ (2, 3] having been left open.

2. Proof of Theorem 1.1

In this paper, we use the notation ∥ψ∥Lq(R3) = (
∫
R3 |ψ|

q dx)
1
q to denote the norm of Lq(R3), q ∈ [1,+∞).

For s ∈ (0, 1), the fractional Sobolev space H s(R3) is defined as
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H s(R3) =
{
ψ ∈ L2(R3) :

∫
R3

∫
R3

|ψ(x) − ψ(y)|2

|x − y|3+2s dxdy < +∞
}
,

endowed with the norm

∥ψ∥Hs =

(∫
R3

∫
R3

|ψ(x) − ψ(y)|2

|x − y|3+2s dxdy + ∥ψ∥2L2(R3)

) 1
2

.

Note that by Propositions 3.4 and 3.6 in [13], one has

∥(−∆)
s
2ψ∥2L2(R3) =

Cs

2

∫
R3

∫
R3

|ψ(x) − ψ(y)|2

|x − y|3+2s dxdy, ∀ ψ ∈ H s(R3),

and so ∥ψ∥Hs(R3) = (
∫
R3(|(−∆)

s
2ψ|2 + |ψ|2) dx)

1
2 is an equivalent norm to ∥ψ∥Hs for ψ ∈ H s(R3).

For fixed α, κ > 0, we also employ the norm ∥ψ∥ = (
∫
R3(α|(−∆)

s
2ψ|2 + κ|ψ|2) dx)

1
2 , which is an

equivalent norm to ∥ψ∥Hs(R3). Ds,2(R3) is the completion of C∞0 (R3) with respect to the norm ∥ψ∥Ds,2(R3) =

(
∫
R3 |(−∆)

s
2ψ|2 dx)

1
2 . Now, we recall the following fractional Sobolev embedding results.

Lemma 2.1. (See [13]) Let s ∈ (0, 1). Then, the embeddings Ds,2(R3) ↪→ L2∗s (R3) and H s(R3) ↪→
Lq(R3)(q ∈ [2, 2∗s]) are continuous, and the embedding H s(R3) ↪→ Lq

loc(R
3)(q ∈ [1, 2∗s)) is compact.

We define the minimax value
cmp := inf

ζ∈Λ
max
t∈[0,1]
E(ζ(t)), (2.1)

where
Λ = {ζ ∈ C([0, 1],H s(R3)) : ζ(0) = 0,E(ζ(1)) < 0}.

First, we show that Λ , ∅, it is sufficient to prove the following lemma.

Lemma 2.2. Let s ∈ ( 3
4 , 1) and p ∈ (2, 2∗s). Then, there exists ψ∗ ∈ H s(R3) such that E(ψ∗) < 0.

Proof. We consider the following perturbation functional Eη defined by

Eη(ψ) =
α

2

∫
R3
|(−∆)

s
2ψ|2 dx +

β

4

(∫
R3
|(−∆)

s
2ψ|2 dx

)2

−

∫
R3

Gη(ψ) dx, (2.2)

where Gη(ψ) := η

p |ψ|
p − κ

2 |ψ|
2 and η ∈ [η0, 1] is a parameter, η0 ∈ (0, 1) is a positive constant. Now, we

take t0 > 0 such that
Gη0(t0) =

η0

p
tp
0 −

κ

2
t2
0 > 0,

and for ℓ > 0 define

φℓ(x) =


t0, if |x| ≤ ℓ,
(ℓ + 1 − |x|)t0, if ℓ < |x| ≤ ℓ + 1,
0, if |x| > ℓ + 1.

By the definition of φℓ(x), clearly φℓ(x) ∈ H s(R3) and ∥φℓ∥Hs(R3) → +∞ as ℓ → +∞. Moreover, by
direct calculations (see Lemma 2.6 in [4]), we conclude that

∥(−∆)
s
2φℓ∥

2
L2(R3) ≤ C(s, ℓ)t2

0,
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and ∫
R3

Gη0(φℓ(x)) dx =
∫

Bℓ
Gη0(φℓ(x)) dx +

∫
Bℓ+1\Bℓ

Gη0(φℓ(x)) dx

≥|Bℓ|Gη0(t0) − |Bℓ+1\Bℓ| max
t∈[0,t0]

|Gη0(t)|

≥
4πℓ3

3
Gη0(t0) −C0

(
(ℓ + 1)3 − ℓ3)

≥C1ℓ
3 −C2ℓ

2,

where C0,C1,C2 are constants depending on t0. Thus, for sufficiently large ℓ0 > 0 we can get∫
R3

Gη0(φℓ0(x)) dx ≥ 1.

Let φℓ0,σ(x) = φℓ0(
x
σ

) for σ > 0, then the following hold true:

∥(−∆)
s
2φℓ0,σ∥

2
L2(R3) = σ

3−2s∥(−∆)
s
2φℓ0∥

2
L2(R3),∫

R3
Gη0(φℓ0,σ) dx = σ3

∫
R3

Gη0(φℓ0) dx ≥ σ3.

Hence, by (2.2) and note that 6 − 4s < 3 we have

Eη0(φℓ0,σ) =
ασ3−2s

2
∥(−∆)

s
2φℓ0∥

2
L2(R3) +

βσ6−4s

4
∥(−∆)

s
2φℓ0∥

4
L2(R3) − σ

3
∫
R3

Gη0(φℓ0) dx

≤
ασ3−2s

2
∥(−∆)

s
2φℓ0∥

2
L2(R3) +

βσ6−4s

4
∥(−∆)

s
2φℓ0∥

4
L2(R3) − σ

3

→−∞ as σ→ +∞.

In addition, we notice that E(ψ) ≤ Eη0(ψ) for any ψ ∈ H s(R3), so we obtain E(φℓ0,σ)→ −∞ asσ→ +∞.
Thus, we can take ψ∗ = φℓ0,σ0 such that E(ψ∗) < 0 for σ0 > 0 large enough.

By Lemma 2.1, for all ψ ∈ H s(R3), we know that ∥ψ∥p
Lp(R3) ≤ c∥ψ∥p for some positive constant c > 0,

and noting that p > 2, we deduce that

E(ψ) =
1
2
∥ψ∥2 +

β

4
∥(−∆)

s
2ψ∥4L2(R3) −

1
p
∥ψ∥

p
Lp(R3)

≥
1
2
∥ψ∥2 −

c
p
∥ψ∥p ≥ ϱ0 > 0,

if ∥ψ∥ = ε0 > 0 is sufficiently small. Thus, combining with Lemma 2.2, we know that cmp ∈ (0,+∞).
Note that if ψ ∈ H s(R3) is a critical point of E, then ψ satisfies the Pohozaev identity (see Lemma 2.2
in [15]):

P(ψ) :=
α(3 − 2s)

2
∥(−∆)

s
2ψ∥2L2(R3) +

3κ
2
∥ψ∥2L2(R3) +

β(3 − 2s)
2

∥(−∆)
s
2ψ∥4L2(R3) −

3
p
∥ψ∥

p
Lp(R3) = 0. (2.3)

Next, we expound that there is a Palais-Smale-Pohozaev sequence ((PSP)-sequence, for short) at
the minimax level cmp defined by (2.1).
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Lemma 2.3. Let s ∈ ( 3
4 , 1), p ∈ (2, 2∗s) and κ > 0. Then, there is a sequence {ψn} ⊂ H s(R3) such that

(i) E(ψn)→ cmp as n→ ∞;
(ii) E′(ψn)→ 0 in (H s(R3))∗ as n→ ∞;

(iii) P(ψn)→ 0 as n→ ∞.

Proof. For τ ∈ R and φ ∈ H s(R3), we set (Sτφ)(x) = φ(e−τx), and we denote Ẽ : R × H s(R3) → R the
functional defined by

Ẽ(τ, φ) =E(Sτφ)

=
αe(3−2s)τ

2
∥(−∆)

s
2φ∥2L2(R3) +

κe3τ

2
∥φ∥2L2(R3) +

βe2(3−2s)τ

4
∥(−∆)

s
2φ∥4L2(R3) −

e3τ

p
∥φ∥

p
Lp(R3).

Here, R × H s(R3) is equipped with the norm ∥(τ, φ)∥R×Hs(R3) = (|τ|2 + ∥φ∥2)
1
2 . Clearly, Ẽ(τ, φ) ∈ C1(R ×

H s(R3)) and satisfies the following properties:

Ẽ(0, φ) = E(φ), Ẽ(τ, φ) = E(φ(e−τx)). (2.4)

We define a minimax value for Ẽ(τ, φ) by

dmp = inf
ζ̃∈Λ̃

sup
t∈[0,1]
Ẽ(̃ζ(t)),

where
Λ̃ :=

{̃
ζ ∈ C([0, 1],R × H s(R3)) : ζ̃(0) = (0, 0), Ẽ(̃ζ(1)) < 0

}
.

It is not hard to see that Λ̃ , ∅, and thus the minimax value dmp is well defined. Now, we claim
that dmp = cmp. Indeed, for any ζ(t) ∈ Λ we can check that (0, ζ(t)) ∈ Λ̃, so {0} × Λ ⊂ Λ̃, thus for
Ẽ(0, φ) = E(φ) we get dmp ≤ cmp. On the other hand, for every given ζ̃(t) = (τ(t), η(t)) ∈ Λ̃, letting
ζ(t)(x) = η(t)(e−τ(t)(x)), we can verify that ζ(t) ∈ Λ, and from (2.4), we obtain E(ζ(t)) = Ẽ(̃ζ(t)). This
yields that dmp ≥ cmp. Hence, the claim follows.

By (2.1), we may choose {ζn} ⊂ Λ such that

sup
0≤t≤1
E(ζn(t)) ≤ cmp +

1
n
.

Let ζ̃n(t) := (0, ζn(t)), then ζ̃n ∈ Λ̃ and so, we obtain

sup
0≤t≤1
Ẽ(ζ̃n(t)) ≤ cmp +

1
n
.

Then, by Lemma 2.3 in [9], we can get that a sequence {(τn, φn)} ⊂ R × H s(R3) satisfies

Ẽ(τn, φn)→ cmp, Ẽ
′(τn, φn)→ 0, (2.5)

and
min
0≤t≤1
∥(τn, φn) − ζ̃n(t)∥R×Hs(R3) → 0 as n→ ∞. (2.6)
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Remark that for any (h,U) ∈ R × H s(R3),

on(1) = ⟨Ẽ′(τn, φn), (h,U)⟩ = ⟨E′(Sτnφn),SτnU⟩ + P(Sτnφn)h. (2.7)

Then, the conclusion of Lemma 2.3 follows by taking ψn = Sτnφn. Indeed, by (2.6) we can get

|τn| = |τn − 0| ≤ min
0≤t≤1
∥(τn, φn) − (0, ζn(t))∥R×Hs(R3) → 0.

By the fact that τn → 0 as n→ ∞, via (2.5) and (2.4) one can obtain that E(ψn)→ cmp as n→ ∞.
For any φ ∈ H s(R3), we choose h = 0,U(x) = φ(eτn x) in (2.7), and note that τn → 0, then we obtain

⟨E′(ψn), φ⟩ = ⟨Ẽ′(τn, φn), (0, φ(eτn x))⟩ = on(1)∥φ(eτn x)∥ = on(1)∥φ∥.

Hence, E′(ψn)→ 0 as n→ ∞. Moreover, taking (h,U) = (1, 0) in (2.7), we get P(ψn)→ 0 as n→ ∞.
To sum up, we have obtained a sequence {ψn} ⊂ H s(R3) that satisfies

E(ψn)→ cmp, E
′(ψn)→ 0, P(ψn)→ 0 as n→ ∞. (2.8)

The proof is completed.

Lemma 2.4. The (PSP)-sequence {ψn} in (2.8) is bounded in H s(R3).

Proof. From (2.8), we get

cmp + on(1) = E(ψn) −
1
3
P(ψn) =

αs
3
∥(−∆)

s
2ψn∥

2
L2(R3) +

β(4s − 3)
12

∥(−∆)
s
2ψn∥

4
L2(R3). (2.9)

Note that by (2.9), ∥(−∆)
s
2ψn∥L2(R3) is bounded. By Lemma 2.1, the fractional Sobolev embedding

Ds,2(R3) ↪→ L2∗s (R3) is continuous, so we have

∥ψn∥L2∗s (R3) ≤ C∥(−∆)
s
2ψn∥L2(R3),

and thus ∥ψn∥L2∗s (R3) is bounded. Next, we prove {ψn} is bounded in L2(R3). By the fact that E′(ψn)→ 0
and ∥(−∆)

s
2ψn∥L2(R3) is bounded, we can deduce that

κ∥ψn∥
2
L2(R3) ≤ ∥ψn∥

p
Lp(R3) +C

for some constant C > 0. Since 2 < p < 2∗s, then for any ε > 0, there is Cε > 0 such that

∥ψn∥
p
Lp(R3) ≤ ε∥ψn∥

2
L2(R3) +Cε∥ψn∥

2∗s
L2∗s (R3)

. (2.10)

Thus, by (2.10) we obtain

κ∥ψn∥
2
L2(R3) ≤ ε∥ψn∥

2
L2(R3) +Cε∥ψn∥

2∗s
L2∗s (R3)

+C.

Choosing ε = κ
2 , and meanwhile ∥ψn∥L2∗s (R3) is bounded, we obtain the boundedness of ∥ψn∥L2(R3) and

therefore {ψn} is bounded in H s(R3).
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Proof of Theorem 1.1. The result of Lemma 2.3 reveals that there is a (PSP)-sequence {ψn} ⊂ H s(R3)
satisfying

E(ψn)→ cmp, E
′(ψn)→ 0, P(ψn)→ 0 as n→ ∞.

Moreover, by Lemma 2.4 the (PSP)-sequence {ψn} must be bounded in H s(R3). Then, passing to a
subsequence if necessary, we may suppose that

ψn ⇀ ψ0 weekly in H s(R3), and ψn(x)→ ψ0(x) a.e. in x ∈ R3. (2.11)

Next, we divide our arguments into several steps.
Step 1: We claim that ψ0 solves Eq (1.1). In fact, by (2.11) for any ξ ∈ C∞0 (R3), we have

lim
n→∞

∫
R3

(α(−∆)
s
2ψn(−∆)

s
2 ξ + κψnξ) dx =

∫
R3

(α(−∆)
s
2ψ0(−∆)

s
2 ξ + κψ0ξ) dx (2.12)

and
lim
n→∞

∫
R3
|ψn|

p−2ψnξ dx =
∫
R3
|ψ0|

p−2ψ0ξ dx for p ∈ (2, 2∗s). (2.13)

Moreover, suppose that ∥(−∆)
s
2ψn∥

2
L2(R3) → B for some B ≥ 0, then from (2.12) and (2.13), for

ξ ∈ C∞0 (R3), we deduce that

0 = lim
n→∞
⟨E′(ψn), ξ⟩

=

∫
R3

(α(−∆)
s
2ψ0(−∆)

s
2 ξ + κψ0ξ) dx + βB

∫
R3

(−∆)
s
2ψ0(−∆)

s
2 ξ dx −

∫
R3
|ψ0|

p−2ψ0ξ dx

=⟨G′(ψ0), ξ⟩, (2.14)

where
G(ψ) =

α + βB

2

∫
R3
|(−∆)

s
2ψ|2 dx +

κ

2

∫
R3
|ψ|2 dx −

1
p

∫
R3
|ψ|p dx.

Using Fatou’s lemma, we have
lim inf

n→∞
∥ψn∥

2
L2(R3) ≥ ∥ψ0∥

2
L2(R3),

∥(−∆)
s
2ψ0∥

2
L2(R3) ≤ lim inf

n→∞
∥(−∆)

s
2ψn∥

2
L2(R3) = B.

(2.15)

Noting that E′(ψn)→ 0 and ∥(−∆)
s
2ψn∥

2
L2(R3) → B, one can obtain that

lim
n→∞
⟨G′(ψn), ψn⟩ = 0.

Now, by combining (2.13)–(2.15) we conclude that

lim sup
n→∞

(α + βB)∥(−∆)
s
2ψn∥

2
L2(R3) = lim sup

n→∞

(
∥ψn∥

p
Lp(R3) − κ∥ψn∥

2
L2(R3)

)
≤∥ψ0∥

p
Lp(R3) − κ∥ψ0∥

2
L2(R3)

=(α + βB)∥(−∆)
s
2ψ0∥

2
L2(R3). (2.16)
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Putting together (2.16) and (2.15), we get

lim
n→∞
∥(−∆)

s
2ψn∥

2
L2(R3) = ∥(−∆)

s
2ψ0∥

2
L2(R3) = B. (2.17)

Accordingly, using (2.12), (2.13) and (2.17), we can derive that ψn → ψ0 strongly in H s(R3) and so

0 = lim
n→∞
⟨E′(ψn), ξ⟩ = ⟨E′(ψ0), ξ⟩

for all ξ ∈ C∞0 (R3), that is, E′(ψ0) = 0.
Moreover ψ0 . 0. Otherwise, if ψ0 ≡ 0, that is ψn → 0 in H s(R3), which leads to E(ψn)→ 0, this is

a contradiction since E(ψn)→ cmp > 0.
Step 2: Next, we claim that E(ψ0) = cmp = m, that is, ψ0 is a ground state solution of (1.1). Indeed,

note that P(ψn)→ 0 as n→ ∞, one has P(ψ0) = 0. Therefore, from (2.3),

E(ψ0) =E(ψ0) −
1
3
P(ψ0) =

αs
3
∥(−∆)

s
2ψ0∥

2
L2(R3) +

β(4s − 3)
12

∥(−∆)
s
2ψ0∥

4
L2(R3)

≤ lim inf
n→∞

(
αs
3
∥(−∆)

s
2ψn∥

2
L2(R3) +

β(4s − 3)
12

∥(−∆)
s
2ψn∥

4
L2(R3)

)
= lim inf

n→∞

(
E(ψn) −

1
3
P(ψn)

)
= lim inf

n→∞
E(ψn) = cmp.

Clearly, by the definition of m, there holds m ≤ E(ψ0), and hence m ≤ cmp.
On the other hand, we prove that cmp ≤ m. Let w(x) ∈ H s(R3) \ {0} be another solution of (1.1)

and satisfy E(w) ≤ E(ψ0). We set ζ∗(τ)(x) = w( x
τ
) for τ > 0 and ζ∗(0) = 0. It is clear that ζ∗(τ) ∈

C([0,+∞),H s(R3)). From (2.3), for τ > 0 we obtain that

E(ζ∗(τ)) =
ατ3−2s

2
∥(−∆)

s
2 w∥2L2(R3) +

κτ3

2
∥w∥2L2(R3) +

βτ2(3−2s)

4
∥(−∆)

s
2 w∥4L2(R3) −

τ3

p
∥w∥p

Lp(R3)

=
3τ3−2s − (3 − 2s)τ3

6
α∥(−∆)

s
2 w∥2L2(R3) +

3τ2(3−2s) − 2(3 − 2s)τ3

12
β∥(−∆)

s
2 w∥4L2(R3).

With a simple calculation, we conclude that

max
τ≥0
E(ζ∗(τ)) = E(ζ∗(1)) = E(w),

and it follows that E(ζ∗(τ)) ≤ E(w). Observe that E(ζ∗(τ)) → −∞ as τ → +∞. Then, with appropriate
scaling change we can get a path ζ(t) ∈ C([0, 1],H s(R3)) such that ζ(0) = 0 and E(ζ(1)) < 0; ζ(t0) = w
for some t0 ∈ (0, 1); max

0≤t≤1
E(ζ(t)) = E(ζ(t0)) = E(w). Then, by the definition of cmp in (2.1), we know

that cmp ≤ E(w), which shows that cmp ≤ m. Thus as desired E(w) = E(ψ0) = cmp = m has been proved.
Step 3: We estimate the decay properties of ψ0(x). Following [3], by the standard regularity

arguments we can deduce that ψ0(x) ∈ H2s(R3) ∩ Cr(R3) for all r ∈ (0, 2s) and lim
|x|→∞

ψ0(x) = 0. Note

that p > 2. Then, we can pick ρ > 0 such that for all |x| ≥ ρ,

|ψ0|
p−2

α + β
∫
R3 |(−∆)

s
2ψ0|

2 dx
≤

κ

2(α + βL)
,
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where L > 0 such that ∥ψ0∥
2
Hs(R3) ≤ L, and we conclude that

(−∆)sψ0(x) +
κ

α + βL
ψ0(x) ≤ (−∆)sψ0(x) +

κψ0(x)
α + β

∫
R3 |(−∆)

s
2ψ0|

2 dx

=
|ψ0(x)|p−2ψ0(x)

α + β
∫
R3 |(−∆)

s
2ψ0|

2 dx
≤

κ

2(α + βL)
ψ0(x).

Therefore,
(−∆)sψ0(x) +

κ

2(α + βL)
ψ0(x) ≤ 0, ∀ x ∈ R3 \ Bρ(0). (2.18)

According to Lemma 4.3 of [5], we can find a continuous function Φ(x) satisfying 0 < Φ(x) ≤ C
1+|x|3+2s

and
(−∆)sΦ(x) +

κ

2(α + βL)
Φ(x) ≥ 0, ∀ x ∈ R3 \ BR1(0) (2.19)

for some suitable R1 > 0. Let R = max{ρ,R1}, and set

a = min
|x|≤R
Φ(x), b = max

|x|≤R
ψ0(x).

Define U(x) = b
aΦ(x) − ψ0(x). From (2.18) and (2.19), consequently, we can obtain

(−∆)sU(x) +
κ

2(α + βL)
U(x) ≥ 0 for |x| ≥ R,

U(x) ≥ 0 for |x| = R,

lim
|x|→∞

U(x) = 0.

Then, by the maximum principle we infer that U(x) ≥ 0 for all |x| ≥ R. In addition, by the definition of
U(x), obviously, U(x) ≥ 0 for |x| ≤ R. Thus, we get U(x) ≥ 0 for all x ∈ R3, furthermore, we have

ψ0(x) ≤
b
a
Φ(x) ≤

C
1 + |x|3+2s , ∀ x ∈ R3.

The proof of Theorem 1.1 is finished.

3. Conclusions

In this paper, we are interested in the existence and decay property of ground state solutions for a
Kirchhoff equation involving fractional Laplacian operator. Since the nonlocal term

( ∫
R3 |(−∆)

s
2ψ|2 dx

)2

included in the energy functional E(ψ) is homogeneous of degree 4, when p ≤ 4, it brings about two
obstacles to the standard mountain-pass arguments both in checking the geometrical assumptions in
the corresponding energy functional and in proving the boundedness of the Palais-Smale sequence
for E(ψ). By constructing a Palais-Smale-Pohozaev sequence at the minimax value cmp, the existence
of ground state solutions to this equation for all p ∈ (2, 2∗s) is established by variational arguments.
Furthermore, the decay property of the ground state solution is also investigated. Our result extends
and improves the recent results in the literature. We believe that the proposed approach in the present
paper can also be applied to studying other related variational problems.
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