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Abstract: A mathematical model is developed for analysis of the spread of mosaic disease in plants,
which account for incubation period and latency that are represented by time delays. Feasibility and
stability of different equilibria are studied analytically and numerically. Conditions that determine the
type of behavior exhibited by the system are found in terms of various parameters. We have derived the
basic reproduction number and identify the conditions resulting in eradication of the disease, as well
as those that lead to the emergence of stable oscillations in the population of infected plants, as a result
of Hopf bifurcation of the endemic equilibrium. Numerical simulations are performed to verify the
analytical results and also to illustrate different dynamical regimes that can be observed in the system.
In this research, the stabilizing role of both the time delay has been established i.e. when delay time is
large, disease will persist if the infection rate is higher. The results obtained here are useful for plant
disease management.
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1. Introduction

Mosaic disease is a plant disease that is caused by the viruses of the Begomovirus family [1]. It
affects the productivity of economically important plants such as Cassava, Jatropha spp., Tomato
etc [2]. This disease manifests itself in the substantial leaf damage, such as yellowing of the leaves
and sap drainage, and it attacks the fruits, thus significantly reducing the yield of seeds [3, 4].
Whitefly Bemisia tabaci (Gennadius) is the vector that carries the virus and transmits it to Jatropha
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plants [5, 6], so the spread of the mosaic disease is largely determined by the distribution of whitefly
vectors and the density of the host plants [7]. When an infected vector feeds on a healthy plant leaf or
stem, the plant becomes infected after an incubation period. Similarly, a non-infected vector becomes
infected upon feeding on an infected portion of the plant after the latest period [3, 8].

The process of viral infection of plants is often characterized by a non-negligible duration, which
represents various processes associated with production of virus particles by the vectors, feeding on
the plants, entry of the virus into plant cells etc. [9]. When considering plant disease, it is difficult in
practice to distinguish between different stages of the plant infectious state. Thus, identifying
appropriate latency and incubation periods from observing the plant pathology status is a challenging
problem [9–11]. From a mathematical perspective, delays in the disease transmission and
development of symptoms can be effectively modeled using the formalism of delay differential
equations (DDEs) [12, 13].

Mosaic disease and leaf curl disease are two of the most common vector-borne viral diseases of
major agricultural crops. They are caused by aphid vectors, such as whitefly (Bemisia sp.), which
cause viral diseases of cassava, Jatropha, cotton, tomato, tobacco and other plants. Since whitefly
mostly transmits viral disease in a persistent manner, there is a certain associated latency period [14].
Unfortunately, there are scant reliable data on the duration of the incubation and latency periods for
various persistently-transmitted diseases. Both of these periods vary according to viral agents and host
plant species. Moreover, even for the same virus and host plants, there is a variation in latency for
different whitefly species. In most cases, the incubation period in plants is relatively long (from days
to weeks), while the latency period in vectors is relatively short (from a few hour to days), though it
can still be significant when compared to the duration of the vector life cycle. For example, in the case
of ACMV, the latent period is 6 hours, and the incubation period is 3 to 5 weeks [15]. Including time
lags associated with disease development in vectors and plants in corresponding mathematical models
is essential when considering the development of disease control policies. However, one should be
mindful of the fact that precise estimates of those latency and incubation periods may be hard to obtain
in experimental settings [16].

A number of mathematical models have considered the dynamics of plant diseases, starting with the
seminal work of Van der Plank [17] who looked at the possibility of predicting whether an epidemic
outbreak can occur, and what would be its size. Jeger et al. [18] provide a nice review of more recent
work that has looked at various aspects of interactions between plants and disease-carrying vectors.
Jackson and Chen-Charpentier [19,20] and Al Basir et al. [16] have recently studied the propagation of
plant viruses while accounting for two time delays, one representing the incubation period of the plant,
and the other being a shorter delay due to the incubation period of vector. While retaining this setting,
here we focus on the specific interactions between whitefly and Jatropha or Cassava plants, using
specific parameter values for these species in the simulations. Time-delayed models have also proved
effective for the analysis of within-plant dynamics of immune responses to viral infections [21]. Several
papers have investigated the effects of vector maturation delay in the context of vector-borne animal
diseases [22–24]. These papers revealed that time delays can destabilize host-vector dynamics and
generate periodic solutions through a Hopf bifurcation, more complex dynamics and chaos. Banerjee
and Takeuchi [25], Al Basir et al. [16, 26] have provided strong biological background for the suitable
incorporation of time delay in the system, to avoid reaching misleading conclusions. As a further
result, it has also been shown that delays can have a stabilizing role, whereas in many of the previous
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models it was observed that discrete-time delays often destabilize the co-existence steady-state.
In the particular context of mosaic disease affecting the population of J. curcas plant, several

models have been proposed that have looked at the dynamics of control of disease [27–32]. Venturino
et al. [31] have proposed a mathematical model for the dynamics of Jatropha curcas plant’s mosaic
disease, though they focused on a constant disease transmission rate. These earlier models of mosaic
disease have assumed a constant disease transmission without including a period of latency, i.e., once
an infected vector has fed on healthy biomass, it immediately becomes infected. To make that
approach more realistic, in this paper we propose an epidemic model for the mosaic disease that
explicitly accounts for disease latency and incubation as delayed processes.

In [16], authors have studied a model for vector borne disease and studied the effects of delays.
In this paper, we have analyzed a particular vector (whitefly) and particular disease (mosaic disease)
in a particular plant (Cassava/Jatropha). We have additionally discussed the transcritical bifurcation
analytically and numerically. Also, we have studied how the periods of oscillation depends on the
model parameters.

The outline of the paper is as follows. In the next section, we derive a time-delayed model of mosaic
disease transmission and discuss its main properties. Section 3 is devoted to analysis of feasibility and
stability of different steady states of the model. In Section 4, numerical techniques are used to perform
and to illustrate the behavior of the model in different dynamical regimes. The paper concludes in
Section 5 with a discussion of results and future outlook.

2. Model derivation

The following assumptions are made in order to establish the mathematical model for mosaic
disease transmission.

To analyze the spread of mosaic disease on a given farm, we consider the overall plant biomass,
which includes stem, leaves etc. To simplify the model, we do not explicitly include a separate
compartment for mosaic virus, but instead concentrate on plant and vector populations. To this end,
we introduce S (t) and I(t) as the amounts of healthy and infected plant biomass, respectively, while
uninfected and infected whitefly populations are denoted by U(t) and V(t).

Due to the fact that any plantation has a finite area on which plants can grow, we will assume a
logistic growth for healthy plant biomass, with the growth rate r and the carrying capacity K. Infected
vectors transmit the disease to susceptible plant at rate λ from infected plant.

Thus the equations for plant population become:

dS
dt

= rS
[
1 −

S + I
K

]
− λS V,

dI
dt

= λS V − mI.

(2.1)

For the dynamics of vector population, we consider b to be the net growth rate of healthy vectors,
and a to be the maximum number of vectors that can survive on a plant. Then, a(S + I) > 0 is
the overall carrying capacity of the vectors on all plants. We will denote, by m, the rate of removal of
infected plant biomass, and by µ the sum of the natural and the virus-related mortality rates for infected
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vectors [31, 33]. Uninfective vectors themselves pick up the disease from the infected plants at rate β
while feeding on the infected plants [31, 33]. Thus the equation for vectors read as:

dU
dt

= b(U + V)
[
1 −

U + V
a(S + I)

]
− βUI,

dV
dt

= βUI − µV.

(2.2)

To better understand the biological reason for introducing a delayed system, we now discuss some
features of the whitefly-cassava ecological interactions. Whiteflies need to feed for at least 4 hours on
the young leaves of a cassava plant with mosaic before they acquire the virus. Whiteflies that acquired
virus in 4–6 hours, then require another 4 hours to become viruliferous. Once viruliferous, they can
infect healthy plants during a feeding period of 15 minutes, but longer periods give more infections.
Adult whiteflies can continue to infect healthy plants for up to 48 hours after initial acquisition of
the virus. Cassava plants fed upon even by a single viruliferous fly sometimes became infected [34].
Symptoms appear after a 3–5 week latent period [35–37]. Thus, transmission of mosaic disease through
whitefly vector is a delayed process with two distinct delays: one describes plant incubation, and
another is the delay in whitefly becoming infectious i.e., the latent period. Incubation in the infection
of a plant by a vector refers to a delayed process, where a healthy biomass takes some time after an
infected whitefly has fed on it to actually become infectious itself.

To model this mathematically, we represent transmission of infection from vectors to plants at time
t by a term λe−mτ1S (t − τ1)V(t − τ1), where m and λ are positive constants. This term represents
healthy plants that became infected at time t− τ1 and have survived from natural death for the duration
of incubation period τ1. Similarly, introducing a latency period τ2 ∈ R+, the term describing the
transmission of disease from infected plants to healthy vectors is taken to be βe−µτ2U(t − τ2)I(t − τ2),
which represents healthy vectors infected at time t − τ2 that have survived for the duration of latency
period τ2.

Note that in contrast to [16], here the abundance of insects depends on the availability of plants on
which to feed. Mathematically this is expressed by a logistic term in the vector equation, of Leslie-
Gower type, i.e. the carrying capacity depends on the plant population.

With the above assumptions, the model for the dynamics of the mosaic disease takes the following
form

dS
dt

= rS
[
1 −

S + I
K

]
− λS V,

dI
dt

= λe−mτ1S (t − τ1)V(t − τ1) − mI,

dU
dt

= b(U + V)
[
1 −

U + V
a(S + I)

]
− βUI,

dV
dt

= βe−µτ2U(t − τ2)I(t − τ2) − µV.

(2.3)

Let C denote the Banach space of continuous functions φ : [−τ, 0] → R4
+ equipped with the
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supremum-norm,
‖φ‖ = sup

−τ≤γ≤0
{|φ1(γ)|, |φ2(γ)|, |φ3(γ)|, |φ4(γ)|},

where, φ = (φ1, φ2, φ3, φ4) ∈ C([−τ, 0],R). For biological reasons, populations always have
nonnegative values, therefore, the initial function for model (2.3) is taken as below:

S (γ) = φ1(γ), I(γ) = φ2(γ), U(γ) = φ3(γ), V(γ) = φ4(γ)
with φi(γ) ≥ 0, γ ∈ [−τ, 0], i = 1, 2, 3, 4. (2.4)

Biologically, this initial condition together with φ2(0) + φ4(0) > 0 means that at time t = 0, at least
some number of plants and vectors are already infected. While this condition may be quite natural for
the vectors, as without them carrying the disease, the model would make no sense, for plants this would
also very quickly be satisfied, once the vectors start transmitting the infection. It can be shown that the
solution (S (t), I(t),U(t),V(t))T of model (2.3) with the initial condition (2.4) exists and is unique on
[0,+∞) [13, 38].

Before proceeding with the analysis of model (2.3), we have to established some of its
well-posedness properties.

Theorem 1. All solutions of model (2.3) with the initial condition (2.4) remain non-negative for t ≥ 0.

Proof. We rewrite the first equation of (2.3) as

dS
S

=

[
r
(
1 −

S + I
K

)
− λV

]
dt = f̃ (S , I,V)dt. (2.5)

Let f̃ (S , I,V) = r
(
1 − S +I

K

)
− λK, then from above equation, we have

S (t) = S (0) exp
(∫ t

0
f̃ (S , I,V)dt

)
.

Since, S (0) = φ1(0) ≥ 0 then S (t) ≥ 0 for t ≥ 0.
From the second, third and fourth equation of (2.3), we can write

I′(t) ≥ −mI, U′(t) ≥ −βUI and V ′ ≥ −µV(t),

for some constant tc > 0 and for all t ∈ (0, tc]. Using the standard comparison principle, we have
I(t) ≥ 0 and V(t) ≥ 0 for all t ∈ (0, tc].

We can repeat the above argument to deduce the non-negativity of I, U and V on the interval
t ∈ (tc, 2tc] and so on the successive intervals t ∈ (ntc, (n + 1)tc], n = 2, 3, . . . to include all positive
times. �

To ensure the model remains biologically plausible, both plant and vector populations have to
remain bounded during their time evolution. If we denote by M(t) the total plant biomass, i.e.,
M(t) = S (t) + I(t), then it satisfies the equation

dM
dt

= rS
[
1 −

S + I
K

]
− mI ≤ rM

(
1 −

M
K

)
,
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which implies
lim sup

t→∞
M(t) ≤ B,

where B = max[M(0),K], and hence, the total plant biomass is bounded. If we denote by N(t) the total
plant biomass, i.e., N(t) = U(t) + V(t). Non-negativity of solutions implies that the third and fourth
equation of model (2.3) can be rewritten as follows,

dN
dt
≤ b(U + V)

[
1 −

U + V
a(S + I)

]
which implies

lim sup
t→∞

N(t) ≤ aB.

Thus, the region

D =
{
(S , I,U,V) ∈ R4

+ : 0 ≤ S + I ≤ B, 0 ≤ U + V ≤ aB
}
,

where B = max[S (0) + I(0),K], is positively invariant and attracting, in view of the fact that the
solutions exceeding the lim sup will ultimately decrease, with all solutions of the model (2.3) with
initial conditions (2.4) being contained inside this region for sufficiently large t.

3. Steady states and their stability

The system (2.3) has up to three possible equilibria, which include

(a) the healthy plant-only equilibrium, E1 = (K, 0, 0, 0),

(b) a disease-free equilibrium, E2 = (K, 0, aK, 0),

(c) a co-existence equilibrium, E∗ = (S ∗, I∗,U∗,V∗),

where
I∗ =

rS ∗(K − S ∗)
rS ∗ + Kmemτ1

, U∗ =
memτ1µeµτ2

βλS ∗
, V∗ =

rmemτ1(K − S ∗)
(rS ∗ + memτ1 K)λ

,

and S ∗ satisfies the quartic equation

F(S ∗) = `4(S ∗)4 + `3(S ∗)3 + `2(S ∗)2 + `1S ∗ + l0 = 0, (3.1)

where

`4 = b(βe−µτ2)2mr2 + ab(βe−µτ2)2kλe−mτ1r2

−aβe−µτ2βkλe−mτ1mµr − aβe−µτ2βkλe−mτ1µr2 + ab(e−µτ2)2kλe−mτ1mr,

`3 = −2bβe−µτ2mµr2 − 2b(βe−µτ2)2kmr2 + aβe−µτ2βk2λe−mτ1mµr

−ab(βe−µτ2)2k2λe−mτ1r2 − abβe−µτ2kλe−mτ1mµr + aβe−µτ2βk2λe−mτ1µr2

−ab(βe−µτ2)2k2λe−mτ1mr − abβe−µτ2kλe−mτ1µr2,
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`2 = bmµ2r2 − abβe−µτ2k2λe−mτ1m2µ − abβe−µτ2k2λe−mτ1mµr

−2bβe−µτ2km2µr + b(βe−µτ2)2k2mr2 + 2bβe−µτ2kmµr2,

`1 = 2bkm2µ2r + 2bβe−µτ2k2m2µr > 0,
`0 = bk2m3µ2 > 0.

To ensure biological feasibility of E∗, i.e., positivity of all state variables, one has to require S ∗ < K.
Descartes’s rule of signs [39, 40] states that the number of real positive roots of polynomials with

real coefficients is equal to the number of sign changes in those coefficients, or is less than the number
of sign changes by an even number. In the case where there is a single sign change in polynomial
coefficients, this theorem immediately implies the existence of a single real positive root. In the
particular case of the quartic equation (3.1), since `0 > 0 and `1 > 0, we have the following result.

Theorem 2. If `4 < 0 and either `3 · `2 > 0, or `3 < 0 and `2 > 0, then Eq (3.1) has a single real
positive root.

Remark 1. Since the third equation of the system (2.3) contains a denominator that tends to zero as
S + I → 0, in order to explore whether (0, 0, 0, 0) can be considered a steady state of the system,
we need to investigate if the singularity at the origin can be removed. This can be done by checking
whether the limit of the right-hand side of our system as (S , I,U,V) → (0, 0, 0, 0) exists and is equal
to (0, 0, 0, 0), in which case the system can be continuously extended to (0, 0, 0, 0). If we start on a
hyperplane U = V = 0 with S > 0 and I > 0, then the right-hand sides of the third and fourth
equations are zero, and as S → 0 and I → 0, the right-hand sides of the first two equations also tend
to zero. Hence, lim(S ,I,U,V)→(0,0,0,0)(S , I,U,V) = (0, 0, 0, 0) when computed on this hyperplane. On the
other hand, if we start on a hyperplane S = I = 0 with U > 0 and V > 0, the right-hand sides of the
first two equations are zero, but for the third equation we would actually be starting at∞, and this will
continue as U → 0 and V → 0, which indicates that the limit as lim(S ,I,U,V)→(0,0,0,0)(S , I,U,V) does not
exist, and therefore, (0, 0, 0, 0) cannot be considered a feasible steady state.

The characteristic equation for eigenvalues ρ of linearisation near any steady point E(S̄ , Ī, Ū, V̄) has
the form

F(ρ, τ1, τ2) =| ρI − A − e−ρτ1 D − e−ρτ2G |= 0, (3.2)

where the matrices A and D have the following nonzero entries

a11 = r
[
1 −

2S̄ + Ī
K

]
− λe−mτ1V̄ , a12 = −

rS̄
K
, a14 = −λS̄ , a22 = −m,

a31 =
b(Ū + V̄)2

a(S̄ + Ī)2
, a32 = −βŪ +

b(Ū + V̄)2

a(S̄ + Ī)2
, a33 = b

[
1 −

2(Ū + V̄)
a(S̄ + Ī)

]
− βĪ,

a34 = b −
2b(Ū + V̄)
a(S̄ + Ī)

, a44 = −µ,

and
d21 = λe−mτ1V̄ , d24 = λe−mτ1 S̄ , g42 = βe−µτ2Ū, g43 = βe−µτ2 Ī.
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The characteristic Eq (3.2) has the explicit form

F(ρ, τ1, τ2) = ρ4 + l1ρ
3 + l2ρ

2 + l3ρ + l4 + e−ρτ1(b1ρ
2 + b2ρ + b3)

+e−ρτ2(a1ρ
2 + a2ρ + a3) + e−ρ(τ1+τ2)(q1ρ

2 + q2ρ + q3) = 0,
(3.3)

where the coefficients are given below,

l1 = −[a11 + a22 + a33 + a44], (3.4)
l2 = a11a44 + a22a44 + a33a44 + a11a22 + a11a33 + a22a33,

l3 = −a11a22a33 − a11a22a44 − a11a33a44 − a22a33a44,

l4 = a11a22a33a44,

b1 = −a12d21, b2 = a12d21a33 + a12d21a44, b3 = −a12d21a33a44, (3.5)

a1 = −a34g43, a2 = a11a34g43 + a22a34g43, a3 = −a11a22a34g43, (3.6)

q1 = −d24g42, (3.7)
q2 = −a14d21g42 + a11d24g42 + d24a33g42 − a14a31g43 − d24a32g43,

q3 = a14d21a33g42 − a11d24a33g42 + a14a22a31g43 − a12d24a31g43

−a14d21a32g43 + a11d24a32g43 + a12d21a34g43.

The steady state E1 is unstable for any parameter values, as one of its characteristic eigenvalues is
equal to b. At the steady state E2, two eigenvalues of the characteristic equation are −b and −r, and the
remaining roots satisfy the transcendental equation

H(ρ) = ρ2 + (m + µ)ρ + mµ − e−(m+ρ)τ1aK2βe−(µ+ρ)τ2λ = 0. (3.8)

If we define the basic reproduction number (a short description on how it is determined is given in
Appendix A) as

R0 =
aK2βe−µτ2λe−mτ1

mµ
, (3.9)

then we have the following result concerning stability of the steady state E2.

Theorem 3. Disease-free equilibrium E2 of the model (2.3) is asymptotically stable for R0 < 1, linearly
neutrally stable for R0 = 1, and unstable for R0 > 1.

Proof. Assume R0 > 1, then H(0) = mµ − e−mτ1e−µτ2aK2βλ = mµ(1 − R0) < 0. Since limρ→∞ H(ρ) =

∞, there exists at least one real positive root of the characteristic equation (3.8), implying that E2 is
unstable.

If R0 = 1, then ρ = 0 is a simple characteristic root of (3.8). Let ρ = η+iκ by any other characteristic
root, then the Eq (3.8) turns into

(η + iκ)2 + (η + iκ)M1 + M2 = e−(η+iκ)(τ1+τ2)M3, (3.10)
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with M1 = m + µ, M2 = mµ, and M3 = aK2βe−µτ2λe−mτ1 . Separating real and imaginary parts gives

−κ2 + η2 + ηM1 + M2 = e−ητM2 cos κτ,

2ηκ + κM1 = e−ητM2 sin κτ,

where τ1 + τ2 = τ. Squaring and adding these two equations, we obtain

(η2 + κ2)2 + κ2(m2 + µ2) + (ηM1 + M2
2) + 2η(κ2M1 + ηM2) = e−2ητM2

2 , (3.11)

which can only be satisfied for η < 0. Thus, for R0 = 1, the steady state E2 is linearly neutrally stable.
Finally, let us assume R0 < 1, which implies aK2βe−µτ2λe−mτ1 < mµ, i.e. M3 < M2. We note that in

this case for τ = 0 all characteristic roots of Eq (3.8) have negative real part, and, therefore, our goal is
to show that as τ1 > 0, none of the characteristic roots can reach the imaginary axis. Let us assume by
contradiction that for some τ > 0, ρ = iκ is a root of (3.8). Substituting this into (3.11) yields

κ4 + κ2(m2 + µ2) + (M2
2 − M2

3) = 0. (3.12)

Since this equation has no positive real roots for κ, it means that the characteristic equation (3.8) cannot
have purely imaginary roots, and hence, R0 < 1 the steady state E2 is linearly asymptotically stable for
all τ1, τ2 ≥ 0. �

Now that we have established that the steady state E2 undergoes a bifurcation as R0 crosses unity,
it is instructive to investigate whether this change in stability of E2 is associated with the emergence
of another equilibrium, in which case it is called a supercritical bifurcation [41,42]. While Theorem 3
applies for τ1, τ2 ≥ 0, before we investigate the stability of the co-existence equilibrium we focus our
attention at the special case of τ1 = 0 = τ2, which will provide some initial insights.

Theorem 4. When τi = 0, i = 1, 2, the disease-free steady state E2 undergoes a supercritical (or
forward) transcritical bifurcation at R0 = 1.

Proof. To prove this result, we use the bifurcation theory methodology based on the analysis of
dynamics of the system dynamics on the centre manifold [11, 43].

For a dynamical system

ẋ = f (x, φ), f : Rn × R→ Rn, φ ∈ R,

with a non-hyperbolic steady state x0 at a particular value of parameter φ = φ0, this approach provides
conditions for a supercritical (also named forward) or subcritical (also named backward) bifurcation
depending on the signs of two coefficients, namely,

B1 = v · Dxx f (x0, φ0)w2 ≡
1
2

n∑
k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(x0, φ0), (3.13)

and

B2 = v · Dxϕ f (x0, φ0)w ≡
n∑

k,i=1

vkwi
∂2 fk

∂xi∂ϕ
(x0, φ0), (3.14)
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where v and w denote, respectively, the left and right eigenvectors corresponding to the zero eigenvalue
of the Jacobian matrix of system evaluated at x = x0.

For τ = 0, assuming R0 = 1 implies aK2βλ = mµ. Considering without loss of generality λ as the
bifurcation parameter, the criticality R0 = 1 corresponds to λ∗ = mµ/aK2β. At the steady state E2, two
eigenvalues of the characteristic equation are −b and −r, and the remaining roots satisfy the quadratic
equation

ρ2 + (m + µ)ρ + mµ − aK2βλ = 0. (3.15)

For R0 = 1, one eigenvalue is zero and another is −(m+µ). Thus, for R0 = 1 the disease-free equilibrium
E2 is a non-hyperbolic equilibrium.

The right eigenvector of A(E2) is

w =

(
−

r + m
m

, 1,
ab − aβK

b
−

(r + m)ab
r

−
aKβ
µ

,
aKβ
µ

)T

.

Similarly, the left eigenvector is

v =

(
0,

aβK
m

, 0, 1
)T

.

Substituting these expressions into (3.13) and (3.14) gives the following values for the coefficients B1

and B2:

B1 =
a2β2K2

mµ
> 0, B2 = −β

[a(r + m)
r

+ aβK +
mab

r
+

abβK
mu

]
< 0,

which, in light of Theorem A in [43], implies that at R0 = 1, the steady state E2 does indeed undergo
a supercritical transcritical bifurcation, i.e. as R0 crosses the value of 1 from R0 < 1 to R0 > 1, the
steady state E2 loses its stability, and another positive and stable steady state arises, which, in the case
of model (2.3), is the co-existence steady state E∗. �

Having just demonstrated that for τi = 0, i = 1, 2, the steady state E2 undergoes a supercritical
bifurcation at R0 = 1, giving rise to a stable co-existence equilibrium E∗, the next question is how the
stability of that equilibrium changes when parameters are varied. Staying with the case τ1 = 0 = τ2,
one can prove the following result [27, 31].

Theorem 5. Denoting differentiation with respect to λ by prime and letting

α1 =
rS ∗

K
+ m +

bU∗

a(S ∗ + I∗)
+ µ > 0, (3.16)

α2 =
rS ∗

K

[
λV∗ + m +

bU∗

a(S ∗ + I∗)
+ µ

]
+ m

[
µ +

bU∗

a(S ∗ + I∗)

]
+ λβS ∗U∗

+
bU∗(βI∗ + µ)

a(S ∗ + I∗)
> 0,

α3 =

(
rS ∗

K
+ m

)
·

bU∗(βI∗ + µ)
a(S ∗ + I∗)

+
rS ∗

K

[
bU∗

a(S ∗ + I∗)
+ µ

]
(λV∗ + m)

+λβS ∗U∗
[(
β +

rS ∗

K

)
I∗ −

bU∗

a(S ∗ + I∗)

]
,

α4 =
λβrS ∗I∗U∗

K

[
βI∗ −

b[U∗(S ∗ + I∗) + I∗(U∗ + V∗)]
a(S ∗ + I∗)2

]
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+
2bβλrI∗(S ∗)2U∗(U∗ + V∗)

aK(S ∗ + I∗)2 +
rbS ∗U∗(βI∗ + µ)(λV∗ + m)

aK(S ∗ + I∗)
,

for τi = 0, i = 1, 2, the co-existence equilibrium E∗ has the following properties.
(a) It is linearly asymptotically stable if and only if the following conditions are satisfied

α3 > 0, α4 > 0, α1α2 − α3 > 0, (α1α2 − α3)α3 − α
2
1α4 > 0. (3.17)

(b) It undergoes a Hopf bifurcation at λ = λ∗ ∈ (0,∞) if and only if

α3(λ∗) > 0, α4(λ∗) > 0, α1(λ∗)α2(λ∗) − α3(λ∗) > 0,

α1(λ∗)α2(λ∗)α3(λ∗) − α2
3(λ∗) − α2

1(λ∗)α4(λ∗) = 0,

α3
1(λ∗)α′2(λ∗)α3(λ∗)[α1(λ∗) − 3α3(λ∗)]

, [α2(λ∗)α1(λ∗)2 − 2α3(λ∗)2][α′3(λ∗)α1(λ∗)2 − α′1(λ∗)α3(λ∗)2].

(3.18)

To investigate whether increasing time delay τi, i = 1, 2 can affect stability of the co-existence
steady state E∗, we look at the characteristic equation (3.3) at the steady state E∗. Stability changes of
E∗ can only occur if the characteristic equation (3.3) has purely imaginary solutions.

Four cases may occur which are discussed below.

Case I: τ1 > 0, τ2 = 0

In this case the characteristic equation becomes

φ(ρ, τ1) = ρ4 + J1ρ
3 + J2ρ

2 + J3ρ + J4 + e−ρτ1(B1ρ
2 + B2ρ + B3) = 0,

(3.19)

where,

J1 = l1, J2 = l2 + a1, J3 = l3 + a2, J4 = l4 + a3,

and B1 = b1 + q1, B2 = b2 + q2, B3 = b3 + q3.

Substituting ρ = iω into this equation and separating real and imaginary parts gives

ω4 − J2ω
2 + J4 = (ω2B1 − B3) cosωτ1 − ωB2 sinωτ1,

J1ω
3 − J3ω = (ω2B1 − B3) sinωτ1 + ωB2 cosωτ1.

(3.20)

Squaring and adding these two equations yields the following equation for the Hopf frequency ω:

z4 + δ1z3 + δ2z2 + δ3z + δ4 = 0, (3.21)

where z = ω2, and
δ1 = J1

2 − 2J2, δ2 = 2J4 + J2
2 − 2J1J3 − B2

1,

δ3 = −2J4J2 + J2
3 + 2B1B3 − B2

2, δ4 = J2
4 − B2

3.
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Provided the Routh-Hurwitz criterion for Eq (3.21) holds, all of its roots will have a negative real part,
and hence, there will be no purely imaginary roots of the characteristic equation (3.19). Thus, we have
the following result

Proposition 1. For τ2 = 0, the co-existence steady state E∗ is linearly asymptotically stable for all
τ1 ≥ 0, if the conditions of (3.17) hold, and the following conditions are satisfied for all τ1 > 0,

δ1 > 0, δ4 > 0, δ1δ2 − δ3 > 0, (δ1δ2 − δ3)δ3 − δ
2
1δ4 > 0. (3.22)

Instead, if δ4 < 0, Eq (3.21) possesses at least one real root z0 > 0, and then, ρ = ±iω0 with
ω0 =

√
z0 will be two roots of the characteristic equation (3.19).

From the system (3.20) one can determine the value of time delays at which this pair of purely
imaginary roots occurs,

τ∗1 =
1
ω0

arccos

ω
2
0B3

(
J1ω

2
0 − J3

)
+ (B1ω

2
0 − B3)

(
ω4

0 − J2ω
2
0 + J4

)
(
B1ω

2
0 − B3

)2
+ B2

2ω
2
0


+

2πn
ω0

, n = 0, 1, 2, 3, ... (3.23)

Of course, δ4 < 0 is just one possibility where the characteristic Eq (3.19) has a pair of purely
complex eigenvalues, and this can also happen for δ4 > 0, provided some of δ1, δ2, or δ3 are sufficiently
negative to ensure that equation (3.21) has at least one real positive root. Whenever this happens, we
have the following result.

Theorem 6. For τ2 = 0, the steady state E∗ undergoes a Hopf bifurcation at τ1 = τ∗1, provided the
following condition holds

4ω6
0 + π1ω

4
0 + π2ω

2
0 + π3 , 0, (3.24)

where

π1 = 3J1 − 6J2, π2 = 2J2 + 4J4 − 4J1J3 − 2B2
1, π3 = J2

3 − 2J2J4 − B2
2 + 2B1B3.

Proof. In light of the above analysis, at τ1 = τ∗1, the characteristic equation (3.19) has a pair of purely
imaginary eigenvalues. Hence, to complete the proof of the theorem, it remains to prove the
transversality condition, i.e., that the characteristic eigenvalues cross the imaginary axis. To this end,
we differentiate characteristic equation (3.19) with respect to τ1 to obtain

dτ1

dρ
=

4ρ3 + 3(J1ρ
2 + 2J2ρ + J3)

B1ρ3 + B2ρ2 + B3ρ
eρτ1 +

2B1ρ + B2

B1ρ3 + B2ρ2 + B3ρ
−
τ1

ρ
.

Evaluating this at τ1 = τ∗1 and using relations (3.20), we find

sgn
[
dRe(ρ)

dτ1

]
τ1=τ∗1

= sgn
Re

(
dρ
dτ1

)−1
ρ=iω0

= sgn
[
4ω6

0 + π1ω
4
0 + π2ω

2
0 + π3

B2ω
2
0 + (−B1ω

2
0 + B3)2

]
.

Since the denominator of this expression is always positive, if the condition of the theorem holds, this
means that the transversality condition

sgn
[
dRe(ρ)

dτ1

]
τ1=τ∗1

, 0

is satisfied, and thus, the steady state E∗ undergoes a Hopf bifurcation at τ1 = τ∗1. �
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Case II: When τ1 = 0, τ2 > 0

For τ1 = 0, the characteristic equation in this case takes the following form,

φ(ξ, τ2) = ξ4 + A1ξ
3 + A2ξ

2 + A3ξ + A4 + e−ξτ2[C1ξ
2 + C2ξ + C3] = 0.

(3.25)

Here, A1 = l1, A2 = (l2 +b1), A3 = (l3 +b2), A4 = (l4 +b3), C1 = a1 +q1, C2 = a2 +q2, C3 = a3 +q3.
The analysis is similar to Case I, therefore we will not show it.

Case III: τ1 is fixed in the interval (0, τ∗1) and τ2 > 0

When τ1 > 0, τ2 > 0, the characteristic equation is:

φ(ρ, τ1, τ2) = ρ4 + l1ρ
3 + l2ρ

2 + l3ρ + l4 + e−ρτ1(b1ρ
2 + b2ρ + b3) (3.26)

+e−ρτ2(a1ρ
2 + a2ρ + a3) + e−ρ(τ1+τ2)(q1ρ

2 + q2ρ + q3) = 0,

The effects of both delays can be analyzed using the following theorem.

Theorem 7. Suppose that the endemic equilibrium is asymptotically stable for τ1 ∈ (0, τ∗1). Now, if
δ4 < 0 holds, then there exists τ0

2, for which a stability switch occurs at E∗, when τ2 crosses the critical
value of τ0

2. Furthermore, E∗ will undergo a Hopf-bifurcation when τ2 = τ0
2, provided that[

d(Reξ)
dτ2

]
τ2=τ0

2

, 0.

A formal proof of the Theorem 7 can be found in the article by Misra et al. [44] (see Theorems 5
and 6 of [44]). A similar result can be provided for τ1 when τ2 ∈ (0, τ∗2).

Remark 2. At the endemic equilibrium E∗, the characteristic equation (3.26) has delay-dependent
coefficients (i.e. for τi, i = 1, 2) and it is quite involved. Therefore, it is difficult to analytically obtain
information on the nature of the eigenvalues and on the conditions for occurrence of stability
switches. But the nature of the eigenvalues can be investigated at the endemic state through numerical
simulations.

4. Numerical stability analysis and simulations

In this section, we investigate different types of behaviors of the system and analyze how various
system parameters affect stability of the steady states and the dynamics of the model. We follow the
work of Holt et al. (1997) [33] to set baseline values of parameters. The death rate c of vectors is taken
the same value of c = 0.12, the growth rate of plants is chosen as r = 0.1 which is in the range of
0.025 − 0.2, and the carrying capacity of plants K = 1 is chosen to be at the higher value of the range
0.01 − 1 explored in [33]. Vector abundance a was investigated in [33] in the range 0 − 2500, with the
baseline value of a = 500, and we chose this to be a = 300, while plant death/roguing rate m is chosen
to be m = 0.1 within the range of 0–0.033 explored in [33]. Finally, the transmission rates λ and β from
vectors to plants, and from plants to vectors, were varied in the range 0–0.03, respectively, 0 − 0.03,
against the range 0.002 − 0.032 studied in [33].
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Figure 1. Region of stability of disease-free equilibrium is shown in (a) τ1 and λ, (b) β and λ,
(c) τ1 and τ2, (d) β and τ2 parameter planes. The colour code denotes the values of the Basic
reproduction number R0 as given in (3.9). E0 is stable where R0 < 1 and unstable otherwise.
Parameter values are taken from Table 1.

Table 1. Parameter values used in numerical simulations.

Parameter Description Value (unit) Source
r intrinsic healthy plant growth rate 0.05 day−1 [31, 33]
K carrying capacity of plant 1 m−2 [31, 33]
λ plants infection rate by vectors 0 – 0.0008 vector−1 day−1 [31, 33]
m infected plants death rate 0.1 day−1 [31, 33]
b vector reproduction rate 0.6 day−1 [31, 33]
a maximum vector abundance 300 −1plant [31, 33]
β vector infection rate by infected plants 0.0012 plant−1day−1 [31, 33]
µ vector mortality rate 0.12 day−1 [31, 33]

Figure 1 shows how the values of the basic reproduction number R0 varies with the time delay τ,
the plant infection rate λ, and vector infection rate β in accordance with expression (3.9). This figure
demonstrates a parameter region with R0 < 1 where the disease is eradicated, as signified by the stable
disease-free equilibrium E2, and a region with R0 > 1, where the disease is present at some constant
level, i.e., the endemic steady state E∗ is feasible, and, as already mentioned in the previous section,
for parameter values given in Table 1, it is also unique. At R0 = 1, a transcritical bifurcation of
the disease-free steady state occurs, as described in Theorem 4, at which point this steady state loses
its stability, and the disease becomes endemic, i.e. the co-existence steady state becomes biologically
feasible. One observes that for higher values of the time delay, a higher infection rate is required for the
disease to persist, as indicated by the feasibility of the endemic steady state. Also, for a fixed duration
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of time delay, it is not so much an individual rate of disease transmission, but rather the product of
transmission rates λ from vector to plants, and β from plants to vectors that determines whether the
disease-free steady state is stable or the disease is endemic, as transpires from the expression for the
basic reproduction number (3.9).

Figure 2 illustrates how the steady state values of the infected plant density and infective vectors
change R0 for τi = 0, i = 1, 2. This figure shows that the co-existence steady state E∗ only becomes
biologically feasible starting with some minimum value of λ (transmission rate from vectors to plants)
that corresponds to R0 = 1 as discussed in Theorem 4, and for values of R0 just above this critical
value, the steady state E∗ is stable. Interestingly, starting from some threshold, further increasing the
disease transmission rate λ actually results in the reduction of the steady state value of the numbers of
infected plants and vectors. Moreover, for sufficiently high values of λ > λ∗ = 0.01489, the endemic
steady state loses its stability via Hopf bifurcation, illustrating the results of Theorem 5.
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Figure 2. Steady state values of (a) infected plant I∗, and (b) infective vector V∗ population,
with τ1 = 0, τ2 = 0, and the other parameters taken from Table 1, except for λ ∈ (0, 0.03).
Dashed lines indicate unstable endemic equilibria.
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Figure 3. Numerical solution of the system (2.3) with τ1 = 0, τ2 = 0, λ = 0.01 (solid line),
λ = 0.014 (dashed line), λ = 0.0184 (dotted line), and other parameter values taken from
Table 1.
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To demonstrate the system’s dynamics in different parameter regimes, we show in Figure 3 the
behavior of the model with τi = 0, i = 1, 2 and other parameters chosen in such a way that the endemic
equilibrium E∗ is biologically feasible. When λ < λ∗ = 0.01489, the endemic steady state E∗ is stable,
and for λ > λ∗, the Hopf bifurcation has taken place, and, as a result, the system exhibits sustained
periodic oscillations shown in Figure 4, in accordance with Theorem 5. Once can observe that the
higher transmission rate not only causes the instability of this equilibrium, but also results in higher
amplitude of oscillations around this steady state.
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Figure 4. Bifurcation diagram of the endemic steady state E∗ without time delay, i.e., for
τ1 = 0, τ2 = 0, depending on the transmission rate λ, with other parameters taken from
Table 1. Dots represent maxima/minima of the oscillations of the respective variables.

We compute the periods for different values of λ using MatCont (See Figure 5). At the point where
a limit cycle emerges, the period is 132.45 days, which happens at λ∗ = 0.01489. Period increases with
the value of λ, and at λ = 0.025, the period is 175 days, i.e., almost six months.
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λ

125

150

175

LPCPeriod

Figure 5. Period estimate of the periodic solution when λ ∈ [0.017, 0.026], using MatCont
(for the system without time delay), with other parameters as given in Table 1. Limit cycle
first appears at λ∗ = 0.01796.
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Bifurcation diagram of endemic equilibrium E∗ is shown in Figure 6, taking τ1 as the main
parameter. We observed that E∗ becomes stable for large value of the delay parameter τ1. Figure 7
illustrates stability of the endemic steady state E∗ depending on different parameters, indicating that
E∗ is unstable for small τ1 (which corresponds to high R0) and stable for larger τ1. One can also note
that for very small rate λ of disease transmission from vectors to plants, the co-existence steady state
E∗ is stable for all values of τ1 ≥ 0, for which it is feasible, as discussed in Proposition 1. We also
observe that the product of transmission rate λ from vectors to plants and β from plants to vectors has
to exceed some threshold value for the endemic steady state to be feasible, and for smaller values of
this product the endemic state is stable but then also loses its stability via a Hop bifurcation, giving
rise to stable periodic oscillations. Figure 7(d) shows the region of stability of E∗ in τ1 − τ2 parameter
plane. Large delays seems to imply that the coexistence equilibrium E∗ is stable, in spite of the high
infection rate. When the delay crosses the threshold value, the endemic equilibrium becomes
infeasible and the disease-free equilibrium becomes stable.

While we have focused our attention on the effects of various parameters and the time delay on the
stability of the endemic steady state, it is also worth mentioning that the delay does not have such a
pronounced effect on the stability of the disease-free equilibrium E2 beyond a single stability change
via the transcritical bifurcation at R0 = 1. According to expression (3.9), increasing time delays τ1 and
τ2 reduces the basic reproduction number, thus making the disease-free equilibrium stable, and making
the solutions approach it more rapidly.

Figure 6. Bifurcation diagram of the endemic steady state E∗ with λ = 0.018 and τ1 as a
bifurcation parameter, other parameters are given in Table 1. Dots represent maxima/minima
of the oscillations of the respective variables.
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Figure 7. Stability of the endemic steady state E∗ with parameters values from Table 1.
Colour code denotes max[Re(ρ)]. In the white region the steady state E∗ is not feasible.

5. Conclusions

In this research, a time-delayed model for the dynamics of the transmission of mosaic disease.
Analytical and numerical analysis have provided conditions for feasibility and stability of various
steady states of the model depending on parameters and the time delay. Increasing the rate of disease
transmission from vectors to plants results in the destabilization of the disease-free equilibrium
through a transcritical bifurcation, and the emergence of a stable endemic equilibrium. Interestingly,
further increase of this transmission rate can lead to a destabilization of the endemic steady state, and
the emergence of stable periodic oscillations, whose amplitude is itself growing with the transmission
rate.

The time delay can play a dual role: As is often found in time-delayed models, it can by itself lead to
a destabilization of the endemic state, but interestingly, it can also provide a mechanism for suppression
of oscillations and recovery of stability for the endemic steady state that was otherwise unstable in
the absence of the time delays. Numerical solution of the transcendental characteristic equation has
provided further insights into how stability of the endemic steady state depends on parameters, and
it has shown that the time delay plays a destabilizing role for smaller disease transmission rates from
vectors to plants, and a largely stabilizing role for higher values of this transmission rate. We have
also seen that increasing either of the transmission rates, i.e., from vectors to plants, or from plants to
vectors, can result in the loss of stability by the endemic steady state.

Another important aspect of our model is elucidating the effects of the latency period on the type of
dynamics that occurs between plants and their vectors, whereas long latency favors maintenance of a
steady level of disease, shorter periods of latency result in the sustained oscillations in the populations
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of infected plants and vectors. Practical importance of this observation is two-fold. Since the latency
period itself cannot be changed, and the fact that the critical value of the time delay in the model
depends on several parameters, it is possible to switch the dynamics in a specific agricultural setting
between a steady state and oscillations by controlling those other parameters, such as plant vector
abundance per plant, or disease transmission rate.

In [16], constant growth was considered for the vector population. Impact of different parameters
(such as delay, rate of infection etc.) on non-infective vectors was not observed in [16]. In this research,
we have taken Leslie–Gower type growth for the vector population. We have considered a specific
vector (whitefly) and the disease (mosaic disease) transmitted by the vector to the plants like Jatropha
curcas, Cassava, etc. Thus we have used the parameter values that are used for Cassava plants by Holt
et al. 1997, [33] and for Jatropha plant by Venturino et al. 2016, [31]. Moreover, we have studied the
Forward bifurcation analytically and numerically (Figure 2). Also, we have shown the dependence of
the bifurcation parameter on the period of the limit cycle (Figure 5).

The results of this research provide several practically important insights for control and mitigation
of the effects of mosaic disease. The basic reproduction number that can be computed using values
for fundamental parameters describing the specific farming situation, provides an effective cumulative
characteristic of the disease severity that can be used to compare different outbreaks. While it is not
possible to change the underlying biological properties of plants and vectors, it is possible to modify
their interactions by administering various sprays and insecticides. These would act to reduce the
effective infection rate of disease transmission from vectors to plants, and could ultimately lead to
eradication of the disease, as represented by stabilization of the disease-free steady state. Furthermore,
when the system exhibits sustained oscillations in the level of infection, having a detailed information
about how the period and amplitude of those oscillations depend on other parameters, it is possible
to optimize administering various interventions, such as fertilizers or insecticides, by exploiting the
troughs of the oscillations.
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Appendix A

Basic reproduction number

We follow the method established in the paper by Hefferman et al. [45] for calculating R0.
We consider the next generation matrix G comprised of two parts namely F and V , Fi are the new
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infections, while the Vi transfers of infections from one compartment to another.

F =

[
∂Fi(E1)
∂x j

]
=


0 λe−mτ1 K

0 0


and

V =

[
∂Vi(E1)
∂x j

]
=


m 0

−βe−µτ2aK µ


where E2(K, 0, aK, 0) is the disease-free equilibrium and indices i, j correspond, respectively, to I and
V .

The basic reproduction number R0 is the dominant eigenvalue of the matrix G = FV−1, i.e., Eq (5.1).

R0 =
aK2βλ

mµemτ1+µτ2
. (5.1)

and it is the dominant eigenvalue of the matrix G = FV−1.
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