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1. Introduction

From the application point of view, many practical systems are often subjected to stochastic
disturbances. A natural and widely acceptable way of describing stochastic factors uses white noise,
and such a class of induced systems is called stochastic systems (see [1, 2]).

Let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space, on which a one-dimensional standard
Brownian motion W(·) is defined. We denote byω a sample point ofΩ, and by E(·) the expectation with
respect to the probability measure P. Let H be a separable (infinite-dimensional) Hilbert space with
norm ∥·∥ and inner product ⟨·, ·⟩. Further, for each T > 0, we denote by L2

F
(Ω; C([0,T ];H)) the Banach

space consisting of all H-valued {Ft}t≥0 adapted continuous processes X(·) such that E∥X(·)∥2C([0,T ];H) <

+∞, endowed with canonical norms.
Let Ai : D(Ai) ⊂ H 7→ H (i = 1, 2) be a linear closed densely defined operator in H, which

generates a C0 semi-group {S i(t)}t≥0. Suppose that the domain of the operator Ai (i = 1, 2) satisfies
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D(A1) = D(A2). Let fi(·) be a real-valued {Ft}t≥0 adapted process in L∞
F

(0,+∞; L∞(Ω)) (i = 1, 2). Here
and in what follows, we omit the variable ω(∈ Ω) in the defined functions if there is no risk of causing
any confusion.

In this paper, we mainly study the following infinite-dimensional linear stochastic switched system
driven by multiplicative noise:{

dY(t) = Aσ(t)Y(t)dt + fσ(t)(t)Y(t)dW(t), for t ∈ (0,+∞),
Y(0) = Y0(ω),

(1.1)

where the initial data Y0 belongs to L2(Ω,F0,P;H), and the switching signal σ(·) is a right-continuous
step function taking values in {1, 2}.
Remark 1.1. Several notes on system (1.1) are given in order.

(i) Let {tk}
∞
k=1 (tk < tk+1 for each k ∈ N+) be the set of switching times of (1.1). The switching signal

σ(·) is said to be well-defined if it involves a finite number of switches in any finite time interval;
the switching signal is said to be with dwell time τ if tk+1 − tk ≥ τ > 0 for any two consecutive
switching times tk+1 and tk. Clearly, a switching signal σ(·) is well-defined if it has a dwell time τ.

(ii) We suppose that the state of (1.1) should be continuous at each switching time, i.e., for each
k ∈ N+,

Y(tk) = lim
t→tk−

Y(t), a.s.

(iii) In general, we call (1.1) a linear stochastic switched system in infinite dimensions. When σ(t) ≡ i
(i = 1, 2) in (1.1), this equation is viewed as the ith subsystem of (1.1). Such an abstract system
can formulate lots of important stochastic PDEs, including the stochastic heat equation and the
stochastic Schrödinger equation.

(iv) Additive noise and multiplicative noise are two different types of mathematical noise models.
Among them, multiplicative noise is common in the financial and economic fields. From a
mathematical point of view, multiplicative noise is more difficult to deal with.

Since the early 1990s, the study of stochastic switched systems has become prominent in control
theory. There are many studies on this topic, and we mention [3–8] for the related works. In particular,
Basak et al. discussed the stability of a semi-linear stochastic differential equation with Markovian
switching in [3]. In [8], Zhu et al. investigated the asymptotic stability of nonlinear Markov switched
systems. In addition, we refer to [9] for the infinite-dimensional deterministic case, which studies
the problem of stabilizability of nonlinear switched systems with a countably infinite number of
subsystems in some Banach space. However, the stability of switched stochastic systems in infinite
dimensions has so far little been studied. We mention [10, 11] in this field.

In statistical mechanics, the evolution of the probability density function of a nonlinear SODE
satisfies the Fokker-Planck equation, which represents an infinite-dimensional system (see [12]).
Generally speaking, positions of SODEs and PDEs are equivalent in mathematics. Based on this
point, we attempt to study infinite-dimensional stochastic switching systems, which should provide
a new perspective to understand finite-dimensional stochastic switching systems. One of the most
critical problems on stochastic switched systems is how to design a switching strategy to stabilize the
switched systems consisting of unstable subsystems. This paper aims to investigate the 2nd moment
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stability of infinite-dimensional linear stochastic switched systems (1.1) with two unstable subsystems.
It should be pointed out that there exist some articles about the moment stability of stochastic infinite-
dimensional equations without Markov switching (see [13, 14]).

From the point of view of spectral theory, (infinite-dimensional) linear systems usually contain
stable and unstable subspaces. Applying the advantage of the stable subspace to overcome the
drawbacks of the unstable subspace, some effective switching strategies were proposed by [15] to
stabilize a specific class of deterministic infinite-dimensional linear switched systems.

This article represents a further extension of the work done by [15], focusing on infinite-dimensional
linear stochastic switched systems. In the previous paper [15], the semi-group formulation was invoked
for the switched deterministic case, which is an elaborate generalization of finite-dimensional systems
constituting the classic framework of the control theory. However, this technique fails to deal with the
problem of moment exponential stability for the random model (1.1). This paper tries to solve this
problem using the multiple Lyapunov functions method.

It is well known that the Lyapunov functions approach plays an important role in the studies of
control theory (see [16]). Multiple Lyapunov functions are a very effective analysis tool in studies of
the stability of (stochastic) switched systems (see [17–19]). We should point out that even though there
exist Lyapunov functions for each subsystem individually, we need to impose restrictions on switching
to guarantee stability. In this article, we start with the definition of the moment stability of stochastic
switched systems. Then, we construct an algebraic sufficient condition on the existence of multiple
Lyapunov functions in quadratic forms. Inspired by the ideas in [15], two switching strategies are
designed to stabilize the infinite-dimensional linear stochastic switched system (1.1).

The contributions of this paper can be summarized as follows:

(i) The pursuit of 2nd-moment exponential stability is carried out using the theory of stochastic
differential equations (SDEs) in infinite dimensions, even in cases where the operators A1 and A2

are noncommutative.
(ii) We investigate the robust stability of the switching time, i.e., if there exists a small error at each

switching time tk (k ∈ N+), the system (1.1) with our switching strategies is still stable.
(iii) Although we have primarily focused on systems with two subsystems, we believe that further

discussions involving multiple distinct modes can be explored using a similar approach.

The switching strategies discussed in this article are open-loop switching strategies. In closed-loop
switched systems, the behavior of switching signals depends on the system’s current state over time.
From our perspective, the challenge in studying closed-loop switched systems lies in establishing well-
posedness within appropriate function spaces.

This article is organized as follows. In Section 2, we give out some hypotheses and preliminaries.
Section 3 is devoted to the main results of this paper. Section 4 demonstrates a nontrivial example and
the numerical simulation results.

2. Certain hypotheses and preliminary results

We first provide several useful definitions in this section.

Definition 2.1. Let σ(·) be the switching signal with a dwell time, and let {t j}
∞
j=1 (t j < t j+1 for each

j ∈ N+) be a set of switching times of (1.1). A H-valued process Y(·) is called a (mild) solution to (1.1)
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if it satisfies:
(i) For each T > 0, Y(·) ∈ L2

F
(Ω; C([0,T ];H));

(ii) When t ∈ [t j, t j+1) ( j ∈ N),

Y(t) = S σ(t)(t − t j)Y(t j) +
∫ t

t j

S σ(t)(t − t j − s) fσ(s)(s)Y(s)dW(s), a.s.

Moreover, the (mild) solution Y(·) to (1.1) is called a strong solution if it satisfies:
(iii) For each T > 0, Y(t) ∈ D(A1) = D(A2) for a.e (t, ω) ∈ [0,T ] × Ω, and Aσ(·)Y(·) ∈ L1(0,T ;H) a.s.
(similar definitions can be found at Section 3.2 of [1]).
Definition 2.2. The system (1.1) is said to be 2nd-moment exponentially stable (or exponentially
stable in the mean square) if there exist positive numbers C and ϖ such that for each initial data
Y0 ∈ L2(Ω,F0,P;H), the solution to (1.1) satisfies

E∥Y(t)∥2 ≤ Ce−ϖtE∥Y0∥
2, for t ≥ 0.

Remark 2.1. From the perspective of mathematics, the 2nd moment exponential stability and almost
sure exponential stability do not imply each other. However, under a restrictive condition, the 2nd
moment exponential stability implies almost sure exponential stability (see p.175 of [2]). Hence,
plenty of literature investigates the 2nd moment stabilization, and we follow the same fashion for
our stabilization design.

2.1. Certain hypotheses

In view of the stabilization of this problem, we impose some assumptions on the Hilbert space H
and the principle operator Ai (i = 1, 2) as follows.
Assumption 2.1. There exist subspaces Vi andWi of H (i = 1, 2) such that

H = Vi ⊕Wi and Vi ⊥Wi (i = 1, 2).

Moreover, there exist bounded positive operators Pi (i=1,2), and positive numbers αi, βi, µ and ν such
that for each i = 1, 2,

(i) µ∥h∥2 ≤ ⟨Pih, h⟩ ≤ ν∥h∥2, for h ∈ H;
(ii) 0 < Qi(h) + ν∥bih∥2 < αi∥h∥2, for h ∈Wi ∩ D(Ai) \ {0};
(iii) Qi(h) + ν∥bih∥2 < −βi∥h∥2, for h ∈ Vi ∩ D(Ai) \ {0},

(2.1)

where bi = ∥ fi(·)∥L∞
F

(0,+∞;L∞(Ω)), and the functionals Qi(·) are defined as

Qi(h) := ⟨Pih, Aih⟩ + ⟨Aih, Pih⟩ (i = 1, 2). (2.2)

Remark 2.2. (i) We define functionals Vi(·) (i = 1, 2) as follows:

Vi(h) := ⟨Pih, h⟩, h ∈ H (i = 1, 2). (2.3)

The family {Vi(·) | i = 1, 2} is viewed as a multiple Lyapunov function of (1.1).
(ii) In this article, Vi andWi are called the stable and unstable subspace of H corresponding to the ith
subsystem of (1.1) (i = 1, 2), respectively.
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If Assumption 2.1 holds, then for each h ∈ H, there exists a unique decomposition h = vi+wi, where
vi ∈ Vi and wi ∈ Wi (i = 1, 2). Now, we define orthogonal projections Πi : H 7→ Vi and Φi : H 7→ Wi

(i = 1, 2) as

Πih = vi and Φih = wi.

Assumption 2.2. If h ∈ D(Ai), then Πi(h) ∈ D(Ai) (i = 1, 2), and AiΠi(h) = ΠiAi(h).
Assumption 2.3. The parameters µ, ν, αi and βi (i = 1, 2) given in Assumption 2.1 satisfy that

α1 · α2

µ2 <
β1 · β2

ν2 .

Remark 2.3. (i) Assumption 2.2 is natural for infinite-dimensional linear systems, and we will give a
nontrivial example in Section 4 to show it is reasonable.
(ii) Roughly speaking, Assumption 2.3 guarantees that the drawbacks of unstable subspace should be
overcome by the advantage of stable subspace.

2.2. Preliminary results

Given a positive number δ, we define three subsets of R2 as follows:

G1(δ) := {(τ1, τ2) : τ1, τ2 > 0, and
α1

µ
τ1 −

β2

ν
τ2 < −δ},

G2(δ) := {(τ1, τ2) : τ1, τ2 > 0, and −
β1

ν
τ1 +

α2

µ
τ2 < −δ},

and
G3(δ) := {(τ1, τ2) : τ1, τ2 > 0, and

α1

µ
τ1 +

α2

µ
τ2 < δ}.

Lemma 2.1. Suppose Assumption 2.3 holds, then for each δ > 0, G1(δ) ∩G2(δ) , ∅.
The proof can be obtained by the standard method of analytic geometry in R2. A similar result can

be found in Lemma 2.2 of [15]. Here, we omit the detailed proof.
Remark 2.4. It is obvious that when δ > 0, G1(δ) ∩G2(δ) is the unbounded set in the first quadrant.
Lemma 2.2. Suppose Assumption 2.1 holds. Then, the following conclusions are valid:
(i)W1 ⊆ V2 if and only ifW2 ⊆ V1.
(ii) IfW2 ⊆ V1, then for each h ∈ H, ∥Φ2h∥ ≤ ∥Π1h∥.
(iii) For each h ∈ H, ∥h∥2 = ∥Φih∥2 + ∥Πih∥2 (i = 1, 2).
Via the theory of functional analysis (see Section 3.1 of [20]), we can easily prove these results. Here,
we omit the detailed proof.

2.3. Analysis of the subsystem of (1.1)

Let Yi(·) (i = 1, 2) be the solution to the ith subsystem of (1.1), i.e.,{
dYi(t) = AiYi(t)dt + fi(t)Yi(t)dW(t), t ∈ (0,+∞),
Yi(0) = Y0(ω),

(2.4)
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where the initial data Y0 belongs to L2(Ω,F0,P;H). Then, we have the following lemma.
Lemma 2.3. Equation (2.4) admits a unique (mild) solution Yi(·) (i = 1, 2), and

Yi(t) = exp
( ∫ t

0
fi(s)dW(s) −

1
2

∫ t

0
| fi(s)|2ds

)
S i(t)Y0, t ≥ 0. (2.5)

If we furthermore assume that Y0 ∈ L2(Ω,F0,P; D(Ai)), then (2.5) is a strong solution to Eq (2.4).
The proof can be obtained by the standard method in Section 3.2 of [1] and Theorem 2.1 of [11].

Here, we omit the details.
Remark 2.5. By the same argument, we can easily find that if the switching signal σ(·) has a dwell
time, then (1.1) admits a unique (mild) solution. Moreover, if Y0 ∈ L2(Ω,F0,P; D(A1)), then, together
with (2.5), (ii) of Remark 1.1, and the differential property of C0 semi-group (see Theorem 1 in
Section 7.4 of [21]), we obtain that (1.1) has a unique strong solution under this switching signal.

Next, we present some estimates for the solution to (2.4).
Lemma 2.4. Suppose Assumption 2.1 holds. Then, the (mild) solution Yi(·) to (2.4) satisfies that for
0 ≤ s < t < +∞,

E∥Yi(t)∥2 ≤
ν

µ
e
αi(t−s)
µ E∥Yi(s)∥2 (i = 1, 2). (2.6)

Proof. Let the initial data Y0 ∈ L2(Ω,F0,P; D(Ai)) (i = 1, 2). It follows from Lemma 2.3 that (2.4)
admits a unique strong solution (i = 1, 2).

By Itô formula, we obtain that for t ∈ (0,+∞),

d
[
ertVi(Yi(t))

]
= rertVi(Yi(t))dt + ert(Qi(Yi(t)) + Vi( fi(t)Yi(t))

)
dt

+2ert⟨PiYi(t), fi(t)Yi(t)⟩dW(t),

where r is a negative real number which will be determined later, and where Qi(·) and Vi(·) (i = 1, 2)
are functionals defined in (2.2) and (2.3), respectively. Integrating the above equation over [s, t], taking
the expectation, and using (i) and (ii) of (2.1), we obtain

ertEVi(Yi(t)) − ersEVi(Yi(s))

= E

∫ t

s
rerτVi(Yi(τ))dτ + E

∫ t

s
erτ(Qi(Yi(τ)) + | fi(τ)|2Vi(Yi(τ))

)
dτ (2.7)

≤ E

∫ t

s
rµerτ∥Yi(τ)∥2dτ + E

∫ t

s
αierτ∥Yi(τ)∥2dτ.

Taking r = −αi
µ

in (2.7), we have

EVi(Yi(t)) ≤ e
αi(t−s)
µ EVi(Yi(s)).

It, together with (i) of (2.1), leads to (2.6), when Y0 ∈ L2(Ω,F0,P; D(Ai)) (i = 1, 2).
Since Ai (i = 1, 2) is a closed densely defined operator in H, we obtain D(Ai) = H (i = 1, 2).

Using the standard density argument, we have that (2.6) still holds for each Y0 ∈ L2(Ω,F0,P;H). This
completes the proof. □
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3. The proof of the main result

In this section, we will state the main results of this paper.

3.1. The first switching strategy

We arbitrarily fix a positive number ρ satisfying

ρ > 2 ln

√
2ν
µ
. (3.1)

Lemma 2.1 shows that if Assumption 2.3 holds, then G1(ρ) ∩G2(ρ) , ∅. We take

(s1, s2) ∈ G1(ρ) ∩G2(ρ). (3.2)

Clearly, s1, s2 > 0. We propose the first switching strategy as follows:

t0 := 0, σ(0) := 1, or σ(0) := 2, (3.3)

tk+1 :=
{

tk + s1, if σ(tk) = 1,
tk + s2, if σ(tk) = 2,

(3.4)

and

σ(tk+1) :=
{

2, if σ(tk) = 1,
1, if σ(tk) = 2,

(3.5)

where k ∈ N.
Now, we present the first result as follows.

Theorem 3.1. Suppose that Assumptions 2.1–2.3 hold, and W1 ⊆ V2. Then, there exist positive
numbers M and γ such that for each Y0 ∈ L2(Ω,F0,P;H), the (mild) solution to (1.1) with the switching
strategy (3.3)–(3.5) satisfies

E∥Y(t)∥2 ≤ Me−
γt

s1+s2 E∥Y0∥
2, for t ≥ 0. (3.6)

Proof. Without loss of generality, we assume σ(0) = 1. By the switching strategy (3.3)–(3.5), it shows
that t1 = s1 and t2 = s1 + s2. Then, we have σ(t) = 1, as t ∈ [0, t1), and σ(t) = 2, as t ∈ [t1, t2). The
following proof will be split into two steps.

Step 1. We estimate E∥Y(t2)∥2.
We first suppose Y0 ∈ L2(Ω,F0,P; D(A1)). By Remark 2.4 and the fact D(A1) = D(A2), (1.1) admits

a unique strong solution. Thus, for each T > 0, Y(t) ∈ D(A1) = D(A2) for a.e (t, ω) ∈ [0,T ] × Ω. By
Assumption 2.1, there exists a unique decomposition

Y(t) = Π2Y(t) + Φ2Y(t), for t ∈ [0,+∞).

By (iii) of Lemma 2.2, we obtain

∥Y(t)∥2 = ∥Π2Y(t)∥2 + ∥Φ2Y(t)∥2.
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It follows from (i) of (2.1) that for each t ∈ [0,+∞),

∥Y(t)∥2 ≤
1
µ

[
V2
(
Π2Y(t)

)
+ V2
(
Φ2Y(t)

)]
, (3.7)

where the functional V2(·) is given in (2.3). By Assumption 2.2 and Itô formula, we have

d
[
ertV2
(
Π2Y(t)

)]
= rertV2

(
Π2Y(t)

)
dt + ert[Q2(Π2Y(t)) + | f2(t)|2V2(Π2Y(t))

]
dt

+2⟨P2Π2Y(t), f2(t)Π2Y(t)⟩dW(t),

where r is a positive real number which will be determined later, and where Q2(·) is the functional
given in (2.2). Integrating the above equation over [t1, t2] and taking the expectation, we obtain

ert2EV2
(
Π2Y(t2)

)
− ert1EV2

(
Π2Y(t1)

)
= E

∫ t2

t1
rertV2

(
Π2Y(t)

)
dt + E

∫ t2

t1
ert[Q2(Π2Y(t)) + | f2(t)|2V2(Π2Y(t))]dt.

It, together with (i) and (ii) of (2.1), indicates

ert2EV2
(
Π2Y(t2)

)
− ert1EV2

(
Π2Y(t1)

)
≤ E

∫ t2

t1
rνert∥Π2Y(t)∥2dt − E

∫ t2

t1
β2ert∥Π2Y(t)∥2dt. (3.8)

Taking r = β2
ν

in (3.8), it shows

EV2
(
Π2Y(t2)

)
≤ e−

β2 s2
ν EV2

(
Π2Y(t1)

)
. (3.9)

By the same argument in Lemma 2.4, we have

EV2
(
Φ2Y(t2)

)
≤ e

α2 s2
µ EV2

(
Φ2Y(t1)

)
. (3.10)

Combining with (3.7), (3.9), (3.10) and (i) of (2.1) yields

E∥Y(t2)∥2 ≤
1
µ

[
e−
β2 s2
ν EV2

(
Π2Y(t1)

)
+ e

α2 s2
µ EV2

(
Φ2Y(t1)

)]
(3.11)

≤
ν

µ

[
e−
β2 s2
ν E∥Π2Y(t1)∥2 + e

α2 s2
µ E∥Φ2Y(t1)∥2

]
.

Next, we estimate E∥Φ2Y(t1)∥2. Since W1 ⊆ V2, it follows from (i) of Lemma 2.2, that W2 ⊆ V1.
Together with (ii) of Lemma 2.2 and (i) of (2.1), we have

E∥Φ2Y(t1)∥2 ≤ E∥Π1Y(t1)∥2 ≤
1
µ
EV1
(
Π1Y(t1)

)
. (3.12)

We note that σ(t) = 1, as t ∈ [0, t1). By the same method in the proof of (3.9), we obtain

EV1
(
Π1Y(t1)

)
≤ e−

β1 s1
ν EV1

(
Π1Y0

)
.

It, along with (3.12) and (i) of (2.1), yields

E∥Φ2Y(t1)∥2 ≤
1
µ

e−
β1 s1
ν EV1

(
Π1Y0

)
≤
ν

µ
e−
β1 s1
ν E∥Π1Y0∥

2. (3.13)
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Then, it follows from Lemma 2.4 that

E∥Π2Y(t1)∥2 ≤ E∥Y(t1)∥2 ≤
ν

µ
e
α1 s1
µ E∥Y0∥

2.

This, along with (3.11) and (3.13), indicates that

E∥Y(t2)∥2 ≤ (
ν

µ
)2(e

α2 s2
µ −

β1 s1
ν E∥Π1Y0∥

2 + e
α1 s1
µ −

β2 s2
ν E∥Y0∥

2).

Since (s1, s2) ∈ G1(ρ) ∩G2(ρ), we can deduce

E∥Y(t2)∥2 ≤ 2(
ν

µ
)2e−ρE∥Y0∥

2.

By virtue of (3.1), there exists a positive number γ such that

ρ − 2 ln

√
2ν
µ
> γ. (3.14)

Thus,

E∥Y(t2)∥2 ≤ e−ρ+2 ln
√

2ν
µ E∥Y0∥

2 ≤ e−γE∥Y0∥
2. (3.15)

Since Ai (i = 1, 2) is a closed densely defined operator in H, we have D(Ai) = H (i = 1, 2). By the
standard density argument, we have that (3.15) still holds for each Y0 ∈ L2(Ω,F0,P;H).

Step 2. We prove (3.6).
Using standard iteration arguments, we obtain that

E∥Y(kt2)∥2 ≤ e−kγE∥Y0∥
2. (3.16)

For each t ∈ [0,+∞), we write t = kt2+ r, where k ∈ N and 0 ≤ r < t2. There are only two possibilities:
(i) If r ∈ [0, t1), by (2.6), we get

E∥Y(t)∥2 ≤
ν

µ
e
α1r
µ E∥Y(kt2)∥2.

(ii) If r ∈ [t1, t2), we can also obtain that

E∥Y(t)∥2 ≤ (
ν

µ
)2e

α1 s1+α2(r−s1)
µ E∥Y(kt2)∥2.

These, together with (3.16), yield

E∥Y(t)∥2 ≤ Me−kγE∥Y0∥
2 ≤ Me−

γt
s1+s2 E∥Y0∥

2, (3.17)

where the positive number M only depends on µ, ν, αi, and si (i = 1, 2). This completes the proof. □

Remark 3.1. The switching signal σ(·) defined in (3.3)–(3.5) has a dwell time τ = min{s1, s2}. Since
G1(ρ)∩G2(ρ) is the unbounded set in the first quadrant, s1, s2 can be taken arbitrarily large. Therefore,
the switching frequency for system (1.1) can be arbitrarily low under the first switching strategy. This
prevents the actuator from fast switching, which will possibly damage the systems.
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3.2. The second switching strategy

We will give a further discussion for this problem in this subsection. Next, we provide another
hypothesis.

Assumption 3.1. There exist positive numbers δ, δ̄ such that δ > 2 ln
√

6ν
µ

, δ̄ > 2 ln
√

6ν
µ

, and the
following conclusions hold.
(i) G1(δ) ∩G2(δ) ∩G3(δ̄) , ∅;
(ii) ϱ1 ≤ e−δ̄, or ϱ2 ≤ e−δ̄, where ϱ1 := ∥Φ2Φ1∥ and ϱ2 := ∥Φ1Φ2∥.

Remark 3.2. It is obvious that Assumption 3.1 can be directly derived from the conditions of
Theorem 3.1. First, taking a positive number δ > 2 ln

√
6ν
µ

and using Assumption 2.2, we have

A1(δ)∩A2(δ) , ∅. Then, we can choose a positive number δ̄ > 2 ln
√

6ν
µ

such that A1(δ)∩A2(δ)∩A3(δ̄) ,
∅. Second, ifW1 ⊆ V2 (orW2 ⊆ V1), then ϱ1 = ∥Φ2Φ1∥ = 0 (or ϱ2 = ∥Φ1Φ2∥ = 0). We observe that
(ii) of Assumption 3.1 also holds.

Suppose that Assumptions 2.1–2.3 and 3.1 hold. Taking (s̄1, s̄2) ∈ G1(δ) ∩ G2(δ) ∩ G3(δ̄), we give
the second switching strategy as follows:

t̄0 := 0, σ(0) :=
{

1, if ϱ1 ≤ e−δ̄,
2, if ϱ2 ≤ e−δ̄,

(3.18)

t̄k+1 :=
{

t̄k + s̄1, if σ(t̄k) = 1,
t̄k + s̄2, if σ(̄tk) = 2,

(3.19)

and

σ(t̄k+1) :=
{

2, if σ(t̄k) = 1,
1, if σ(t̄k) = 2,

(3.20)

where k ∈ N.
The second result is presented as follows.

Theorem 3.2. Suppose Assumptions 2.1–2.3 and 3.1 hold. Then, there exist positive numbers
M and ϖ such that for each Y0 ∈ L2(Ω,F0,P;H), the (mild) solution to (1.1) with the switching
strategy (3.18)–(3.20) satisfies

E∥Y(t)∥2 ≤ Me−
ϖt

s̄1+s̄2 E∥Y0∥
2, for t ≥ 0. (3.21)

Proof. Without loss of generality, we assume ϱ1 = ∥Φ2Φ1∥ ≤ e−δ̄, where δ̄ is the positive number given
in Assumption 3.1. It follows from the switching strategy (3.18)–(3.20) that t̄1 = s̄1 and t̄2 = s̄1 + s̄2.
Then, we have σ(t) = 1, as t ∈ [0, t̄1), and σ(t) = 2, as t ∈ [t̄1, t̄2). The following proof will be split into
two steps.

Step 1. We first estimate E∥Y(t̄2)∥2.
Suppose that Y0 ∈ L2(Ω,F0,P; D(A1)). By the same method in the proof of (3.11), we obtain

E∥Y(t̄2)∥2 ≤
ν

µ

[
e−
β2 s̄2
ν E∥Π2Y(t̄1)∥2 + e

α2 s̄2
µ E∥Φ2Y(t̄1)∥2

]
. (3.22)
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Then, we estimate E∥Π2Y(t̄1)∥2 in (3.22). Since σ(t) = 1, as t ∈ [0, t̄1), it follows from Lemma 2.4 that

E∥Π2Y(t̄1)∥2 ≤ E∥Y(t̄1)∥2 ≤
ν

µ
e
α1 s̄1
µ E∥Y0∥

2. (3.23)

Next, by Assumption 2.1, we have

Φ2Y(t̄1) = Φ2Π1Y(t̄1) + Φ2Φ1Y(t̄1).

It is easy to obtain

E∥Φ2Y(t̄1)∥2≤2E∥Φ2Π1Y(t̄1)∥2+2E∥Φ2Φ1Y(t̄1)∥2. (3.24)

Meanwhile, it follows from (i) of (2.1) that

E∥Φ2Π1Y(t̄1)∥2 ≤ E∥Π1Y(t̄1)∥2 ≤
1
µ
E∥V1
(
Π1Y(t̄1)

)
∥2.

Using the same argument in the proof of (3.9), we obtain

E∥V1
(
Π1Y(t̄1)

)
∥2 ≤ e−

β1 s̄1
ν E∥V1

(
Π1Y0

)
∥2 ≤ νe−

β1 s̄1
ν E∥Π1Y0∥

2.

Thus,

E∥Φ2Π1Y(t̄1)∥2 ≤
ν

µ
e−
β1 s̄1
ν E∥Π1Y0∥

2. (3.25)

Then, it follows from Lemma 2.4 and ∥Φ2Φ1∥ ≤ e−δ̄ that

E∥Φ2Φ1Y(t̄1)∥2 ≤ ∥Φ2Φ1∥
2E∥Y(t̄1)∥2 ≤ ∥Φ2Φ1∥

2 ν

µ
e
α1 s̄1
µ E∥Y0∥

2 ≤
ν

µ
e−2δ̄e

α1 s̄1
µ E∥Y0∥

2.

It, combining with (3.22)–(3.25), indicates

E∥Y(t̄2)∥2 ≤ (
ν

µ
)2(e

α1 s̄1
µ −

β2 s̄2
ν E∥Y0∥

2 + 2e
α2 s̄2
µ −

β1 s̄1
ν E∥Y0∥

2 + 2e−2δ̄e
α1 s̄1+α2 s̄2

µ E∥Y0∥
2).

Since (s̄1, s̄2) ∈ G1(δ) ∩G2(δ) ∩G3(δ̄), we have

E∥Y(t̄2)∥2 ≤
(
3(
ν

µ
)2e−δ + 2(

ν

µ
)2e−δ̄
)
E∥Y0∥

2.

By Assumption 3.1, there exists a positive number ϖ such that

δ − 2 ln

√
3ν
µ
> ϖ + ln 2, and δ̄ − 2 ln

√
2ν
µ
> ϖ + ln 2. (3.26)

Therefore,

E∥Y(t̄2)∥2 ≤
(
e−δ+2 ln

√
3ν
µ + e−δ̄+2 ln

√
2ν
µ
)
E∥Y0∥

2 ≤ e−ϖE∥Y0∥
2. (3.27)

Then, by the standard density argument, we have that (3.27) still holds for each Y0 ∈ L2(Ω,F0,P;H).
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Step 2. We prove (3.21).
Using standard iteration arguments, we have that for each k ∈ N,

E∥Y(kt̄2)∥2 ≤ e−kϖE∥Y0∥
2.

For each t ∈ (0,+∞), we write t = kt̄2 + r, where k ∈ N and 0 ≤ r < t̄2. Then, by the same method in
the proof of (3.17), we obtain

E∥Y(t)∥2 ≤ Me−
ϖt

s̄1+s̄2 E∥Y0∥
2,

where the positive number M only depends on µ, ν, αi and si (i = 1, 2). This completes the proof. □

Remark 3.3. (i) Similar, τ̄ = min{s̄1, s̄2} is a dwell time of the switching signal σ(·) given in (3.18)–
(3.20).
(ii) It is obvious that Theorem 3.2 is a generalization of Theorem 3.1. However, we can not get
arbitrarily large dwell time in Theorem 3.1. The reason is that (s̄1, s̄2) ∈ G1(δ) ∩G2(δ) ∩G3(δ̄), which
is a bounded subset of R2 in the first quadrant.

3.3. Robust stability of the switching time

In this subsection, we discuss the robust stability of the switching time under the conditions of
Theorem 3.1. Suppose that there exists a small error at each switching time tk (k ∈ N+), when we
carry out the switched system (1.1) with the switching strategy (3.3)–(3.5). Let ϵ be a positive number
satisfying

{(r1, r2) ∈ R2 : |ri − si| < ϵ (i = 1, 2)} ⊂ G1(ρ) ∩G2(ρ), (3.28)

where (s1, s2) is the pair given in (3.2), and ρ is the positive number given in (3.1). Let ϵk (k ∈ N+)
be the error at each switching time tk (k ∈ N+), and let {θk}∞k=1 be the set of the actual switching times.
Then, the practical switching strategy becomes

θ0 := 0, σ(0) := 1, or σ(0) := 2, (3.29)

θk := tk + ϵk, (3.30)

and

σ(θk) :=
{

2, if σ(θk−1) = 1,
1, if σ(θk−1) = 2,

(3.31)

where k ∈ N+ and tk is defined in (3.4).
Then, we have the following result.

Theorem 3.3. Suppose that Assumptions 2.1–2.3 hold, andW1 ⊆ V2. If the error ϵk in (3.30) satisfies

|ϵk| <
ϵ

2
, k ∈ N+, (3.32)

then, there exist positive numbers M and γ such that for each Y0 ∈ L2(Ω,F0,P;H), the (mild) solution
to (1.1) with the practical switching strategy (3.29)–(3.31) satisfies

E∥Y(t)∥2 ≤ Me−
γt

s1+s2 E∥Y0∥
2, for t ≥ 0. (3.33)

AIMS Mathematics Volume 8, Issue 10, 24663–24680.



24675

Proof. Without loss of generality, we assume σ(0) = 1. By the actual switching strategy (3.29)–(3.31),
we have σ(t) = 1, as t ∈ [0, θ1), and σ(t) = 2, as t ∈ [θ1, θ2). Let

τ1 = θ1 and τ2 = θ2 − θ1.

By the definition of tk in (3.3) and (3.4) (which is the switching strategy in theory), we have

s1 = t1 and s2 = t2 − t1.

It, together with (3.30) and (3.32), indicates that

(τ1, τ2) ∈ {(r1, r2) ∈ R2 : |ri − si| < ϵ (i = 1, 2)} ⊂ G1(ρ) ∩G2(ρ).

Using the standard density argument, we only need to prove (3.33) under the condition Y0 ∈

L2(Ω,F0,P; D(A1)). By the same argument in the proof of (3.15), we have

E∥Y(θ2)∥2 ≤ e−γE∥Y0∥
2,

where γ is the positive number given in (3.14). Using iteration arguments, we obtain that for each
k ∈ N+,

E∥Y(θ2k)∥2 ≤ e−kγE∥Y0∥
2. (3.34)

(i) In the first case that t ∈ [0, θ2), we can apply Lemma 2.4 to get (3.33).
(ii) Next, we consider the second case that t ∈ [θ2,+∞). Clearly, there exist k ∈ N+ such that θ2k ≤ t <
θ2(k+1). This, along with (3.30) and (3.32), yields

t2k −
ϵ

2
≤ t < t2(k+1) +

ϵ

2
.

It, together with the fact that t2(k+1) = (k + 1)(s1 + s2), shows

−k < −
t − ϵ2

s1 + s2
+ 1. (3.35)

By Lemma 2.4, we obtain

E∥Y(t)∥2 ≤ ME∥Y(θ2k)∥2,

where M only depends on ϵ, µ, ν, αi and si (i = 1, 2). This, along with (3.34) and (3.35), indicates (3.33).
In summary, we conclude that (3.33) holds. Hence, this completes the proof. □

Remark 3.4. In fact, the system (1.1) with the second switching strategy (3.18)–(3.20) also possesses
the robust stability of the switching time. The proof is similar to Theorem 3.3. We omit it.

4. Illustrative examples and numerical simulations

In this section, we will give an example of the stochastic switched heat equation. Let H ≡ L2(0, 1),
equipped with the inner product ⟨ϕ, φ⟩ =

∫ 1

0
ϕ(x)φ(x)dx, for ϕ, φ ∈ L2(0, 1). Let λk = k2π2 and

ek(x) =
√

2 sin(kπx) (k ∈ N+). Then, {ek}
∞
k=1 constitutes an orthonormal basis of L2(0, 1).
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The first stochastic heat equation is presented as follows:{
dy(x, t)=

[
yxx(x, t)+(λ1 + 1)y(x, t)

]
dt + f1(t)y(x, t)dW(t), x ∈ (0, 1), t > 0,

y(0, t) = y(1, t) = 0, t > 0,
(4.1)

where f1(t) = sin t. Next, we define a linear bounded operator B on L2(0, 1) as

Bg = k2⟨g, e2⟩L2(0,1)e2 + k3⟨g, e3⟩L2(0,1)e3, g ∈ L2(0, 1),

where k2 = λ3 + 2 and k3 = 2λ3 − λ2 + 2. We introduce the second stochastic heat equation as follows:{
dy(x, t) =

[
yxx(x, t) + By(x, t)

]
dt + f2(t)y(x, t)dW(t), x ∈ (0, 1), t > 0,

y(0, t) = y(1, t) = 0, t > 0,
(4.2)

where f2(t) = cos t.
Remark 4.1. (i) D(A1) = D(A2) = H2(0, 1) ∩ H1

0(0, 1), and the operator Ai (i = 1, 2) is a linear closed
densely defined operator, which generate a C0 semi-group {S i(t)}t≥0 (i = 1, 2) on L2(0, 1).
(ii) Clearly, bi = ∥ fi(·)∥L∞

F
(0,+∞;L∞(Ω)) = 1 (i = 1, 2).

Indeed, both (4.1) and (4.2) are unstable. We conduct numerical simulations to show this point. We
discretize these two systems by the finite difference method. The time and the space steps are chosen
as l = 0.00005 and h = 0.01, respectively. Let the initial data be y0(x) = 100(x − x3). We performed
the numerical simulation 30 times under the MATLAB environment and presented one of them in the
following. Figures 1 and 2 are the numerical simulations for (4.1) and (4.2), respectively. These show
that (4.1) and (4.2) are unstable.

Figure 1. Subsystem (4.1) with the initial data y0.
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Figure 2. Subsystem (4.2) with the initial data y0.

Now, we will put them into an abstract framework. Let A1 =
∂2

∂x2 + (λ1 + 1)I, where I is the identity
operator on L2(0, 1), and A2 =

∂2

∂x2 + B. Let σ(·) be a right-continuous step function taking values
in {1, 2}. The stochastic switched parabolic system generated by the switching signal σ(·) from (4.1)
and (4.2) can be written as{

dy(x, t) = Aσ(t)y(x, t) + fσ(t)(t)y(x, t)dW(t), x ∈ (0, 1), t > 0,
y(0, t) = y(1, t) = 0, t > 0.

(4.3)

We let Vi(y) = ⟨y, y⟩L2(0,1) (i = 1, 2) be the Lyapunov function of (4.1) and (4.2), respectively. That
is, the operators P1 = P2 = I and the parameters µ = ν = 1 in (2.1). Then, we defineW1 = span{e1},
V1 = span{e2, e3, e4, . . .},W2 = span{e2, e3}, and V2 = span{e1, e4, e5, . . .}. It is easy to check that
(i) L2(0, 1) =Wi ⊕ Vi andWi ⊥ Vi (i = 1, 2).
(ii)W1 ⊆ V2 andW2 ⊆ V1.
Remark 4.2. Indeed, {ek(x)}+∞k=1 is the set of eigenfunctions of minus Laplacian, and {λk(x)}+∞k=1 is the
set of corresponding eigenvalues (see Section 6.5 of [21]).

Using Itô formula, we can obtain the parameters β1 = λ2 − λ1 − 2, β2 = λ1 − 1, α1 = 2, and
α2 = λ3 − λ2 + 3 in (2.1) and the Assumptions 2.1–2.3 hold in this case. Applying (3.1), we first
take ρ = 0.7. Second, using (3.2), we choose the parameters s1 = 0.34 and s2 = 0.16. Then, the
switching strategy (3.3)–(3.5) can be determined by s1 and s2. Figures 3 and 4 are the simulation
of (4.3) under this switching strategy. These confirm that the experiment agrees with the theoretical
results in Section 3. We performed it 30 times, and these results all show that our method yields
satisfactory performance.
Remark 4.3. According to Section 3.1, the parameters s1 and s2 are crucial in switching strategy
(3.3)–(3.5), and they can be chosen by (3.2). To this end, we first need to choose ρ by using (3.1).
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Figure 3. The switched system (4.3) with the initial data y0.

Figure 4. L2(0, 1) norm of the the switched system (4.3).

5. Conclusions

In this paper, we propose two switching strategies for a class of infinite-dimensional linear stochastic
switched systems driven by multiplicative noise. These switching strategies stabilize the systems and
prevent the systems from fast switching. In addition, we examine the robust stability of the switching
time, meaning that even in the presence of small errors at each switching time tk (k ∈ N+), the
system (1.1) remains stable when utilizing our switching strategies. One further study direction is
to extend the scheme of this article to switched systems with multiple distinct modes.
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