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Abstract: This paper proposes and studies a switched interactive model of wild and sterile mosquitoes
with stage and sex structure. Sterile males are released periodically and impulsively and remain sexu-
ally active for time T̄ . We investigate the dynamical behavior of the system when the release period T
is shorter than the sexual lifespan T̄ , corresponding to a relatively frequent release. We first determine
two important thresholds, m∗1 and m∗2, for the release amount m and prove the exponential asymptotic
stability of the extinction equilibrium. Using fixed point theory, we establish the existence of positive
periodic solutions for 0 < m < m∗1 and m∗1 ≤ m < m∗2. Furthermore, by applying the comparison the-
orem of monotone systems, we demonstrate that the extinction equilibrium is globally asymptotically
stable when m ≥ m∗2. Finally, numerical examples are presented to confirm our theoretical results.
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1. Introduction

Mosquito-borne infectious diseases are spread by mosquitoes and are prevalent worldwide, includ-
ing malaria, dengue fever, filariasis, yellow fever, and other highly harmful infectious diseases. Re-
search shows that there are more than 80 such diseases, many of which have caused significant losses to
human lives and health in different countries and regions. In recent years, the risk of mosquito-borne
infectious disease outbreaks has increased due to climate change, as well as the rise of commercial
trade and personnel exchanges.

Due to the lack of an effective vaccine for mosquito-borne diseases, controlling the population of
mosquitoes has become crucial in curbing the spread of such diseases. Traditional physicochemical
control methods have significant disadvantages such as negative environmental effects and drug re-
sistance. In recent years, new biological control approaches such as insect sterility technology (SIT)
and its derivatives have been extensively studied and practiced. These approaches involve the release
of sterile or Wolbachia-infected mosquitoes into the wild to disrupt or suppress the development of
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the wild mosquito population. Certain studies specifically explored the use of sterile insect release
for targeted population control [1–3]. Other research considered how the endosymbiotic bacterium
Wolbachia can induce resistance to the dengue virus in Aedes aegypti [4], and there has been research
into the control of particular mosquito-borne diseases [5]. Furthermore, in [6], a combination of in-
compatible and sterile insect techniques has been implemented to eradicate wild mosquitoes. During
the exploration of these technologies, detailed analyses have been conducted on specific population
characteristics such as population diffusion, periodic changes, the Allee effect, and others [7–11]. To
ensure successful suppression of mosquito populations, continuous release over a long period is often
necessary. Researchers have studied release strategies for different situations through various methods.
For instance, uninterrupted continuous release strategies, based on ODE or DDE models, have under-
gone extensive examination [12–15]. More recently, impulsive release strategies, which better align
with practical operations, have received considerable attention. Switched systems have been widely
employed in simulating these release strategies [16–20]. In addition, many researchers have shown a
preference for impulsive differential dynamical systems [21–24]. Some have integrated the duration
of sexual activity of sterile mosquitoes with impulsive release behavior to investigate release strategies
that effectively suppress mosquito populations [25–27].

Typically, male sterile mosquitoes are released into the wild to mate with female wild mosquitoes,
rendering them unable to lay or hatch eggs. In [18,26–28], the authors proposed a mathematical model
that considers the sexual lifespan of sterile mosquitoes, including only those within their sexually active
period. Due to the short sexual lifespan of sterile mosquitoes, natural deaths during the sexual activity
period are often neglected. Instead of using a single equation to describe the change in the number
of sterile mosquitoes, the number of sterile mosquitoes is used as a control function [15, 18, 26–29].
Based on these ideas, the authors provided a nearly complete characterization of the release strategy
using the following model.

dω
dt
=

aω2

ω + g
− µω − ξ(ω + g)ω (1.1)

whereω(t) and g(t) represent the number of wild mosquitoes and the number of sterile male mosquitoes
in their sexually active period. The birth rate per wild mosquito, denoted by a, follows logistic growth.
Additionally, ξ and µ represent the density-dependent and independent death rates, respectively.

We know that mosquito growth includes three aquatic stages, namely egg, larva, and pupa, as well
as an adult stage. Intraspecific competition significantly affects the aquatic stages, while the adult stage
is rarely affected. Building on model (1.1), the authors in [30] proposed and studied a stage-structured
model for suppressing mosquito populations as follows:

dJ
dt =

βA2

A+g − αJ − (µ0 + ξJ)J,
dA
dt = αJ − µ1A,

(1.2)

where J and A represent the number of wild mosquitoes in the aquatic and adult stages, respectively,
while g represents the number of sterile males. The birth rate of adults is denoted by β. µi and ξ

represent the natural mortality and intraspecific competition coefficient, respectively, where i = 0, 1.
The parameter α represents the emergence rate from larvae to adults.

As mentioned earlier, in order to suppress the wild mosquito population, male sterile mosquitoes
are released in most scenarios. In addition, the role of female and male mosquitoes in interacting with
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sterile mosquitoes is different. Motivated by the previous research works, this paper aims to further
investigate and develop a wild mosquito suppression model with both stage and sex structure.

The paper is organized as follows: In Section 2, we develop a mosquito population suppression
model with both stage and sex structure. The model is a time-switched system with the number of
sexually active sterile males serving as a control function. In Section 3, we first define two impor-
tant thresholds for the release amount and then determine the conditions for the stability of the wild
mosquito extinction equilibrium and the existence of positive periodic solutions. In Section 4, we pro-
vide numerical results to validate our theoretical findings. Finally, we conclude with a brief summary
in Section 5.

2. Model formulation

L. Almeida et al. in [31] describes the dynamics of the mosquito population as follows

dE
dt = βEF(1 − E

K ) − (νE + δE)E,
dL
dt = τEE − L(cL + τE + δL),
dP
dt = τLL − (τP + δP)P,
dF
dt = ντPP − δF F,
dM
dt = (1 − ν)τPP − δM M,

(2.1)

where E(t), L(t), P(t), F(t) and M(t) stands for the numbers of eggs, larvae, pupa, adult females
and adult males at time t, respectively. The parameters βE, K, and τE represent the oviposition rate,
environmental capacities and hatching rate for eggs, respectively. Pupas will develop into males or
females, and ν ∈ (0, 1) reflects the corresponding proportion. τL, τP are transition rates, c is the
intraspecific competition of larvae, and δE, δL, δP, δF and δM are the corresponding death rates.

To simplify the mosquito population model, we make the following assumptions, similar to those
in [31]: (i) the dynamics of larvae and pupae are fast, and intraspecific competition at the larvae stage
is negligible (i.e., c ≪ 1); (ii) the probability of a pupa developing into a female is the same as that of
a male (ν = 1

2 ); (iii) male and female mosquitoes have the same death rate (δF = δM).
With these assumptions and the third and fourth functions of system (2.1), we obtain the equilibrium

equations for larvae and pupae, which are:

P =
τLτEE

(τP + δP)(τL + δL)
, L =

τEE
τL + δL

. (2.2)

After substituting Eq (2.2) into system (2.1) and introducing a release function u(·) for sterile male
mosquitoes, we can derive the following interactive dynamical system describing the population dy-
namics of two kinds of mosquitoes

dE
dt = βEF(1 − E

K ) F
F+γMs

− (νE + δE)E,
dF
dt = νβF E − δF F,
dMs
dt = u(·) − δM M,

(2.3)
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where Ms(t) is the number of sterile males in the field, γ measures the mating competitiveness of sterile
males, and βF =

τPτLτE
(τP+δP)(τL+δL) .

In this paper, we also only consider sexually active sterile mosquitoes in the dynamics. Let Ms(t)
be the number of sexually active sterile males at time t and ignore their natural death as in previous
works [15, 18, 26–29]. By taking Ms(t) as a control function, we convert the system (2.1) into

dE
dt = βEF(1 − E

K ) F
F+γMs

− (νE + δE)E,
dF
dt = νβF E − δF F.

(2.4)

Let T be the waiting time between two consecutive release, and sterile mosquitoes are released with
an amount of m at time t = kT , k = 0, 1, 2, · · · . We use T̄ to represent the sexual lifespan of sterile
mosquitoes, ignoring their natural death as in [15, 18, 26–29]. There are three possible cases for T and
T̄ : T = T̄ , T > T̄ , and T < T̄ . Previous works [30] studied the effect of releasing sterile mosquitoes on
wild mosquito populations in the first two cases.

In this work, we mainly study the last case: T < T̄ . In fact, experimental studies have indicated
that the lifespan of sterile mosquitoes can be as long as 51 days [32] such as the Wolbachia-infected
mosquitoes, and their sexual lifespan can reach 14 days [33]. Nonetheless, the release of sterile
mosquitoes is relatively frequent, such as in the experimental field of Shazai Island in Guangzhou,
China, where they were released three times a week [32]. Hence, it is meaningful to consider the
situation where the sexual lifespan of sterile mosquitoes exceeds the release period, that is T < T̄ .

Similar to the discussion in [17], when T < T̄ , there must exist a unique positive integer p and a
non-negative number q that satisfy

T̄ = pT + q, (2.5)

where q ∈ [0,T ) and p = [T̄/T ], which is the integer closest to T̄/T and not greater than T̄/T . Since
pT ≤ T̄ , we can obtain the first p releases

Ms(t) = (k + 1)m, t ∈ (kT, (k + 1)T ]

where k = 0, 1, 2, · · · , p − 1. From the (p + 1)th release, it is easy to get

Ms(t) =

 (p + 1)m kT < t ≤ kT + q,

pm kT + q < t ≤ (k + 1)T,
if q , 0,

where k = p, p+ 1, · · · . If q = 0, then Ms(t) = pm, and the characteristics of the system are completely
consistent with the simple system of constant value continuous release. In the present work, we assume
that 0 < q < T . As we are studying the asymptotic behavior of the system, for the sake of analysis
convenience and without loss of generality, we can further assume that for k = 0, 1, 2, · · · ,

Ms(t) =

 (p + 1)m kT < t ≤ kT + q,

pm kT + q < t ≤ (k + 1)T.
(2.6)

Based on the above assumption, the model (2.4) is transformed as follows: dE
dt = βEF(1 − E

K ) F
F+γ(p+1)m − (τE + δE)E,

dF
dt = νβF E − δF F,

t ∈ (kT, kT + q], (2.7)
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3899 dE
dt = βEF(1 − E

K ) F
F+γpm − (τE + δE)E,

dF
dt = νβF E − δF F,

t ∈ (kT + q, (k + 1)T ], (2.8)

where k = 0, 1, 2, · · · .
Population dynamics of wild mosquitoes with sterile mosquito release then depend on the continu-

ous switching between systems (2.7) and (2.8). In this paper, based on the switched systems (2.7) and
(2.8), we mainly investigate the extinction and periodic change of wild mosquito population.

3. Dynamics of the switched system

3.1. preliminaries

First, we consider the dynamic behavior of the wild mosquito population without the release of
sterile mosquitoes. Let Ms(t) ≡ 0, then the system (2.4) or (2.7) and (2.8) can be rewritten as follows:

dE
dt
= βEF

(
1 −

E
K

)
− (τE + δE) E,

dF
dt
= νβF E − δF F.

(3.1)

Let Ω = {(E, F)|0 ≤ E ≤ K, 0 ≤ F}. Obviously, Ω is a positive invariant set of systems (3.1),
(2.7) and (2.8), and every solution of systems (3.1), (2.7) and (2.8) with nonnegative initial values is
positive and bounded. Therefore, in this work, we will investigate the dynamics of these systems in Ω.
Additionally, it is easy to verify that system (3.1) is a monotonic system on Ω, so there are no closed
orbits. By defining the basic offspring number of the wild mosquito as

R0 :=
νβEβF

δF(τE + δE)
,

we list the following conclusions about the system (3.1):

Lemma 1. (i) If R0 ≤ 1, then the extinction equilibrium A0(0, 0) is the unique equilibrium of system
(3.1) that is globally asymptotically stable in Ω.

(ii) If R0 > 1, then A0(0, 0) is unstable, and the unique positive equilibrium A∗(E∗, F∗) of system
(3.1) is globally asymptotically stable in Ω, where

E∗ = (1 −
δF(τE + δE)
νβFβE

)K = (1 −
1
R0

)K, F∗ =
νβF

δF
(1 −

1
R0

)K.

According to the necessity of releasing sterile mosquitoes, we will only consider the case R0 > 1 in
this paper.

For the convenience of illustration, the following system is introduced to uniformly express the two
subsystems (2.7) and (2.8)  dE

dt = βEF(1 − E
K ) F

F+γ p̃m − (τE + δE)E,
dF
dt = νβF E − δF F,

(3.2)

where p̃ = p + 1 or p.
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To compute the jacobian matrix of the system (3.2), we obtain

J =
 −βE F2

(F+γ p̃m)K − (τE + δE) βE(1 − E
K )( F

γ p̃m+F +
γ p̃mF

(γ p̃m+F)2 )
νβF −δF

 . (3.3)

It has non-negative extra-diagonal coefficients on Ω = {(E, F)|0 ≤ E ≤ K, 0 ≤ F}, indicating that
the system (3.2) is monotone on Ω.

Clearly, the wild mosquito extinction equilibrium A0(0, 0) is an equilibrium of both systems (2.7)
and (2.8). By using the general form (3.2) of systems (2.7) and (2.8), we can now calculate the positive
equilibria by finding the positive roots of the following equations,

E =
δF

νβF
F, βEF(1 −

E
K

)
F

F + γ p̃m
− (τE + δE)E = 0,

which can be further equivalently transformed into

G(F) = −R0
δF F2

KνβF
+ (R0 − 1)F − γ p̃m = 0. (3.4)

It is easy to know that the discriminant of the above equation is

∆ = (R0 − 1)2 −
4γ p̃mβE

K(τE + δE)
, (3.5)

then we define the following release threshold for the system (3.2)

m∗( p̃) ≡
K(R0 − 1)2(τE + δE)

4γβE p̃
. (3.6)

Lemma 2. Let R0 > 1. The trivial equilibrium A0 of system (3.2) is always locally asymptotically
stable. Moreover,

(i) There exists m∗( p̃) > 0 such that the system (3.2) admits no positive equilibrium if m > m∗( p̃),
one positive equilibrium if m = m∗(p̃), and two positive equilibria A· j(E· j( p̃), F· j( p̃)), j = 1, 2 if 0 <

m < m∗(p̃), where 5

F· j(p̃) =
(R0 − 1) ∓

√
(R0 − 1)2 −

4γ p̃mβE
K(τE+δE)

2βE
K(τE+δE)

, E· j =
δF F· j(p̃)
νβF

, j = 1, 2.

(ii) If m > m∗( p̃), then the trivial equilibrium A0 is globally asymptotically stable in Ω. If 0 < m <

m∗(p̃), then A·1(E·1( p̃), F·1( p̃)) is unstable, while A·2(E·2(p̃), F·2( p̃)) is locally asymptotically stable. If
m = m∗( p̃), then the unique positive equilibrium is a saddle node.

Proof. To calculate the Jacobian matrix of the system (3.2) at the trivial equilibrium A0(0, 0), we have

JA0 =

(
− (τE + δE) 0

νβF −δF

)
.

It has two negative eigenvalues, therefore the trivial equilibrium A0 is always locally asymptotically
stable.
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(i) By calculating the discriminant ∆ in Eq (3.5), we can see that ∆ = 0 when m = m∗( p̃), ∆ < 0
when m > m∗( p̃), and ∆ > 0 when 0 < m < m∗(p̃). Moreover, the root of the quadratic equation (3.4)
must be positive roots if it exists. These observations lead to the conclusions in (i).

(ii) Since the system (3.2) is monotone on Ω, it has no closed orbits. If m > m∗( p̃), then the
extinction equilibrium A0 is the unique equilibrium which is stable, so it is globally asymptotically
stable in Ω.

If 0 < m < m∗( p̃), we calculate Jacobian matrix of the system (3.2) at A· j, j = 1, 2 by using jacobian
matrix (3.3) and get

JA· j =

 −νβEβF F· j
δF (γ p̃m+F· j)

βE(1 − δF F· j
KνβF

)( F· j
γ p̃m+F· j

+
γ p̃mF· j

(γ p̃m+F· j)2 )
νβF −δF

 .
We can easily get trJA· j =

−νβEβF F· j
δF (m1+F· j)

− δF < 0 and

|JA· j | =
νβEβF F· j
γ p̃m + F· j

− [
νβEβF F· j
γ p̃m + F· j

+
νβEβFγ p̃mF· j
(γ p̃m + F· j)2 −

βEδF F2
· j

K(γ p̃m + F· j)
−

βEδFγ p̃mF2
· j

K(γ p̃m + F· j)2 ]

=
βEδFγ p̃mF2

· j

K(γ p̃m + F· j)2 +
βEδF F2

· j

K(γ p̃m + F· j)
−
νβEβFγ p̃mF· j
(γ p̃m1 + F· j)2

= −
νβEβF

R0
F· jΦ′(F· j),

(3.7)

where Φ(F) = −G(F)
γ p̃m+F .

Since −Φ′(F) = − G(F)
(γ p̃m+F)2 +

G′(F)
(γ p̃m+F) , G(F·1) = G(F·2) = 0 and G′(F·1) > 0,G(F·2) < 0, we can obtain

|J(A·1)| < 0 and |J(A·2)| > 0. Therefore, A·1(E·1, F·1) is an unstable saddle, while A·2(E·2, F·2) is locally
asymptotically stable.

If the release amount m increases to m = m∗( p̃), then the two positive equilibria A·1 and A·2 merge
into a single semi-stable saddle node. The proof is completed.

Remark 1. According to Lemma 2, the constant continuous release system (3.2) has a threshold m( p̃)
for the release amount m. When the release amount m > m(p̃), the wild mosquito population in the
field will be successfully suppressed.

Referring to the two subsystems (2.7) and (2.8), we denote their corresponding release thresholds
as m∗1 and m∗2, respectively, given by:

m∗1 = m∗(p + 1) < m∗2 = m∗(p). (3.8)

When there are two positive equilibria, the positive equilibria corresponding to systems (2.7) and
(2.8) are denoted by A1 j(E1 j, F1 j) and A2 j(E2 j, F2 j), j = 1, 2, respectively, where

E1 j = E· j(p + 1), F1 j = F· j(p + 1), E2 j = E· j(p), F2 j = F· j(p), j = 1, 2.

Lemma 2 provides insights into the behavior of systems (2.7) and (2.8). We can now state the
following result:
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Lemma 3. Let R0 > 1. The trivial equilibrium A0 of system (2.7) (or (2.8)) is always locally asymp-
totically stable. In addition,

(i) If 0 < m < m∗1, system (2.7) (or (2.8)) has two positive equilibria A11(E11, F11) and A12(E12, F12)
(or A21(E21, F21) and A22(E22, F22)), where A11(E11, F11) (or A21(E21, F21)) is unstable, and A12(E12, F12)
(or A22(E22, F22)) is locally asymptotically stable.

(ii) If m∗1 < m < m∗2, system (2.8) has two positive equilibria A21(E21, F21) and A22(E22, F22), where
A21(E21, F21) is unstable, and A22(E22, F22) is locally asymptotically stable. However, system (2.7) has
no positive equilibrium.

(iii) If m > m∗2, both systems (2.7) and (2.8) have no positive equilibrium, and the unique equilibrium
A0(0, 0) is globally asymptotically stable in Ω.

3.2. Periodic and impulsive releases

When the release period of sterile mosquitoes is shorter than their sexual lifespan, that is, T < T̄ ,
the number of sterile mosquitoes that are sexual active will continually switch between two levels,
as shown in function (2.6). The population dynamics of wild ones will then depend on the switched
systems (2.7) and (2.8).

With the appearance of continual switching, the extinction equilibrium A0(0, 0) becomes the unique
equilibrium of the systems (2.7) and (2.8). We will first discuss its stability.

Since R0 =
νβEβF

δF (τE+δE) > 1, βF =
τPτLτE

(τP+δP)(τL+δL) and ν ∈ (0, 1), we get νβEβF > δF(τE + δE) and βF < τE,
and then τE + δE > νβF . Let

α := min{(τE + δE) − νβF , δF},

then for any given 0 < σ < 1, denote

ℓ :=
γ(p + 1)mασ

βE
, ℓ1 :=

γpmασ
βE

.

Theorem 1. Assuming R0 > 1 and T̄ = pT + q, for any solution (E(t), F(t)) of systems (2.7) and (2.8)
with 0 < E(0) + F(0) < ℓ1, the inequality

0 ≤ E(t) + F(t) ≤ (E(0) + F(0))e−rt, t > 0, (3.9)

holds, where r = (1 − σ)α > 0. Thus, the extinction equilibrium A0(0, 0) of systems (2.7) and (2.8) is
exponentially asymptotically stable.

Proof. Suppose (E(t), F(t)) is a solution of the systems (2.7) and (2.8) in Ω with 0 < E(0) + F(0) < ℓ1

for fixed σ ∈ (0, 1). Let P(t) := E(t) + F(t) for t ≥ 0. According to the first subsystem (2.7), we have
for t ∈ [kT, kT + q], k = 0, 1, 2, · · · ,

P′(t) = βEF(1 −
E
K

)
F

F + γ(p + 1)m
− (τE + δE)E + νβF E − δF F

≤
βEF2

γ(p + 1)m
− [(τE + δE) − νβF]E − δF F

≤
βE

γ(p + 1)m
P2(t) − αP(t)

= [
βE

γ(p + 1)m
P(t) − α]P(t).

(3.10)
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We claim that if P(kT ) < ℓ1 < ℓ, then P(t) < ℓ1 for all t ∈ [kT, kT + q], k = 0, 1, 2, · · · . Let’s
prove this by contradiction. Suppose it does not holds, then there must exist t̄ ∈ (kT, kT + q] such that
P(t) < ℓ1 < ℓ for t ∈ [kT, t̄) and P(t̄) = ℓ1, then P′(t̄) ≥ 0. However, from inequality (Eq 3.10), we
deduce

P′(t̄) ≤ (
βE

γ(p + 1)m
ℓ1 − α)ℓ1 = −(1 −

p
p + 1

σ)αℓ1 < 0,

which leads a contradiction. Therefore, we have P(t) < ℓ1 for all t ∈ [kT, kT+q] and P′(t) ≤ ( βE
γ(p+1)mℓ1−

α)P(t) = −(1 − p
p+1σ)αP(t) < 0. Then we can further deduce

P(t) ≤ P(kT )e−(1− p
p+1σ)α(t−kT ) < P(kT )e−(1− p

p+1σ)αq, t ∈ [kT, kT + q). (3.11)

Similarly, for the second subsystem (2.8), we can obtain

P′(t) ≤ [
βE

γpm
P(t) − α]P(t), t ∈ [kT + q, (k + 1)T ).

Then if P(kT + q) < ℓ1, then P(t) < ℓ1 for all t ∈ [kT + q, (k + 1)T ], k = 0, 1, 2, · · · . In addition,

P(t) ≤ P(kT + q)e−(1−σ)α(t−kT ) < P(kT + q)e−(1−σ)α(T−q), t ∈ [kT + q, (k + 1)T ). (3.12)

Combining with inequalities (Eq 3.11) and (Eq 3.12), we know that

P(t) ≤ P(kT )e−(1− p
p+1σ)αqe−(1−σ)α(T−q) = ξP(kT ), t ∈ [kT + q, (k + 1)T ),

where ξ := e−(1−σ)αT < 1.
Thus,

P((k + 1)T ) ≤ ξP(kT ) and P(kT ) < ξkP(0), k = 0, 1, 2, · · · .

If t ∈ [kT, kT + q], then from inequality (Eq 3.11) we get

P(t) ≤ P(0)ξke−(1− p
p+1σ)α(t−kT )

≤ P(0)e−((1−σ)α)t = P(0)e−rt, t ∈ [kT, kT + q]. (3.13)

If t ∈ [kT + T̄ , (k + 1)T ], then from inequality (Eq 3.12) we get

P(t) ≤ P(0)ξke−(1− p
p+1σ)αqe−(1−σ)α(t−(kT+q)) ≤ P(0)e−rt, t ∈ [kT + q, (k + 1)T ]. (3.14)

By combining inequalities (Eq 3.13) and (Eq 3.14), we can see that the inequality (Eq 3.9) holds
and A0(0, 0) is exponentially asymptotically stable. The proof is completed.

In Theorem 1, we show the exponential asymptotic stability of A0(0, 0). However, this stability
is only a local feature. Due to the periodic release of sterile mosquitoes, we are concerned about the
possibility of a periodic change in the wild mosquito population, specifically, whether the systems (2.7)
and (2.8) has a positive periodic solution. In the following discussion, we focus on the existence of
positive periodic solutions.

Based on Lemma 3, when R0 > 1, T < T̄ , and 0 < m < m∗1, both subsystems (2.7) and (2.8)
have a pair of positive equilibria, namely A11(E11, F11), A12(E12, F12) and A21(E21, F21), A22(E22, F22).
It is easy to verify that F22 > F12 > F11 > F21 > 0 and K > E22 > E12 > E11 > E21 > 0. Let
Ω0 := [E12, E22] × [F12, F22] be a rectangle in the EF-phase plane. Then we can get the following
result.

Electronic Research Archive Volume 31, Issue 7, 3895–3914.



3904

Theorem 2. If R0 > 1 and 0 < m < m∗1, then the systems (2.7) and (2.8) has a T -periodic solution in
Ω0. Suppose (E(t), F(t)) is a solution of the systems (2.7) and (2.8) with E(t0) ≥ E11 and F(t0) ≥ F11

for some t0 ≥ 0, then E(t) ≥ E11 and F(t) ≥ F11 for all t > t0, and dist((E(t), F(t)),Ω0)→ 0 as t → ∞.
Moreover, if such a solution is T -periodic, then (E(t), F(t)) ∈ Ω0 for all t ≥ 0.

Proof. For the conditions R0 > 1, T < T̄ , and 0 < m < m∗1, we obtain the existence of Ai j, i, j = 1, 2.
Let η(E) := KE(τE+τE)

K−E , E ∈ [0,K]. The vertical isoclines E′(t) = 0 of systems (2.7) and (2.8) in the first
quadrant of the EF-phase plane are given by

F = L1(E) =
1

2βE
[η(E) +

√
η2(E) + 4γm(p + 1)βEη(E)],

F = L2(E) =
1

2βE
[η(E) +

√
η2(E) + 4γmpβEη(E)],

respectively (see Figure 1). Since L1(E) > L2(E), the curve of F = L1(E) is strictly above the curve of
F = L2(E) for E > 0. Additionally, F = G(E) := νβE E

δF
is the shared horizontal isocline of systems (2.7)

and (2.8).
Select any two positive numbers Em and EM satisfying E11 < Em < E12 < E22 < EM < K, then

Fm = G(Em) and FM = G(EM). Due to the strict monotonic increase property with respect to E of
G(E), it follows that Fm < FM. Let Ω1 be the closed rectangle with the vertices P1, P2,Q1 and Q2,
where P1 = (Em, Fm), P2 = (EM, Fm), Q1 = (Em, FM), and Q2 = (EM, FM).

Clearly, F11 < Fm < F12 < F22 < FM and Ω0 ⊂ Ω1. Since G(E) is strictly monotone increasing
with respect to E, the segment P1P2 lies strictly below the isocline F = G(E) except for the point P1,
while the segment Q1Q2 lies strictly above the isocline F = G(E) except for the point Q2. According
to the second equation of systems (2.7) and (2.8), we have

dF
dt
= δF(G(E) − F) > δF(G(Em) − Fm) = 0, E ∈ [Em, EM],

dF
dt
= δF(G(E) − F) < δF(G(EM) − FM) = 0, E ∈ [Em, EM).

Thus, the vector fields of (2.7) and (2.8) point into the closed rectangle Ω1 on P1P2 and Q1Q2.

G( )E
Q 1

Q2

P1 P2

A 21

A 11

A 12

A22

Em
EM

Fm

FM

L E2( )L E1( )

E

F

O

Figure 1. The phase-plane analysis in Theorem 2.
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In addition, since L1(E) and L2(E) are both strictly monotone increasing with respect to E on [0,K],
we can see that the entire segment P1Q1 lies strictly above the isocline F = L1(E), and the entire
segment P2Q2 lies strictly below the isocline F = L2(E). From system (2.7), we obtain

dE
dt
=

βE

F + γ(p + 1)m
(1 −

E
K

)(F2 −
γ(p + 1)m + F

βE
η(E))

=
βE

γ(p + 1)m
(1 −

E
K

)(F − L1(E))(F + L−1 (E)),

where L−1 (E) = 1
2βE

[−η(E) +
√
η(E)2 + 4γ(p + 1)mβEη(E)] > 0.

From the system (2.8), we can obtain

dE
dt
=

βE

F + γpm
(1 −

E
K

)(F2 −
γpm + F

βE
η(E))

=
βE

γpm
(1 −

E
K

)(F − L2(E))(F + L−2 (E))

where L−2 (E) = 1
2βE

[−η(E) +
√
η(E)2 + 4γpmβEη(E)] > 0.

Clearly, on the segment P1Q1, we have E ≡ Em, so F > L1(Em) and F > L2(Em). As a result, dE
dt > 0

holds for both systems (2.7) and (2.8) on P1Q1. Similarly, on the segment P2Q2, we have F < L1(EM)
and F < L2(EM), leading to dE

dt < 0 for both systems (2.7) and (2.8) on this segment. Therefore, the
vector fields of systems (2.7) and (2.8) point towards the inside of Ω1 on both P1Q1 and P2Q2.

In summary, Ω1 represents a positive invariant set of the switched systems (2.7) and (2.8), and any
point A ∈ Ω1 will have the trajectory of the systems (2.7) and (2.8) starting from it stay within Ω1.

We define a map Φ : Ω1 → Ω1 as given in [30]:

Φ(A) := (ψT−q ◦ ϕq)(A) = ψT−q(ϕq(A)) (3.15)

Here, ϕt(A) and ψt(A) are the solutions of systems (2.7) and (2.8) starting from the point A, respec-
tively. Since Φ is continuous and maps Ω1 to Ω1, by Brouwer’s fixed point theorem, we know that Φ
has a fixed point Ā ∈ Ω1. Then, the solution of systems (2.7) and (2.8) passing through the point Ā is a
continuous T -periodic solution whose trajectory lies entirely in Ω1.

It is worth noting the arbitrariness of Em and EM. If Em → E12 and EM → E22, then Ω1 → Ω0,
and the continuous T -periodic solution of systems (2.7) and (2.8) in Ω1 lies in Ω0. If Em → E11 and
EM → ∞, then Ω1 → [E11,∞)× [F11,∞). Since Ω1 is an attraction domain, [E11,∞)× [F11,∞) is also
a positively invariant set of systems (2.7) and (2.8). Then, for any solution of systems (2.7) and (2.8)
with E(t0) ≥ E11 and F(t0) ≥ F11, it follows that E(t) ≥ E11 and F(t) ≥ F11 for all t > t0. Moreover,
dist((E(t), F(t)),Ω0) → 0 as t → ∞. Furthermore, if this solution is periodic, then (E(t), F(t)) ∈ Ω0.
Thus, the proof is completed.

When we increase the release amount m to exceed the smaller threshold m∗1, that is, m∗1 ≤ m < m∗2,
we obtain the following result:

Theorem 3. Suppose R0 > 1 and m∗1 < m < m∗2. Then there exist positive constants T0 > 0 and δ0 > 0
such that the systems (2.7) and (2.8) has a continuous and positive T -periodic solution when

q < T0, T − q < δ0. (3.16)
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Proof. According to Lemma 3, when R0 > 1, T < T̄ and m∗1 < m < m∗2, the subsystem (2.8) has two
positive equilibria A21 and A22, while (2.7) has only the extinction equilibrium.

Similar to Theorem 2, we first select two arbitrary positive numbers Em and EM such that 0 < Em <

E22 < EM and G(EM) < L1(Em) (G(E) and Li(E), i = 1, 2 are defined in the proof of Theorem 2). Let
Fm = G(Em) and FM = G(EM). Then we construct a closed rectangleΩ1 with vertices at P1 = (Em, Fm),
P2 = (EM, Fm), Q1 = (Em, FM), and Q2 = (EM, FM). In addition, let P3 be the intersection point of the
segment P1P2 and the isocline F = L2(E), and for any E0 ∈ (Em, E3), denote points P0 := (E0, Fm) and
Q0 := (E0, FM) (see Figure 2). Then Ω1 can be regarded as a rectangle composed of two parts, namely,
Ω1 = Ω

1
1
⋃
Ω2

1, whereΩ1
1 is the rectangle with P1, P0, Q1, and Q0 as its vertices, andΩ2

1 is the rectangle
with P0, P2, Q0, and Q2 as its vertices.

We define ω1 and ω2 as follows:

ω1 := min{G1(E, F) : (E, F) ∈ Ω1
1} < 0,

ω2 := min{G2(E, F) : (E, F) ∈ Ω1
1} > 0,

(3.17)

where G1(E, F) and G2(E, F) are the right-hand side functions of the first equations of systems (2.7)
and (2.8), respectively.

We assume that
q < T0, T − q > δ0, (3.18)

where T0 := E0−Em
−ω1

, δ0 := E0−Em
ω2

.
In the following, we will prove that the Poincare map Φ defined in Theorem 2 is continuous and

maps Ω2
1 to itself. Then, similarly to the proof of Theorem 2, we can deduce that the systems (2.7) and

(2.8) has a continuous and positive T -periodic solution in Ω2
1.

F

P2

G( )E

FM

Fm

Em
E

ME0

P3

A 21

A 22

P1

P0

Q1

Q2

Q0

L E( )1
L2( )E

EO

Figure 2. The phase-plane analysis in Theorem 3.

The vector fields of system (2.7) point towards the interior of Ω1 along the segments P1P2, Q1Q2,
and P2Q2. Therefore, for any solution of system (2.7) with initial value (E(0), F(0)) ∈ Ω2

1, it can only
cross the segment P0Q0 if it leaves Ω1. We will now show that this is impossible by contradiction.
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Suppose there exists a time t0 ∈ [0, q) such that (E(t0), F(t0)) ∈ P0Q0 and (E(t), F(t)) ∈ Ω2
1 for

t ∈ [0, t0). Then, we have E′(t0) < 0, which means that the solution immediately enters Ω1
1 after t0.

When the solution leaves Ω1
1, it can only go through the segment P1Q1.

Now, assume there exists a time t̃ ∈ (t0, q] such that (E(t̃), F(t̃)) ∈ P1Q1 and (E(t), F(t)) ∈ Ω1
1 for

t ∈ [t0, t̃). Then, we have E′(t) = G1(E(t), F(t)) ≥ ω1 for t ∈ [t0, t̃], and E(t̃) = Em ≥ E(t0)+ω1(t̃− t0) ≥
E0 +ω1q. Since ω1 < 0 and q < T0, we have Em < E0 +ω1T0, which is a contradiction. Therefore, any
solution (E(t), F(t)) of system (2.7) with (E(0), F(0)) ∈ Ω2

1 will remain in Ω1 for t ∈ [0, q].
Next, we show that for any solution of system (2.8) with (E(q), F(q)) ∈ Ω1, the solution will stay in

Ω1 for t ∈ [q,T ] with (E(T ), F(T )) ∈ Ω2
1. Noting that the vector fields of system (2.8) point to the inside

of bothΩ1 andΩ2
1, we see that both the rectanglesΩ1 andΩ2

1 are positive invariant sets of system (2.8).
Therefore, (E(q), F(q)) ∈ Ω1 implies (E(t), F(t)) ∈ Ω1 for all t ∈ [q,T ]. Furthermore, we can claim that
(E(T ), F(T )) ∈ Ω2

1. If this does not hold, then (E(t), F(t)) ∈ Ω1
1 for all t ∈ [q,T ] due to the properties

of the invariant set Ω2
1. This implies that E′(t) ≥ ω2 for t ∈ [q,T ] and E(T ) ≥ E(q) + ω2(T − q). We

further deduce that E0 − Em ≥ E(T ) − E(q) ≥ ω2(T − q), which contradicts the inequality (3.18).
In summary, we have shown that for any solution (E(t), F(t)) of systems (2.7) and (2.8) starting from

the initial point (E(0), F(0)) ∈ Ω2
1, the solution will stay in Ω1 for t ∈ [0,T ] and (E(T ), F(T )) ∈ Ω2

1.
Thus, the Poincare map Φ : Ω2

1 → Ω
2
1 is well-defined and has at least one fixed point A∗ in Ω2

1. Then
the solution of systems (2.7) and (2.8) through the point A∗ is a continuous and positive T -periodic
solution. The proof is completed.

Remark 2. If m = m∗1, then the two equilibria A11(E11, F11) and A12(E12, F12) of (2.7) coincide into
one, denoted by A∗1c(E

∗
1c, F

∗
1c). By slightly modifying the proof of Theorem 3 and selecting values of

Em and EM such that E∗1c < Em < E22 < EM and G(EM) < L1(Em), we can similarly prove that the
systems (2.7) and (2.8) has a positive T -periodic solution.

Next, we consider the case where the release amount m is further increased until m ≥ m∗2, and we
present the following result.

Theorem 4. If R0 > 1 and m > m∗2, then the unique extinction equilibrium A0 of systems (2.7) and
(2.8) is globally asymptotically stable.

Proof. According to Theorem 1, if R0 > 1 and m > m∗2, the extinction equilibrium A0(0, 0) of systems
(2.7) and (2.8) is locally asymptotically stable. We will now prove that it is also globally attractive.

To this end, we construct the following system: dẼ
dt = βE F̃(1 − Ẽ

K ) F̃
F̃+γpm − (τE + δE)Ẽ,

dF̃
dt = νβF Ẽ − δF F̃,

t ≥ 0. (3.19)

Similar to the discussion about system (3.1), we can show that system (3.19) is monotone on Ω.
Furthermore, we have

dE
dt
≤

dẼ
dt
,

dF
dt
≤

dF̃
dt
, t ∈ (kT, (k + 1)T ], k = 0, 1, 2, · · · .

Thus, system (3.19) can be regarded as a comparison system for systems (2.7) and (2.8). With the
same initial values Ẽ(0) = E(0) and F̃(0) = F(0), we obtain
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0 ≤ E(t) ≤ Ẽ(t), 0 ≤ F(t) ≤ F̃(t), t ≥ 0.

From Lemma 2, we know that if R0 > 1 and m > m∗2, the trivial equilibrium (0, 0) of system (3.19)
is globally asymptotically stable. That is, for any non-negative initial value (Ẽ(0), F̃(0)), the solution
of system (3.19) from it satisfies

lim
t→∞

Ẽ(t) = 0, lim
t→∞

F̃(t) = 0.

By the comparison theorem, we can easily see that for any non-negative initial value (E(0), F(0)),
the solution of systems (2.7) and (2.8) from it satisfies

lim
t→∞

E(t) = 0, lim
t→∞

F(t) = 0.

Thus, the extinction equilibrium A0(0, 0) of systems (2.7) and (2.8) is also globally attractive. The
proof is completed.

Remark 3. If m = m∗2, then the extinction equilibrium A0(0, 0) of system (2.7) is globally asymp-
totically stable, meaning that every solution of system (2.7) will tend to the extinction equilibrium
A0(0, 0). Moreover, the two equilibria A21(E21, F21) and A22(E22, F22) of system (2.8) coincide into
one, denoted by A∗2c(E

∗
2c, F

∗
2c). According to Lemma 2, this case presents a possible semi-stability,

where the basin of attraction of A0(0, 0) contains the interval [0, A∗2c), denoted as {(E, F) ∈ R+2 : 0 ≤
E < E∗2c, 0 ≤ F < F∗2c}, and the basin of attraction of A∗2c(E

∗
2c, F

∗
2c) contains the interval (A∗2c,∞), de-

noted as {(E, F) ∈ R+2 : E > E∗2c, F > F∗2c}. Due to the continual switching between two subsystems
(2.7) and (2.8), any solution of systems (2.7) and (2.8) must enter [0, A∗2c) after some time and will
eventually tend to the extinction equilibrium A0(0, 0). Therefore, the extinction equilibrium A0(0, 0) of
systems (2.7) and (2.8) is globally asymptotically stable.

Remark 4. According to Theorems 1–4 and Remark 3, the periodic and impulsive release systems
(2.7) and (2.8) has a threshold m∗2 for the release amount m, and only when the release amount m ≥ m∗2,
can the wild mosquito population in the field be successfully suppressed.

4. Numerical simulation

This section aims to illustrate the theoretical results developed in the previous section through sev-
eral numerical examples. We use the values of most model parameters from [31, 34], which are sum-
marized in Table 1.

Another important parameter to be determined is the carrying capacity, denoted by K. We consider
an island with an area of 74 hectares, as in [31, 34], with an estimated male population of about 69
males per hectare. If there are no sterile mosquitoes in the field and the wild population reaches a
stable state, the number of adult wild males is assumed to be M∗ = F∗ = 69 × 74 = 5106. Then, the
number of eggs at the stable state is estimated as E∗ = δF F∗

νβF
= 40848, and the carrying capacity can be

calculated as
K =

E∗

1 − (τE+δE)δF
νβEβF

≈ 43641.
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Table 1. Model parameter values from [31, 34].

Parameters Value Unit Parameters Value Unit
βE 10 day−1 γ 1 -
τE 0.05 - δE 0.03 day−1

δF 0.04 day−1 βF 0.01 day−1

ν 0.5 -

For the sexual lifespan of sterile mosquitoes, we take the value from [17], and set T̄ = 14. Through
direct calculation, we can get

R0 :=
νβEβF

δF(τE + δE)
= 15.625 > 1, m∗( p̃) =

K(1 − ℵ0)2(τE + δE)
4βEγ p̃

≈
18669

p̃
.

When no sterile ones are released, the unique positive equilibrium A∗(E∗, F∗) is globally and uni-
formly asymptotically stable (see Figure 3(a)), which is consistent with the result in Lemma 1.
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Figure 3. Dynamic phenomena of system (3.2). (a) Global stability of the positive equi-
librium A∗ with m = 0; (b) Bistability phenomenon with m = 3250 ∈ (0,m∗(4)); (c) Semi-
stability phenomenon with m = 4667 = m∗(4); (d) Global stability of the extinction equilib-
rium A0 with m = 5000 > m∗(4).

For the constant release system (3.2), we can take p̃ = 4 without loss of generality, yielding m∗(4) ≈
4667. When 0 < m < m∗(4), the system (3.2) displays bistability, as shown in Figure 3(b), where the
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extinction equilibrium A0 and a positive equilibrium are locally stable. Increasing the release amount
to m = m∗(4) results in a unique positive equilibrium that is semi-stable (see Figure 3(c)). However, if
m > m∗(4), then the unique equilibrium A0 becomes globally stable (see Figure 3(d)).

Figure 4. Dynamic phenomena of systems (2.7) and (2.8). (a)–(c) show the bistability of
systems (2.7) and (2.8), which corresponds to the case of 0 < m = 3250 < m∗1, m = m∗1 and
m∗1 < m = 4100 < m∗2, respectively. In these three cases, systems (2.7) and (2.8) has a stable
extinction equilibrium and a stable positive periodic solution. (d) shows the global stability
of the extinction equilibrium A0 with m = 4670 > m∗2.

For the switched systems (2.7) and (2.8), textcolorredwe choose the release period T = 3 and set
T̄ = pT + q with p = 4 and q = 2. After a simple calculation, we obtain m∗1 = m∗(p + 1) ≈ 3735 and
m∗2 = m∗(p) ≈ 4667.

Firstly, let m = 3250 < m∗1 and we note that the systems (2.7) and (2.8) displays bistability. In
addition to the locally stable extinction equilibrium, there also exists a stable positive periodic solution
(see Figure 4 (a)). This is consistent with the conclusions of Theorems 1 and 2. As shown in Figures
4(b,c), when the release amount increases to m∗1 < m < m∗2, the systems (2.7) and (2.8) continues to
exhibit bistability, which is consistent with the conclusions of Theorems 1 and 3. Furthermore, we can
see that the attraction region of the extinction equilibrium increases with the release amount m until the
release amount is not less than m∗2. If m < m∗2, the extinction equilibrium becomes globally attractive
(see Figure 4(d)).
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5. Conclusions

In this work, we constructed and analyzed a two-dimensional switched system of the wild mosquito
population with stage structure and periodic releases of sterile mosquitoes. To consider the role of ster-
ile mosquitoes in the interaction between the two mosquito populations, we referred to some previous
studies and only included sexually active sterile males in the system. Existing research data suggests
that the sexual lifespan T̄ of sterile mosquitoes can be shorter or longer than their release period T , and
in [30], the authors studied the case T̄ ≤ T . Therefore, we focused on investigating the case T̄ > T
based on the switched systems (2.7) and (2.8).

We first investigated the non-release system (3.1) and the general form (3.2) of the two subsystems.
We gave conditions for the existence and stability of their equilibria (Lemmas 2 and 3), which prepared
for the later study of the switched system. Two important release amount thresholds (m∗1 and m∗2) were
determined. Then, we proved that the extinction equilibrium A0(0, 0) of systems (2.7) and (2.8) must
be exponentially asymptotically stable (Theorem 1). This differs from the conclusion in [30] when
T̄ < T since, in the latter case, the extinction equilibrium may be unstable. As systems (2.7) and
(2.8) has no positive equilibrium, we further discussed the existence of positive periodic solutions.
In Theorems 2 and 3, through the analysis of vector fields and using the fixed-point theorem, we
show that systems (2.7) and (2.8) has a positive periodic solution when 0 < m < m∗1 and m∗1 ≤ m <

m∗2. Further increasing the release of sterile mosquitoes, and when m ≥ m∗2, we confirmed that the
extinction equilibrium A0(0, 0) of systems (2.7) and (2.8) becomes globally asymptotically stable. This
is a previously unconfirmed dynamic phenomenon when studying the case of T̄ < T .

Regarding the periodic switched systems (2.7) and (2.8), due to the complexity of its model con-
struction, we only prove the existence of positive periodic solutions using the fixed-point theorem.
However, neither the number nor the stability of the positive periodic solutions are determined. In
future research, we will try more methods to solve these problems, such as constructing Lyapunov
functions to study the stability of periodic solutions [35–37]. In addition, we mainly focus on the theo-
retical study and the validation of the related results in this work. For the numerical analysis, we used
data from a mosquito population on a 74-hectare island. Due to the relatively small number of wild
mosquitoes on the island, the amplitude of the periodic fluctuation in the mosquito population is indeed
small. In future research, we will collect and organize relevant data from other scenarios with large
mosquito populations, and apply our research results to the development of management strategies for
wild mosquito populations.
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