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1. Introduction

It is well-known that the Navier-Stokes equations are the typical evolution equations and widely
used in the field of science and engineering. The attractors of Navier-Stokes equations are studied by
many scholars in the fields of dynamical systems for a long time (see [1–15] and reference therein).
Especially in recent years, there are many research achievements on g-Navier-Stokes equation. In
[16–18], Roh deduced the 2D g-Navier-Stokes equations from 3D Navier-Stokes equations on thin
region. It can be viewed as a perturbation of the usual Navier-Stokes equations. Bae et al. studied
the well-posedness of weak solution for the 2D g-Navier-Stokes equations. Kwak et al. researched
the global attractor and its fractal dimension of 2D g-Navier-Stokes equations in [19]. In [20–24],
Jiang et al. studied global and the pullback attractor for g-Navier-Stokes equation. Moreover, the
long-time behavior for 2D non-autonomous g-Navier-Stokes equations and the stability of solutions
to stochastic 2D g-Navier-Stokes equations were studied by Anh in [25,26], The stationary solutions
and its pullback attractor are researched in [27]. On the basis of the above research, we have studied
the long time properties for g-Navier-Stokes equation with weakly dampness and time delay in [28]
recently.

In this manuscript, the uniform attractor of the g-Navier-Stokes equations with nonlinear dampness
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is researched. Its usual form is as follows:

∂u
∂t − ν∆u + (u · ∇)u + c|u|β−1u + ∇p = f (x, t) in [τ,+∞) ×Ω

∇ · (gu) = 0 in [τ,+∞) ×Ω
u(x, t) = 0 in [τ,+∞) × ∂Ω

u(τ, x) = uτ(x) x ∈ Ω

(1.1)

In (1.1), we can see that u(t, x) ∈ R2 and p(t, x) ∈ R denote the velocity and pressure respectively.
ν > 0 is the viscosity coefficient, c|u|β−1u denotes nonlinear dampness. c > 0 and β ≥ 1 are positive
constant. f = f (x, t) is the external force term, 0 < m0 ≤ g = g(x1, x2) ≤ M0 and g = g(x1, x2) is a
suitable smooth function, Let c = 0 and g = 1, the Eq (1.1) will become the usual 2D Navier-Stokes
equations.

This manuscript is organized as follows. In Section 2, we recall some basic results of 2D g-Navier-
Stokes equations, then we give the concept about process families and uniform attractor. In Section 3,
the global well-posedness of weak solutions for 2D g-Navier-Stokes equations with nonlinear damp-
ness is studied. In Section 4, by the energy equation method, the existence of the uniform attractor of
2D g-Navier-Stokes equation with nonlinear dampness is proved on the unbounded domain. In Section
5, the dimension estimation of the uniform attractor in the quasi-periodic case is obtained.

2. Preliminaries

We assume Ω is a smooth unbounded domian of R2, Let L2(g) = (L2(Ω))2 and we denote (u, v) =∫
Ω

u · νgdx and | · | = (·, ·)1/2, u, v ∈ L2(g). Let H1
0(g) = (H1

0(Ω))2, Set

((u, v)) =
∫
Ω

2∑
j=1

∇u j · ∇v jgdx,

and || · || = ((·, ·))1/2, u = (u1, u2), v = (v1, v2) ∈ H1
0(g). We denote D(Ω) be the space of C∞ functions

with compact support contained in Ω. So we have the following spaces

H = {v ∈ (D(Ω))2 : ∇ · gv = 0 in Ω};

Hg = closure o f H in L2(g);

Vg = closure o f H in H1
0(g).

where Hg and Vg endowed with the inner product and norm of L2(g) and H1
0(g) respectively.

We assume that there exists λ1 > 0, such that

|u|2 ≤
1
λ1
||u||2,∀u ∈ Vg. (2.1)

This Poincaré-type inequality imposes some restrictions on the geometry of the domain Ω.
The g-Laplacian operator is defined as follows:

− ∆gu = −
1
g

(∇ · g∇)u = −∆u −
1
g
∇g · ∇u.
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The first equation of (1.1) can be rewritten as follows:

∂u
∂t
− ν∆gu + ν

∇g
g
· ∇u + c|u|β−1u + (u,∇)u + ∇p = f . (2.2)

In [16], g-orthogonal projection and g-Stokes operator are defined respectively by Pg : L2(g)→ Hg

and Agu = −Pg( 1
g (∇ · (g∇u))). Applying the projection Pg on the Eq (2.2), we have the following weak

formulation of (1.1).

d
dt

(u, v) + ν((u, v)) + c(|u|β−1u, v) + bg(u, u, v) + ν(Ru, v) = ⟨ f , v⟩ ∀v ∈ Vg,∀t > 0, (2.3)

u(0) = u0, (2.4)

where bg : Vg × Vg × Vg → R and

bg(u, v,w) =
2∑

i, j=1

∫
ui
∂v j

∂x
w jgdx,

we have
Ru = Pg[

1
g

(∇g · ∇)u],∀u ∈ Vg.

Then the formula (2.3) and (2.4) are equivalent to the following functional equations

du
dt
+ νAgu + c|u|β−1u + Bu + νRu = f (2.5)

u(0) = u0 (2.6)

We denote
⟨Agu, v⟩ = ((u, v)),∀u, v ∈ Vg. (2.7)

From [16,17,19], we have

||B(u)||V′g ≤ c|u|||u||, ||Ru||V′g ≤
|∇g|∞
m0λ

1/2
1

||u||, ∀u ∈ Vg.

where B(u) = B(u, u) = Pg(u · ∇)u is defined by

⟨B(u, v),w⟩ = bg(u, v,w),∀u, v,w ∈ Vg.

A family of two parametric maps {U f (t, τ)} = {U f (t, τ)|t ≥ τ, τ ∈ R} is defined in Hg as follows:

U f (t, τ) : E → E, t ≥ τ, τ ∈ R.

The following concepts and conclusions are given from [7]. ∀ f ∈ L∞(R+; V ′g), the translation operator
is defined in L∞(R+; V ′g) as follows.

T (h) f (s) = f (s + h), ∀ h ≥ 0, s ∈ R.

Obviously
||T (h) f ||L∞(R+;V′g) ≤ || f ||L∞(R+;V′g), ∀ h ≥ 0, f ∈ L∞(R+; V ′g).
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We set Σ = {T (h) f (x, s) = f (x, s + h), ∀ h ∈ R}, where T (·) is the positive invariant semigroups
which act on Σ and satify T (h)Σ ⊂ Σ, ∀ h ≥ 0 and

UT (h) f (t, τ) = U f (t + h, τ + h), ∀ h ≥ 0, t ≥ τ ≥ 0.

Let ρF > 0 be constant, Σ ⊂ { f ∈ L∞(R+; V ′g) : || f ||L∞(R+;V′g) ≤ ρF }. For {U f (t, τ)} with f ∈ Σ , we call
the parameter f as the symbols of the process family {U f (t, τ)}, and Σ as the symbol space.

Definition 2.1 [7] A family of two-parametric maps {U(t, τ)} is called a process in Hg, if
(1)U f (t, s)U f (s, τ) = U f (t, τ), ∀ t ≥ s ≥ τ, τ ∈ R,
(2)U f (τ, τ) = Id, τ ∈ R.
Let E be the Banach space, B(E) is denoted the set of all bounded sets on E, then
Definition 2.2 [7] A set B0 ⊂ E is said to be uniformly absorbing for the family of processes

{U f (t, τ)}, f ∈ Σ} , if for any τ ∈ R and each B ∈ B(E), there exists t0 = t0(τ, B) ≥ τ, such that for all
t ≥ t0, ⋃

f∈Σ

U f (t, τ)B ⊆ B0.

Definition 2.3 [7] A set P ⊂ E is said uniformly atttracting set of {U f (t, τ)}, f ∈ Σ}, if for any τ ∈ R,
there is

lim
t→+∞

(sup
f∈Σ

distE(U f (t, τ)B, P)) = 0.

Definition 2.4 [7] A closed setAΣ ⊂ E is said to be the uniform attractor of the family of processes
{U f (t, τ)}, f ∈ Σ}, if

(1)AΣ ⊂ E is uniformly attractive;
(2)AΣ ⊂ E is included in any uniformly attracting setA′ of {U f (t, τ)}, f ∈ Σ}, that isAΣ ⊂ A′.

3. The well-posedness of the solution for 2D g-Navier-Stokes equations with nonlinear
dampness in unbounded domain

In the section we will prove the well-posedness of the solution for 2D g-Navier-Stokes equations
with nonlinear dampness by the Faedo-Galerkin method.

Definition 3.1 Let u0 ∈ Hg, f ∈ L2
Loc(R; V ′g), For any τ ∈ R, u ∈ L∞(τ,T ; Vg) ∩ L2(τ,T ; Vg) ∩

Lβ+1(τ,T ; Lβ+1(Ω)),∀T > τ is called a weak solution of problem (1.1) if it fulfils
d
dt u(t) + νAgu(t) + B(u(t)) + c|u|β−1u + νR(u(t)) = f (x, t) onD′(τ,+∞; V ′g),

u(τ) = u0.
Theorem 3.1 Let β ≥ 1, f ∈ L2

Loc(R; V
′

g), Then for every uτ ∈ Vg, the equations (1.1) have a
unique weak solution u(t) = u(t; τ, uτ) ∈ L∞(τ,T ; Vg) ∩ L2(τ,T ; Vg) ∩ Lβ+1(τ,T ; Lβ+1(Ω)), and u(t) is
continuously depending on the initial value in Vg.

Proof. Let {w j} j≥1 be the eigenfunctions of −∆ on Ω with homogeneous Dirichlet boundary condi-
tions, Its corresponding eigenvalues are 0 < λ1 ≤ λ2 ≤ . . . , Obviously, {w j} j≥1 ⊂ Vg forms a Hilbert
basis in Hg, given uτ ∈ Vg and f ∈ L2

Loc(R; V
′

g).
For any positive integer n ≥ 1, we structure the Galerkin approximate solutions as un(t) =

un(t; T, uτ), It has the following form

un(t,T ; uτ) =
n∑

j=1

γn, j(t)w j.
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where γn, j(t) is determined from the initial values of the following system of nonlinear ordinary differ-
ential equations.

(u
′

n(t),w j) + ν((un(t),w j)) + c(|un(t)|β−1un(t),w j) + b(un(t), un(t),w j) + b(
∇g
g
, un(t),w j)

= ⟨ f (x, t),w j⟩, t > τ, j = 1, 2, . . . n (3.1)

((un(t),w j)) = ((uτ,w j)).

where ⟨·⟩ is dual product of Vg and V
′

g.
According to the results of the initial value problems of ordinary differential equations, we have

that there exists a unique local solution of (3.1). In the following, we prove that the time interval of the
solution can be extended to [τ,∞).

1
2

d
dt
|un(t)|22 + ν||un(t)||2 + c|un(t)|β+1

β+1 + b((
∇g
g
· ∇)un(t), un(t)) = ⟨ f (x, t), un(t)⟩ (3.2)

Using Cauchy’s inequality and Young’s inequality, we have

⟨ f (x, t), un(t)⟩ ≤ || f (x, t)||∗ · ||un(t)||

≤
ν

2
||un||

2 +
1
2ν
|| f (x, t)||2∗ (3.3)

where || · ||∗ is norm of V
′

g. We take (3.3) into (3.2) to obtain

1
2

d
dt
|un(t)|22 + ν||un(t)||2 + c|un(t)|β+1

β+1 + b((
∇g
g
· ∇)un(t), un(t))

≤
ν

2
||un||

2 +
1
2ν
|| f (x, t)||2∗

d
dt
|un(t)|22 + 2ν||un(t)||2 + 2c|un(t)|β+1

β+1 + 2b((
∇g
g
· ∇)un(t), un(t))

≤ ν||un||
2 +

1
ν
|| f (x, t)||2∗

d
dt
|un(t)|22 + ν||un(t)||2 + 2c|un(t)|β+1

β+1 + 2b((
∇g
g
· ∇)un(t), un(t)) ≤

1
ν
|| f (x, t)||2∗ (3.4)

That is
d
dt
|un(t)|22 + ν||un(t)||2 + 2c|un(t)|β+1

β+1 ≤
1
ν
|| f (x, t)||2∗ + 2ν

|∇g|∞
m0λ

1/2
1

||un(t)||2

d
dt
|un(t)|22+ ν(1−

2|∇g|∞
m0λ

1/2
1

)||un(t)||2+2c|un(t)|β+1
β+1 ≤

1
ν
|| f (x, t)||2∗ (3.5)

By integrating (3.5) from τ to t, we have

|un(t)|2 + ν(1 −
2|∇g|∞
m0λ

1/2
1

)
∫ t

τ

||un(s)||2ds + 2c
∫ t

τ

|un(s)|β+1
β+1ds
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≤ |un(τ)|2 +
1
ν

∫ t

τ

|| f (x, s)||2∗ds.

For any T > 0 and β ≥ 1, we obtain

sup
τ≤t≤T

(|un(t)|2) + ν(1 −
2|∇g|∞
m0λ

1/2
1

)
∫ t

τ

||un(s)||2ds + 2c
∫ t

τ

|un(s)|β+1
β+1ds

≤ |un(τ)||2 +
1
ν

∫ t

τ

|| f (x, s)||2∗ds ≤ C.

So we can obtain that {un(t)} is bounded in L∞(τ,T ; Vg), (3.6)
{un(t)} is bounded in L2(τ,T ; Vg), (3.7)
and {un(t)} is bounded in Lβ+1(τ,T ; Lβ+1(Ω)). (3.8)
So un(t) ∈ L∞(τ,T ; Vg). Therefore B(un(t)) ∈ L∞(τ,T ; V

′

g),
|un(t)|β−1un(t) ∈ Lβ+1(τ,T ; Lβ+1(Ω)). As a result,

d
dt
⟨un(t), v⟩ = ⟨ f (x, t) − c|un(t)|β−1un(t) − νAun(t) − B(un(t)) − νR(un(t)), v⟩, ∀v ∈ Vg.

so {u
′

n(t)} is bounded in L2(τ,T ; Vg).
Then we deduce that there is a subsequence in {un(t)}, which is still denoted by {un(t)}. We obtain

un(t) ∈ L2(τ,T ; Vg) and u
′

n(t) ∈ L2(τ,T ; Vg) such that
(i)un(t)→ u(t) is weakly ∗ convergent in L∞(τ,T ; Vg);
(ii)un(t)→ u(t) is weakly convergent in L2(τ,T ; Vg);
(iii)|un(t)|β−1un(t)→ ξ is weakly convergent in Lβ+1(τ,T ; Lβ+1(Ω));
(iv)u

′

n(t)→ u
′

(t) is weakly convergent in L2(τ,T ; Vg);
(v)un(t)→ u(t) is strongly convergent in L2(τ,T ; Hg);
(vi)un(t)→ u(t), a e (x, t) ∈ Ω × [τ,T ].
From Lemma 1.3 of [29], we can see ξ = |u|β−1u. Since

⋃
n∈N+ span{w1,w2, · · · ,wn} is denseness in

Vg, Taking the limit n→ ∞ on both sides of Eq (3.1), we can obtain that u is a weak solution of (1.1).
In the following, the solution is proved to be unique and continuously dependent on initial values.

Let u1, u2 be two weak solutions of (1.1) corresponding to the initial values u1τ, u2τ ∈ Vg, We take
u = u1 − u2, From (2.3) we have

1
2

d
dt

(|u|2) + ν||u||2 + c(|u1|
β−1u1 − |u2|

β−1u2, u) + ν(Ru, u) = ⟨B(u2) − B(u1), u⟩. (3.9)

Using Hölder inequality and Sobolev embedding theorem, we obtain

(|u1|
β−1u1 − |u2|

β−1u2, u) =
∫
Ω

(|u1|
β−1u1 − |u2|

β−1u2)(u1 − u2)dx

≥

∫
Ω

(|u1|
β+1 − |u1|

β|u2| − |u2|
βu1 + |u2|

β+1)dx

=

∫
Ω

(|u1|
β − |u2|

β)(|u1| − |u2|)dx ≥ 0. (3.10)
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we have
|⟨B(u2) − B(u1), u⟩ = |⟨B(u2, u2 − u1) − B(u1 − u2, u1), u⟩|

≤ C1||u2||||u2 − u1||||u|| +C1||u1 − u2||||u1||||u||

= C1||u||2(||u1 + ||u2||)

≤ C1||u||2 (3.11)

where C1 > 0 is any constant.

ν(Ru, u) ≤ ν
||∇g||∞
m0λ

1/2
1

||u|||u|

≤
ν||∇g||∞
2m0λ

1/2
1

(||u||2 + |u|2)

= α(||u||2 + |u|2). (3.12)

where α = ν||∇g||∞
2m0λ

1/2
1

. so

1
2

d
dt
|u|2 + ν||u||2 ≤ C1||u||2 + α(||u||2 + |u|2).

d
dt
|u|2 + 2(ν −C1 − α)λ1|u|2 ≤ α|u|2.

Thus
d
dt
|u|2 ≤ [α − 2λ1(ν −C1 − α)]|u|2.

Let C be a constant and C = α − 2λ1(ν −C1 − α) > 0, then

d
dt
|u|2 ≤ C|u|2.

Therefore
|u|22 ≤ eC(t−τ)|uτ|22.

So we prove the continuous dependence on the initial value. When u1τ = u2τ, that is uτ = 0, then the
uniqueness of the solution holds.

4. The uniform attractor of 2D g-Navier-Stokes equations with nonlinear dampness in
unbounded domain

In the following we have that the family of processes {U f (t, τ)}, f ∈ Σ is uniformly bounded
(w.r.t. f ∈ Σ) and it has uniform absorbing sets.

Firstly, the existence of uniformly absorbing sets is proved. Taking the inner product of (2.5) with
u, we have

d
dt
|u|2 + 2ν||u||2 + 2c|u|β+1 = 2⟨ f , u⟩ − 2ν((

∇g
g
· ∇)u, u),
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Then
d
dt
|u|2 + 2ν||u||2 + 2c|u|β+1 ≤

|| f ||2
L∞(R+;V′g)

ν
+ ν||u||2 + 2ν

|∇g|∞
m0λ

1/2
1

||u||2,

For β ≥ 1, we obtain

d
dt
|u|2 + νλ1γ|u|2 ≤

d
dt
|u|2 + νγ||u||2 ≤

|| f ||2
L∞(R+;V′g)

ν
,

where γ = 1 − 2|∇g|∞
m0λ

1/2
1
> 0 for sufficiently small |∇g|∞. Using the Gronwall inequality, we have

|u(t)|2 ≤ |u0|
2e−νλ1γt +

|| f ||2
L∞(R+;V′g)

ν2λ1γ
, ∀ t > 0.

and from
d
dt
|u|2 + 2ν||u||2 + 2c|u|β+1 ≤

|| f ||2
L∞(R+;V′g)

ν
+ ν||u||2 + 2ν

|∇g|∞
m0λ

1/2
1

||u||2,

we have
d
dt
|u|2 + ν||u||2 + 2c|u|β+1 ≤

|| f ||2
L∞(R+;V′g)

ν
+ 2ν

|∇g|∞
m0λ

1/2
1

||u||2.

So

d
dt
|u|2 + ν(1 −

2|∇g|∞
m0λ

1/2
1

)||u||2 ≤
|| f ||2

L∞(R+;V′g)

ν
. (4.1)

Integrating (4.1) in s from 0 to t, we have

1
t

∫ t

0
||u(s)||2ds ≤

|u0|
2

tνγ
+

|| f ||2
L∞(R+;V′g)

ν2γ
, ∀ t > 0.

then we know that the family of processes corresponding to u is uniformly bounded, and

B0 = {u ∈ Hg : |u| ≤ ρ0 =
1
ν

√
2
λ1γ
|| f ||L∞(R+;V′g)}

is uniformly absorbing set in Hg. Then the following lemma holds.
Lemma 4.1 Let Σ be symbolic space, The process family corresponding to Eq (1.1) is uniformly

bounded in L∞(R+; Hg) ∩ L2(τ,T ; Vg) and there is a uniform absorbing set in Hg.
Lemma 4.2 Let τ ≥ 0, uτn be the sequence in Hg that weakly converges to uτ ∈ Hg, fn ∈ Σ is the

sequence in L∞(R+; V
′

g) that weakly converges to f , then
(1) For ∀ t > τ, U fn(t, τ)uτn is weakly converges to U f (t, τ)uτ in Hg;
(2) For ∀ T > τ, U fn(·, τ)uτn is weakly converges to U f (·, τ)uτ in L2(τ,T ; Vg).
The proof is similar to Lemma 3.2 of [7], so it is omitted.
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As we know, when uτn is bounded in Hg, fn ⊂ Σ, tn → +∞. If {U fn(tn, τ)uτn} is precompact in Hg,
then the family of processes {U f (t, τ)}, f ∈ Σ is asymptotically compact. So we construct an energy
functional [·, ·] : Vg × Vg → R as follows:

[u, v] = ν((u, v)) +
ν

2
((
∇g
g
,∇)u, v) +

ν

2
((
∇g
g
,∇)v, u) −

νλ1

4
(u, v) + c(|u|β−1u, v), ∀ u, v ∈ Vg.

Obviously [·, ·] is bilinear and symmetric, and

[u]2 = [u, u] = ν||u||2 + ν((
∇g
g
· ∇)u, u) −

νλ1

4
|u|2 + c|u|β+1

≥ ν||u||2 − ν(
|∇g|∞
m0λ

1/2
1

+
1
4

)||u||2

≥
ν

2
||u||2. (4.2)

Let |∇g|∞ be sufficiently small in (4.2), such that |∇g|∞
m0λ

1/2
1
< 1

4 . Hence

ν

2
||u||2 ≤ [u]2 ≤

3
2
ν||u||2, ∀ u ∈ Vg.

Since
d
dt
|u|2 +

vλ1

2
|u|2 + 2[u]2 = 2( f , u),

Given u = u(t) = U f (t, τ)uτ, uτ ∈ Hg, t ≥ τ ≥ 0, Then we have

|U f (t, τ)uτ|2 = |uτ|2e−νλ1(t−τ)/2 + 2
∫ t

τ

e−νλ1(t−s)/2(( f ,U f (s, τ)uτ) − [U f (s, τ)uτ]2)ds.

That is ∀ uτ ∈ Hg, t ≥ τ ≥ 0, we obtain

|U f (t, τ)uτ|2 = |uτ|2e−νλ1(t−τ)/2

+2
∫ t−τ

0
e−νλ1(t−τ−s)/2((T (τ) f (s),UT (τ) f (s, 0)uτ) − [UT (τ) f (s, 0)uτ]2)ds.

Lemma 4.3 Let {U f (t, τ)} f∈Σ is the family of processes of Eq (1.1), then {U f (t, τ)} f∈Σ is uniformly
asymptotically compact.

Proof. Let B ⊂ Hg is bounded, uτn ∈ B, fn ∈ Σ and tn ∈ R
+ is satisfied tn → +∞(n → +∞). From

Lemma 4.1, we have a constant M(B, τ) > τ and

U f (t, τ)B ⊂ B0, ∀ t ≥ M(B, τ), f ∈ Σ.

There exists sufficiently large tn ≥ M(B, τ), such that U fn(tn, τ)B ⊂ B0. then {U fn(tn, τ)uτn} is weakly
precompact in Hg. For w ∈ B0 ⊂ Hg, we can deduce that U fns (tns , τ)uτns is weakly convergent to w
in Hg. Similarly ∀ T > 0 and tns ≥ T + M(B, τ), we obtain U fns (tns − T, τ)uτns ∈ B0. The same to
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wT ∈ B0, we can take ns, ∀T > 0, so we have utns = U fns (tns − T, τ)uτns is weakly convergent to wT in
Hg. According to the definition of process and translation operator, we have

U fns (tns , τ) = UT (tns−T ) fns (T, 0) ◦ U fns (tns − T, τ).

Let gT,ns = T (tns − T ) fns , we denote limnsHw as weak limit in Hg, then

w = lim
nsHw

U fns (tns , τ)uτns = lim
nsHw

UgT,ns (T, 0)utns = UgT (T, 0)wT ,

thus
|w| ≤ lim inf

ns
|U fns (tns , τ)uτns | = lim inf

ns
|UgT,ns (T, 0)utns |.

Now we will prove
lim sup

ns
|U fns (tns , τ)uτns | ≤ |w|.

∀T > 0, we have wk = Ugk
T
(T, 0)wT . When tns ≥ T + M(B, τ), we obtain

Ugk
T,ns

(T, 0)utns

= 2
∫ t

0
e−νλ1(T−s)/2((gk

T,ns(s),Ugk
T,ns

(s, 0)uts
n) − [Ugk

T,ns
(s, 0)utns ]2)ds + |utns |

2e−νλ1T/2

Obviously
lim sup

ns
(e−νλ1T/2|utns |

2) ≤ ρ2
0e−νλ1T/2.

From Lemma 4.2, we obtain∫ T

0
e−νλ1T/2[Ugk

T
(s, 0)wT ]2ds ≤ lim inf

ns

∫ T

0
e−νλ1T/2[Ugk

T,ns
(s, 0)utns ]2ds.

So

lim sup
ns
−2

∫ T

0
e−νλ1T/2[Ugk

T,ns
(s, 0)utns ]2ds

= −2 lim inf
ns

∫ T

0
e−νλ1T/2[Ugk

T,ns
(s, 0)utns ]2ds

≤ −2
∫ T

0
e−νλ1T/2[Ugk

T
(s, 0)wT ]2ds.

For

lim
ns→∞

∫ T

0
e−νλ1(T−s)/2(gk

T,ns(s),Ugk
T,ns

(s, 0)utns )ds =
∫ T

0
e−νλ1(T−s)/2(gk

T (s),Ugk
T
(s, 0)wT )ds

thus

lim sup
ns
|Ugk

T,ns
(T, 0)utns |

2 ≤ 2
∫ T

0
e−νλ1(T−s)/2((gk

T (s),Ugs
T
(s, 0)wT ) − [Ugs

T
(s, 0)wT ]2)ds

+ρ2
0e−νλ1T/2.
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From wk = Ugs
T
(s, 0)wT , we have

|wk|2 = |Ugs
T
(s, 0)wT |

2

= e−νλ1T/2|wT |
2 + 2

∫ T

0
e−νλ1(T−s)/2((gk

t (s),Ugk
T
(s, 0)wT ) − [Ugk

T
(s, 0)wT ]2)ds.

∀T > 0, we have

lim sup
ns
|Ugk

T,ns
(T, 0)utns |

2 ≤ |wk|2 + (ρ2
0 − |wT |

2)e−νλ1T/2 ≤ |wk|2 + ρ2
0e−νλ1T/2.

From w = UgT (T, 0)wT , by the Lemma 3.3 of [7] and Lemma 4.2, we can obtain wk → w in Hg. So
there exists any sufficiently small ε > 0, such that |wk|2 ≤ |w|2 + ε. Since

sup
ns→+∞

|U fns (tns , τ)uτns |
2 = sup

ns→+∞

|UgT,ns (T, 0)utns |
2 ≤ |w|2 + ε + ρ2

0e−νλ1T/2.

When ε→ 0, T → ∞, we have

lim sup
ns
|U fns (tns , τ)uτns |

2 ≤ |w|2.

Let B ⊂ Hg be any bounded set, we have

ωτ,Σ(B) =
⋂
t≥τ

⋃
f∈Σ

⋃
s≥t

U f (s, τ)B.

and v ∈ ωτ,Σ(B) iff there exists a sequence vn ∈ B, fn ∈ Σ, tn ∈ [τ,+∞). When n → ∞, we have
tn → +∞ and U fn(tn, τ)vn → v in Hg. When {U f (t, τ)}, f ∈ Σ} is uniformly asymptotically compact,
t → +∞, we have

sup
f∈Σ

distHg(U f (t, τ)B, ωτ,Σ(B))→ 0.

We will obtain the minimization of the uniform attractor in the following.
Lemma 4.4 Let {U f (t, τ)}, f ∈ Σ is any the family of processes, B0 is uniformly absorbing set,

AΣ = ω0,Σ(B0). then AΣ is contained in any uniform absorbing set of {U f (t, τ)}, f ∈ Σ.
Proof. ∀ τ > 0, ∀ B ⊂ Hg, Suppose there is another bounded closed set P ⊂ Hg which satisfies

lim
t→∞

sup
f∈Σ

distHg(U f (t, τ)B, P) = 0,

whereAΣ is not contained in the P. We deduce there is at least one v ∈ AΣ and v < P. Since v ∈ AΣ =
ω0,F (B0), From the definition of the uniform ω limit set, there is a sequence vn ∈ B, fn ∈ Σ, tn ∈

[τ,+∞), as n→ ∞ , we have tn → +∞, then U fn(tn, 0)vn → v is obtained in Hg. Given ṽn = U fn(tn, 0)vn,
when n → +∞, There must be U fn(tn, τ)ṽn → v. Let ṽn ∈ B, then we obtain v ∈ P, It is contradiction,
soAΣ ⊂ P.

Theorem 4.1 Let {U f (t, τ), f ∈ Σ} is a family of processes of Eq (1.1), Then the process family
has a unique compact uniform attractorAΣ ⊂ Hg. where AΣ = ω0,Σ(B0), B0 is any uniform absorbing
set corresponding to a family of processes.
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5. The dimension estimation of the uniform attractor in the quasi-periodical case

When f (x, t) = f (x,w1(t),w2(t), . . . ,wk(t)) is a quasi-periodic function, That is, there exists a
set of rational independent real numbers α1, . . . , αk which satisfies f (x, α1t, . . . , αit + 2π, . . . , αkt) =
f (x, α1t, . . . , αit, . . . , αkt) (1 ≤ i ≤ k).Here w1(t+α1) = w1(t),w2(t+α2) = w2(t), . . . ,wk(t+αk) = wk(t)
and α1, α2, . . . , αk are rational independent.

Let αt = (α1t, . . . , αkt), α = (α1, . . . , αk), w(t) = (w1(t), . . . ,wk(t)) = [αt +w0] = (αt +w0)mod(2π)k,
w0 = (w01, . . . ,w0k) ∈ T k = [0, 2π]k, F(x,w(t)) = f (x, t). we can obtain the following conclusion.

Theorem 5.1 LetA is the uniform attractor of (1.1), then its Hausdorff and Fractal dimensions are
estimated as follows:

dH(A) ≤
4
νm1λ1

(
C2

q | f |
2

2ν3λ1m1m2
+

G2k
νm1λ1

) + k + 1.

dF(A) ≤
16
νm1λ1

(
C2

q | f |
2

2ν3λ1m1m2
+

G2k
νm1λ1

) + 2k + 2.

where

G = (
k∑

i=1

|
∂F
∂wi
|2BC(T k ,Hg))

1
2 ,

m1 = 1 +
|∇g|∞
m0λ

1/2
1

, m2 = 1 −
|∇g|∞
m0λ

1/2
1

.

Proof. We transform the Eq (1.1) into the following forms of autonomous systems by semigroup
S (t)(u0,w0) = (Uw0(t, 0)u0,T1(t)w0),

∂u
∂t
− ν∆gu + B(u, u) + ν(

∇g
g
· ∇)u + c|u|β−1u + ∇p = F(x,w(t)) (5.1)

d
dt

w(t) = α (5.2)

u|t=0 = u0, u(t)|t=0 = w0, u0 ∈ Hg, w0 ∈ T k. (5.3)

Let y(t) = (u(x, t),w(t))T , M(y(t)) = (ν∆gu − B(u, u) − ν(∇g
g · ∇)u − c|u|β−1u − ∇p + F(x,w(t)), α)T .

Then we can write the Eqs (5.1) and (5.2) as follows,

∂y(t)
∂t
= M(y(t)) (5.4)

y(t)|t=0 = y0 = (u0,w0) (5.5)

∀y0 ∈ A, where y(t) = (u(t),w(t))T is the solution of Eqs (5.1) and (5.2) and y0 as initial value. The
linearized equation of (5.1) in y(t) is

∂z(t)
∂t
= M

′

(y(t))z (5.6)

z(t)|t=0 = z0 (5.7)

In the equation of (5.6), z(t) = (v(t),w(t))T , µ(t) = (µ1(t), · · · , µk(t)), z0 = (v0, µ0)T ∈ Hg × T k,

M
′

(y(t))z = (ν∆gv − B(v, u) − B(u, v) − ν(
∇g
g
· ∇)v − c|u|β−1v − ∇ p̃ + F

′

wu, 0)T .
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while
(M

′

(y(t))z, z) = −ν||v||2 − b(v, u, v) −
ν|∇g|∞
m0λ

1/2
1

||v||2 − c|u|β−1|v|2 −
∫
Ω

F
′

wu · vdx

≤ −ν||v||2 +
∫
Ω

|∇u| · |v|2dx +
ν|∇g|∞
m0λ

1/2
1

||v||2 +
c|u|β−1

λ1
||v||2 +

∫
Ω

|F
′

wu| · |v|dx

Let

G = (
k∑

i=1

|
∂F
∂wi
|2BC(T k ,H))

1/2,

then

(M
′

(y(t))z, z) ≤ −ν(1 −
|∇g|∞
m0λ

1/2
1

−
c|u|β−1

λ1
)||v||2 +

∫
Ω

|∇u| · |v|2dx +
bG
2
|v|2 +

G
2b
|u|2.

b is any positive constant, Let (M(y(t))z, z) = (M1v, v) + (M2µ, µ),

M1v = −ν(1 −
|∇g|∞
m0λ

1/2
1

−
c|u|β−1

λ1
)∆gv + (|∇u| +

bG
2

)v, M2µ =
G
2b

Ikµ.

Ik is identity operator in Rk. Thus operator

M̃1 =

(
M1 0
0 M2

)
is block operator, (v1, 0), · · · , (vn−k, 0) are respectively solution of (2.7) with (ξ1, 0), · · · , (ξn−k, 0) as the
initial value, where ξ1, · · · , ξn−k is linearly independent basis in Hg, ϕ1, · · · , ϕn−k is unit orthogonal
basis of span{v1, · · · , vn−k}, µ̃n−k+1, · · · , µ̃n is unit orthogonal basis of Rk, then (ϕ1, 0), · · · , (ϕn−k, 0),
(0, µ̃n−k+1), · · · , (0, µ̃n) is unit orthogonal basis of Hg × Rk. Let θi = (ϕi, 0) (i = 1, · · · , n − k), vi =

(0, µ̃i), (n − k + 1 ≤ i ≤ n).

qn = lim
T→∞

inf sup
y0∈A

(
1
T

∫ T

0

n∑
1

(M
′

(y(s))θi, θi)ds).

n∑
1

(M
′

(y(s))θi, θi) ≤ −ν(1 −
|∇g|∞
m0λ

1/2
1

−
c|u|β−1

λ1
)

n−k∑
i=1

||φi||
2 + ||u||(

∫
Ω

(
n−k∑
i=1

|ϕi|
2)2dx)1/2 +

bG
2

(n − k) +
G
2b

k.

We make m1 = 1 − |∇g|∞
m0λ

1/2
1
−

c|u|β−1

λ1
, then

n∑
1

(M
′

(y(s))θi, θi) ≤ −νm1

n−k∑
i=1

||φi||
2 + ||u||(

∫
Ω

(
n−k∑
i=1

|ϕi|
2)2dx)1/2 +

bG
2

(n − k) +
G
2b

k

≤ −
νm1

2

n−k∑
i=1

||φi||
2 +

C2
q

2νm1
||u||2 +

bG
2

(n − k) +
G
2b

k.

We take b = νm1λ1
2G , then

n∑
1

(M
′

(y(s))θi, θi) ≤ −
νm1λ1

4
(n − k) +

C2
q

2νm1
||u||2 +

G2k
νm1λ1

.
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Since
1
2

d
dt
|u|2 + ν||u||2 = ( f , u) − ν((

∇g
g
· ∇)u, u) − ν(|u|β−1u, u),

d
dt
|u|2 + 2ν||u||2 ≤

| f |2

νλ1
+ νλ1|u|2 + 2ν

|∇g|∞
m0λ

1/2
1

||u||2 +
ν|u|β−1

λ1
||u||2.

That is
d
dt
|u|2 + ν(1 −

2|∇g|∞
m0λ

1/2
1

−
|u|β−1

λ1
)||u||2 ≤

| f |2

νλ1
.

We take m2 = 1 − 2|∇g|∞
m0λ

1/2
1
−
|u|β−1

λ1
, then

d
dt
|u|2 + νm2||u||2 ≤

| f |2

νλ1
.

So ||u||2 ≤ | f |2

ν2λ1m2
. therefore

qn ≤ −
νm1λ1

4
(n − k) +

C2
q | f |

2

2ν3λ1m1m2
+

G2k
νm1λ1

.

Let

n0 = [
4
νm1λ1

(
C2

q | f |
2

2ν3λ1m1m2
+

G2k
νm1λ1

)]∗ + k + 1,

where [·]∗ denotes trunc, then we have qn0 < 0. so

dH(A) ≤
4
νm1λ1

(
C2

q | f |
2

2ν3λ1m1m2
+

G2k
νm1λ1

) + k + 1.

We take another

n1 = [
8
νm1λ1

(
C2

q | f |
2

2ν3λ1m1m2
+

G2k
νm1λ1

)]∗ + k + 1,

then qn1 < 0, and max1≤ j≤n1−1
(q j)+
qn1
< 1, thus

dF(A) ≤
16
νm1λ1

(
C2

q | f |
2

2ν3λ1m1m2
+

G2k
νm1λ1

) + 2k + 2.

6. Conclusions

In this paper, using a priori estimates of the solutions and the energy equation method, we show how
to control the nonlinear dampness and obtain the uniform attractor of the g-Navier-Stokes equation on
unbounded domain. Meanwhile, the dimension of the uniform attractor is estimated in the quasi-
periodic case. The methods in this paper can bring some inspiration for the research of 3D Navier-
Stokes equations in the future.

From a theoretical point of view, it is important to analysis the connection between Navier-Stokes
equations and g-Navier-Stokes equations. So it is of great significance to study the dynamics for the
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g-Navier-Stokes equations. To obtain more research results for the study of g-Navier-Stokes equations
in the next research, we may continue the research in this line, extending the case of Lebesgue space
L2 to the case of L2,λ, for suitable 0 < λ < 2. On the other hand, we may consider that the pullback
asymptotic behavior of solutions for 2D g-Navier-Stokes equations with nonlinear dampness on the
unbounded domain.
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