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Abstract: As a special ring with zero divisors, the dual noetherian valuation domain has attracted
much attention from scholars. This article aims at to improve the Buchberger’s algorithm over the
dual noetherian valuation domain. We present some criterions that can be applied in the algorithm for
computing Gröbner bases, and the criterions may drastically reduce the number of S-polynomials in
the course of the algorithm. In addition, we clearly demonstrate the improvement with an example.
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1. Introduction

The notion of Gröbner bases in polynomials ring over a field was first introduced by Buchberger
in [1, 2]. Since then, the works on Gröbner bases have attracted much attention from scholars [3–7].
As the research progressed , the theory was extended to different fields, such as the commutative ring,
noncommutative ring, and even the rings with zero divisors [8–13]. We are particularly interested in the
approach by [14], which proposed the Buchbergers algorithm over dual noetherian valuation domain
V[ε]. V[ε] is neither a valuation ring nor a Dedekind ring, which satisfies ε2 = 0, and V is a valuation
domain.

The main contribution of this paper is to present a more efficient algorithm for computing Gröbner
bases. In the algorithm proposed in [14], we not only need to compute all S-polynomials which are
generated by the original polynomials, but also need to calculate the S-polynomials of the new polyno-
mials (produced by each step) and original polynomials. It means that a large number of S-polynomials
need to be calculated each time. Therefore, we try to give some criterions to reduce the calculation of
S-polynomials. Besides, based on the study of relations between S-polynomial, a criterion is given in
Section 3, by using which we can filter the useless S-polynomial in a rather convenient way. Moreover,
the other criterion is given by using which we may easily determine which two pairs’ S-polynomial
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need not to be computed. Finanlly, an improvement algorithm is notably improved, in which we not
only obtain a decreased memory requirement, but also improve the efficiency.

Our paper is structured in the following way. We start by giving the mathematical background used
in the subsequent sections in Section 2. In Section 3, we introduce some concepts and theories which
are needed in our algorithm. In particular, we prove the correctness of our algorithm. In Section 4, we
present our algorithm and clearly demonstrate the improvement with an example.

2. Preliminaries

We start with some basic facts from the algebra theory; for the detailed exposition of the subject we
refer the reader to [1]. Throughout the paper, V[ε] is the ring of the dual valuation domain satisfying to
ε2 = 0, whose elements are of the form a + bε with a, b ∈ V; here and below, V denotes the valuation
domain. The set of all zero divisors corresponding to V[ε] is denoted by Jε, and Jε = εV[ε] = {εa/a ∈
V}.

We denote the ring of polynomials in x1, x2, ..., xn over V[ε] with V[ε][x1, x2, ..., xn]. Given
α = (α1, ..., αn) ∈ Zn, we denote by xα the monomial xα1

1 ...x
αn
n in V[ε][x1, x2, ..., xn].For f1, ..., fn

in V[ε][x1, x2, ..., xn], we denote 〈 f1, ..., fk〉 a so-called ideal in V[ε][x1, x2, ..., xn] which refers
to a subset of polynomials which is closed under addition and multiplication with elements in
V[ε][x1, x2, ..., xn] and is generated by these polynomials. An element of the form pxα is called a
term of V[ε][x1, x2, ..., xn], where p ∈ V[ε].

Now, having set the element’s form, the next step is to introduce the concept of reduction. When
speaking about the division of the terms of V[ε][x1, x2, ..., xn], we need to take into account that the
division in V[ε].

Definition 1. Let p1 = a1 + b1ε, p2 = a2 + b2ε be two elements in V[ε], we say p1 divides p2 when
a1|a2 and a1|(b2 − b1

a1
a2

) in V .

We can extend the division to the terms in R, where R = V[ε][x1, x2, ..., xn] is the free associative
algebra with commuting variables x1, ..., xm, defined over the ring V[ε]. A term p1xα divides p2xβ in R
when p1 divides p2 in V[ε] and xα divides xβ in R. We shall emphasise here that the monomial order
≺ we used refers to a well order and if xα ≺ xβ then xα+γ ≺ xβ+γ for all α, β, γ ∈ Nn. For example, for
lexicographic order, we say xα ≺lex xβ if the first left nonzero component of α − β < 0.

For any polynomial g = p1xα1 + p2xα2 + ... + pnxαn in R, and monomial ordering ≺, we denote the
multidegree of g by mdeg(g), that is, the maximum mutidegree appearing in p with respect to ≺, and
lc(g), lm(g) and lt(g) stand for the leading coefficient,the leading monomial and the leading term of g
respectively. It is obvious that lt(g) = lc(g)lm(g).

Definition 2. Let f ∈ R and I is a subset of R, then f can be reduced by I if there exist at least one
polynomial say g, such that lt(g)|lt( f ).

Definition 3. Let ≺ be any monomial ordering. For an ideal I ⊂ R, we define its leading terms ideal as
the ideal

〈lt(I)〉 := 〈lt(g)|g ∈ I \ {0}〉.

A finite subset G ⊂ I is a Gröbner basis for I with respect to ≺, if I = 〈G〉 and 〈lt(I)〉 = 〈lt(G)〉.

Electronic Research Archive Volume 31, Issue 7, 3999–4010.



4001

Definition 4. Let≺ be any monomial ordering, and f1, f2 ∈ R. For i, j ∈ {1, 2}, set lt( fi) = (ai+biε)lm( fi)
and t = lcm(lm( f1), lm( f2)) = t1lm( f1) = t2lm( f2), where ai, bi ∈ V[ε], then the S-polynomial of f1 and
f2 is given by:
1). Suppose that lc( f1), lc( f2) ∈ Jε, then:

S ( f1, f2) =

b2
b1

t1 f1 − t2 f2, b1|b2

t1 f1 −
b1
b2

t2 f2, b2|b1

2). If lc( f1) ∈ Jε, lc( f2) < Jε, then:

S ( f1, f2) =

 a2
b1

t1 f1 − t2ε f2, b1|a2

t1 f1 −
b1
a2

t2ε f2, a2|b1

If lc( f2) ∈ Jε, lc( f1) < Jε, just replace f1 by f2 and vice versa.
3). In the case when lc( f1) < Jε, lc( f2) < Jε, then:

S ( f1, f2) =

 a2
a1

t1(ε f1) − t2(ε f2), a1|a2

t1(ε f1) − a1
a2

t2(ε f2), a2|a1

To note that, compared with the definition of S-polynomial in Buchbergers algorithm, we also consider
the S-polynomial of S ( f1, f1) when lc( f1) ∈ J[ε] and in addition to the above definition. Set S ( f1, f1) =

ε f1.

The following lemma is from [14]. We record it here for further use.

Lemma 5. Let ≺ be a monomial order, and f1, ..., fn ∈ R, Suppose that the multidegree of
∑n

i=1 vi fi < γ

for some v1, ..., vn ∈ V[ε] and γ refers to the multidegree of fi where 1 ≤ i ≤ n:

1) If for any i,1 ≤ i ≤ n, lc( fi) ∈ Jε, then
∑n

i=1 vi fi is a linear combination with coefficients in V[ε] of
S−polynomials S ( fi, f j) for 1 ≤ i ≤ j ≤ s;

2) If there exists i0 such that lc( fi0) < Jε, then ε
∑n

i=1 vi fi is a linear combination with coefficients in
V[ε] of S ( fi, f j), where 1 ≤ i ≤ j ≤ s.

Furthermore, each S−polynomial has multidegree ≺ γ.

3. Main results

This section is devoted to proving the main results in the present paper. Our main technique depends
on some new properties of S−polynomial. Let us begin with the definition of standard representation.

Definition 6. Let G be a finite subset of R,0 , f ∈ R, then f has a standard representation for G, if

f =

k∑
i=1

mi pi,

where mi is a monomial,pi ∈ G, 1 ≤ i ≤ k, and
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max{lm(mi pi)|1 ≤ i ≤ k} ≤ lm( f ).

Obviously, if f can be reduced to 0 by G, then f has a standard representation for G. However, the
opposition is not necessarily the case, for example, G = {g1, g2} = {x1x2 +ε, x2x3 +ε} ∈ V[ε][x1, x2, x3],
and f = x1x2

2 + εx1 + εx2 − εx3, then f has a standard representation for G with respect to the lexico-
graphic oredr as

f = x2(x1x2 + ε) + x1(x2x3 + ε) − x3(x1x2 + ε) = x2g1 + x1g2 − x3g1

but obviously f can not be reduced to zreo by G as G is not a Gröbner basis for {g1, g2}.

Lemma 7. Let ≺ be a monomial order, G = { f1, ..., fs} is a finite subset of V[ε][x1, ..., xn] and 0 < G,
I = 〈G〉 is an ideal of R, then G is a Gröbner basis for I if and only if all the S -polynomials by G have
a standard representation for G.

The proof of this lemma we referes to [15].

Theorem 8. Let I be an ideal of R and f , g ∈ I, then the S−polynomial has standard representation
for G,in other words, is “useless” if lm( f ), lm(g) are coprime.

Proof. Without loss of generality, let f = lt( f ) + p, g = lt(g) + q, where lt( f ) = lm( f )(a1 + b1ε), lt(g) =

lm(g)(a2 + b2ε), a1|a2 and b1|b2, (the proof is same when a2|a1 or b1|b2). Then, this theorem will be
proved by classification as follows:

(i). Suppose that lc( f ) ∈ Jε, lc(g) ∈ Jε, then:

S ( f , g) =
b2

b1
lm(g) f − lm( f )g

=
1

b1ε
[lt(g) f − lt( f )g]

=
1

b1ε
[(g − q) f − ( f − p)g]

=
1

b1ε
(pg − q f ).

Then, lm(S ( f , g)) = max{lm(pg), lm(q f )} if lcm(lm( f ), lm(g)) = lm( f )lm(g), then lm(pg) ,
lm(q f ), or will contradict with the definition of leading term. Furthermore, lt(S ( f , g)) ∈ 〈lt(I)〉, which
means S ( f , g) has a standard representation for G.

(ii). In the case when lc( f ) ∈ Jε, lc(g) < Jε. then:
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S ( f , g) =
a2

b1
lm(g) f − lm( f )(εg)

=
1
b1
{[lt(g) − b2εlm(g)] f − lt( f )g}

=
1
b1

(lt(g) f − lt( f )g) −
1
b1

(b2εlm(g)) f

=
1
b1

[(g − q) f − ( f − p)g] −
1
b1

[b2ε(b1εlm( f ) + p)]lm(g)

=
1
b1

(pg − q f ) −
1
b1

(b2εplm(g))

=
1
b1

[p(g − b2εlm(g)) − q f ].

Furthermore, lm(g−b2εlm(g)) = lm(g) as lc(g) < Jε and lm[p(g−b2εlm(g))] = lm(pg), so lm(S ( f , g)) =

max{lm(pg), lm(q f )}, which is the same as above.
(iii). If lc( f ) < Jε, lc(g) < Jε, then:

S ( f , g) =
a2

a1
lm(g)(ε f ) − lm( f )(εg)

=
1
a1
{[lt(g) − b2εlm(g)]ε f − [lt( f ) − b1εlm( f )](εg)}

=
1
a1

[lt(g)ε f − lt( f )εg]

=
1
a1
ε[lt(g) f − lt( f )g]

=
ε

a1
[(g − q) f − ( f − p)g]

=
ε

a1
(pg − q f ),

which is the same as case (i).
We complete the proof.

The crucial method for our main results heavily depends on this theorem. From this theorem, we
just need to compute the S−polynomials of the elements whose leading terms are not coprime instead
of computing all S−polynomials as in [14], thus finally simplifying the algorithm. We call this criterion
the “Product Criterion”.

Next, we give another method to reduce the computation of S−polynomials.

Definition 9. Let≺ be any monomial ordering and f1, f2 ∈ R. For i, j ∈ {1, 2}, set lt( fi) = (ai+biε)lm( fi),
where ai, bi ∈ V , then the least common multiple of lt( f1) and lt( f2) is given by:

1). Suppose that lc( f1), lc( f2) ∈ Jε, then:

lcm(lt( f1), lt( f2)) = lcm(lm( f1), lm( f2)) · lcm(lc( f1), lc( f2)).

2). If lc( f1) ∈ Jε, lc( f2) < Jε, then:

lcm(lt( f1), lt( f2)) = lcm(lm( f1), lm( f2)) · lcm(lc( f1), εlc( f2)).
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If lc( f2) ∈ Jε, lc( f1) < Jε, just replace f1 by f2 and vice versa.
3). In the case when lc( f1) < Jε, lc( f2) < Jε, then:

lcm(lt( f1), lt( f2)) = lcm(lm( f1), lm( f2)) · lcm(εlc( f1), εlc( f2)).

Theorem 10. Let I be an ideal of R and p, g1, g2 ∈ I, then S (g1, g2) can be reduced to zero by I if
lt(p)|lcm(lt(g1), lt(g2)) and S (g1, p), S (g2, p) can be reduced to zero.

Proof. In order to prove the theorem, in the following situation, we have to start splitting according to
whether lc(p), lc(g1) and lc(g2) belong to Jε.

Without loss of generality, let lc(p) = a + bε, lc(g1) = a1 + b1ε, lc(g2) = a2 + b2ε, and further as-
sume that u1lm(g1) = v1lm(p) = lcm(lm(g1), lm(p)) and v2lm(p) = u2lm(g2) = lcm(lm(g2), lm(p)),
then lcm(lm(g1), lm(p))|lcm(lm(g1), lm(g2)) as lt(p)|lcm(lt(g1), lt(g2)). Say s1lcm(lm(g1), lm(p)) =

lcm(lm(g1), lm(g2)).
For the same reason lcm(lm(g2), lm(p))|lcm(lm(g1), lm(g2)). Let s2lcm(lm(g2), lm(p)) =

lcm(lm(g1), lm(g2)), then s1v1 = s2v2,
1). In the case when lc(p) ∈ Jε but lc(g1), lc(g2) < Jε. Say lcm(lc(g1), lc(g2)) = a1ε and a2|b (the

proof is same when lcm(lc(g1), lc(g2)) = a2ε and b|a2).
It is easy to get b|a1 as lt(p)|lcm(lt(g1), lt(g2)). We will then consider the S−polynomials of g1, g2

and p.

S (g1, p) = ε
lcm(lm(p), lm(g1))

lm(g1)
g1 −

a1

b
lcm(lm(p), lm(g1))

lm(p)
p

= εu1g1 −
a1

b
v1 p,

S (g2, p) = ε
b
a2

lcm(lm(p), lm(g2))
lm(g2)

g2 −
lcm(lm(p), lm(g2))

lm(p)
p

= ε
b
a2

u2g2 − v2 p,

S (g1, g2) = ε
lcm(lm(g1), lm(g2))

lm(g1)
g1 −

a1

a2
ε

lcm(lm(g1), lm(g2))
lm(g2)

g2

= εs1u1g1 − ε
a1

a2
s2u2g2.

it follows that:

s1S (g1, p) −
a1

b
s2S (g2, p) = S (g1, g2).

2). Suppose lc(p), lc(g1), lc(g2) ∈ Jε, it follows that a, a1, a2 all equal to 0, without loss of generality,
let b1|b, then b|b2 as lt(p)|lcm(lt(g1), lt(g2)) (the proof is same when b|b1 or b2|b).

S (g1, p) =
lc(p)
lc(g1)

lcm(lm(p), lm(g1))
lm(g1)

g1 −
lcm(lm(p), lm(g1))

lm(p)
p
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=
b
b1

u1g1 − v1 p,

S (g2, p) =
lcm(lm(p), lm(g2))

lm(g2)
g2 −

lc(g2)
lc(p)

lcm(lm(p), lm(g2))
lm(p)

p

= u2g2 −
b2

b
v2 p,

it follows that:

b1b2s1S (g1, p) − b1bs2S (g2, p) = b2s1b1(
b
b1

u1g1 − v1 p) − bb1s2(u2g2 −
b2

b
v2 p)

= bb2s1u1g1 − b1bs2u2g2

= b(b2s1u1g1 − b1s2u2g2).

We will then consider the S−polynomial of g1, g2.

S (g1, g2) =
lc(g2)
lc(g1)

lcm(lm(g1), lm(g2))
lm(g1)

g1 −
lcm(lm(g1), lm(g2))

lm(g2)
g2

=
b2

b1

s1lcm(lm(g1), lm(p))
lm(g1)

g1 − s2
lcm(lm(p), lm(g2))

lm(g2)
g2

=
b2

b1
s1u1g1 − s2u2g2.

that means S (g1, g2) = 1
b [b2s1S (g1, p) − bs2S (g2, p)],

3). If lc(p), lc(g1), lc(g2) < Jε, and assume that a2|a, and say lcm(lc(g1), lc(g2)) = a1ε, that means
a2|a1, (the proof of the other condition such as a|a2 and a1|a2 is the same as this one). Then, a|a1 as
lt(p)|lcm(lt(g1), lt(g2)).

S (g1, p) = ε
lcm(lm(p), lm(g1))

lm(g1)
g1 −

a1

a
lcm(lm(p), lm(g1))

lm(p)
εp

= u1εg1 −
a1

a
v1εp,

S (g2, p) =
a
a2

lcm(lm(p), lm(g2))
lm(g2)

εg2 −
lcm(lm(p), lm(g2))

lm(p)
εp

=
a
a2

u2εg2 − v2εp,

S (g1, g2) =
lcm(lm(g1), lm(g2))

lm(g1)
εg1 −

a1

a2

lcm(lm(g1), lm(g2))
lm(g2)

εg2

= s1u1εg1 −
a1

a2
s2u2εg2,
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and,
s1S (g1, p) −

a1

a
s2S (g2, p) = S (g1, g2).

4). Assume that lc(p) < Jε, but lc(g1), lc(g2) ∈ Jε, that refers to a , 0, a1 = 0, a2 = 0.
Without a loss of generality, let b1|b2 and b1|a (vice versa), then lcm(lc(g1), lc(g2)) = b2ε.
There exists c + dε ∈ V[ε] such that (a + bε)(c + dε) = b2ε based on the fact that

lc(p)|lcm(lc(g1), lc(g2)), then we can get c = 0, ad = b2, it follows a|b2.

S (g1, p) =
a
b1

lcm(lm(g1), lm(p))
lm(g1)

g1 −
lcm(lm(g1), lm(p))

lm(p)
εp

=
a
b1

u1g1 − v1 pε,

S (g2, p) =
lcm(lm(g1), lm(p))

lm(g2)
g2 −

b2

a
lcm(lm(g2), lm(p))

lm(p)
εp

= u2g2 −
b2

a
v2 pε,

S (g1, g2) =
b2

b1

lcm(lm(g1), lm(g2))
lm(g1)

g1 −
lcm(lm(g1), lm(g2))

lm(g2)
g2

=
b2

b1
s1u1g1 − s2u2g2,

and

s1
b2

a
S (g1, p) − s2S (g2, p) = s1

b2

a
a
b1

(
a
b1

u1g1 − v1 pε) − s2(u2g2 −
b2

a
v2 pε)

= S (g1, g2),

5). If lc(p), lc(g1) < Jε, but lc(g2) ∈ Jε, it means that a, a1 , 0, a2 = 0, let us assume b1|a and a1|b2

(vice versa), then lcm(lc(g1), lc(g2)) = b2ε, and a|b2 as lc(p)|lcm(lc(g1), lc(g2)).

S (g1, p) =
a
b1

lcm(lm(g1), lm(p))
lm(g1)

εg1 −
lcm(lm(g1), lm(p))

lm(p)
εp

=
a
b1

u1εg1 − v1 pε,

S (g2, p) =
lcm(lm(g2), lm(p))

lm(g2)
g2 −

b2

a
lcm(lm(g2), lm(p))

lm(p)
εp

= u2g2 −
b2

a
v2 pε,

S (g1, g2) =
b2

b1

lcm(lm(g1), lm(g2))
lm(g1)

εg1 −
lcm(lm(g1), lm(g2))

lm(g2)
g2
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=
b2

b1
s1u1εg1 − s2u2g2,

b2

a
s1S (g1, p) − s2S (g2, p) =

b2

a
s1(

a
b1

u1εg1 − v1 pε) − s2(u2g2 −
a2

a
v2 pε)

=
b2

b1
s1u1εg1 − s2u2g2

= S (g1, g2).

6). The proof is the same as case 5) when lc(p), lc(g2) < Jε, but lc(g1) ∈ Jε.
7). Suppose lc(p), lc(g1) ∈ Jε, but lc(g2) < Jε, it follows that a and a1 = 0, but a2 , 0. Now further

assume that b1|b and b1|a2((vice versa), then b|a2 as lc(p)|lcm(lc(g1), lc(g2)). Next, we’ll consider the
S-polynomials in detail.

S (g1, p) =
b
b1

lcm(lm(g1), lm(p))
lm(g1)

g1 −
lcm(lm(g1), lm(p))

lm(p)
p

=
b
b1

u1g1 − v1 p,

S (g2, p) =
lcm(lm(g2), lm(p))

lm(g2)
εg2 −

a2

b
lcm(lm(g2), lm(p))

lm(p)
p

= u2εg2 −
a2

b
v2 p,

S (g1, g2) =
a2

b1

lcm(lm(g1), lm(g2))
lm(g1)

g1 −
lcm(lm(g1), lm(g2))

lm(g2)
εg2

=
a2

b1
s1u1g1 − s2u2g2ε,

a2

b
s1S (g1, p) − s2S (g2, p) =

a2

b
s1(

b
b1

u1g1 − v1 p) − s2(εu2g2 −
a2

b
v2 p)

=
a2

b
b
b1

s1u1g1 − s2u2g2ε

= S (g1, g2).

8) The proof is the same as case 7) when lc(p), lc(g2) ∈ Jε, but lc(g1) < Jε.
In all the above situations, S (g1, g2) can always be expressed as a linear expression of S (g1, p) and

S (g2, p), which follows that S (g1, g2) can be reduced to zreo when S (g1, p), S (g2, p) can be reduced to
zero, and we deduce that S (g1, g2) is finally “useless”. This completes the proof.

Remark 11. In fact, S (g1, p) and S (g2, p) can be reduced to zero in the calculation process, as a con-
sequence, S (g1, g2) doesn’t need to compute any more when lt(p)|lcm(lt(g1), lt(g2)). This can finally
reduce the amount of computation.

This theorem plays an important role in removing “useless” S-polynomial, and we call this the
“Chain Criterion”.

Electronic Research Archive Volume 31, Issue 7, 3999–4010.



4008

4. Algorithm

To further improve the efficiency of the algorithm given in [14], we propose some criterions to detect
the useless S -polynomials. First, we propose the conception of standard representation, and prove that
the S -polynomial is useless if it can be a standard representation. Furthermore, we only need to check
whether it can be a standard representation but not to reduce to zero as in [14]. Second, we propose the
leading term coprime to detect not only useless S -polynomial, but also the S -polynomials which need
not be generated. We make this by investigating the leading terms of the S -polynomial and detecting
useless S -polynomial with Theorem 8, rather than all the S -polynomials in the original algorithm.
Hence, the proposed algorithm can greatly improve the efficiency of the original algorithm. We refer
to the improved algorithm in Figure 1.

An improvement algorithm for Gröbner bases of VDR
Input: F = { f1, ..., fs},

a monomial order of V[ε],
Output: Gröbner bases of F

G := F
B := {(i, j)|1 ≤ i < j ≤ s}
t := s
while B , ∅ do

choose(i, j) ∈ B
if lcm(lt( fi), lt( f j)) , lt( fi)lt( f j) and
Crit( fi, f j, B) =false then
h0 := S ( fi, f j)G

if h0 , 0 then
t := t + 1; ft := h0

G := G
⋃
{ ft}

B := B
⋃
{(i, t)|1 ≤ i ≤ t − 1}

B := B − {(i, j)}
end

Figure 1. An improvement algorithm for Gröbner bases of VDR.

Remark 12. Crit( fi, f j, B) = ture if and only if there exists k < {i, j} such that (i, k), ( j, k) < B and
lt( fk)|lcm(lt( fi), lt( f j)) in the above algorithm. Actually, this is done to verify whether the current
polynomials satisfies the “Chain Criterion”.

Remark 13. S ( fi, f j)G refers to a sequence of reductions for S ( fi, f j) by polynomials in G that reduce
S ( fi, f j) to h0, and h0 is not divisible by any polynomials of G.

5. Example

In this section, an example is given to clearly demonstrate the improvement.
Let R = Z3Z[ε][x, y], whereZ3Z refers to Z3Z = { ab |a ∈ Z, b < 3Z}, and I = 〈p, f1, f2〉, where
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p = (5 + 3ε)x + 1, f1 = (3 + 5ε)xy2 + 3εy, f2 = 5εx − (1 + ε)y2. We want to construct a Gröbner basis
for I with respect to the given monomial order y <lex x.

It is straightforward to check that lt(p)|lcm(lt( f1), lt( f2)), so S ( f1, f2) is “useless” according to the
Theorem 10.

Additionally, we need to compute S ( f2, f2) as lc( f2) ∈ V[ε], S ( f2, f2) = −εy2 which can not be
reduced by I, recorded as f3.

S (p, f2) = εp − f2 = (1 + ε)y2 + ε,which can not be reduced by I anymore, denoted as f4.
S (p, f1) = 3

5y2εp − ε f1, which can be reduced to 0.
Add f3, f4 to I and compute the S−polynomials again. Note that lt(p) is prime to lt( f3), so the S−

polynomial of them does not need to compute according to the Theorem 8.
For the same reason, S (p, f4), S ( f2, f3), S ( f2, f4) also need not to compute. Notice that:
S ( f3, f3) = 0, S ( f1, f3) = ε f1 + 3x f3 = 0, S ( f1, f4) = ε f1 − 3xε f4 = 0, S ( f3, f4) = f3 + ε f4 = 0.
Thus {p, f1, f2, f3, f4} is a Gröbner basis for I.

Remark 14. Theorems 7, 8, and 10 play an important role; by using them we can ignore some S−
polynomials directly without any computations, such as in the above example, we reduced five S−
polynomials totally by the theorems above. However, in algorithm in [14] we not only need to compute
them but also need to perform a series reduction, so it can save a lot of time by using the improvement
algorithm.
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