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Abstract: The time-dependent fractional convection-diffusion (TFCD) equation is solved by the
barycentric rational interpolation method (BRIM). Since the fractional derivative is the nonlocal
operator, we develop a spectral method to solve the TFCD equation to get the coefficient matrix as
a full matrix. First, the fractional derivative of the TFCD equation is changed to a nonsingular integral
from the singular kernel to a density function. Second, efficient quadrature of the new Gauss formula
are constructed to simply compute it. Third, matrix equation of discrete the TFCD equation is obtained
by the unknown function replaced by a barycentric rational interpolation basis function. Then, the
convergence rate of BRIM is proved. Finally, a numerical example is given to illustrate our result.
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1. Introduction

In this paper, we consider the time-dependent fractional convection-diffusion (TFCD) equation

Cαs ϕ(t, s) − △ϕ(t, s) + ∇ϕ(t, s) = f (t, s) (t, s) ∈ Ω × [0,T ],

ϕ(t, 0) = φ0(t),
∂ϕ(t, 0)
∂s

= φ1(t), t ∈ Ω,

ϕ(t, s)|Γ = g(t, s), s ∈ [0,T ],

(1.1)

where 1 < α < 2 and Ω are bounded domains in Rn with n = 1, 2 and Ω = [a, b] or Ω = [a, b] × [c, d]
, Γ is the boundary of Ω. f (t, s), φ0(t), φ1(t), g(t, s) are given functions and

△ϕ(t, s) =
∂2ϕ(t, s)
∂t2

1

+ · · · +
∂2ϕ(t, s)
∂t2

n
,∇ϕ(t, s) =

∂ϕ(t, s)
∂t1

+ · · · +
∂ϕ(t, s)
∂tn

(1.2)
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The fractional derivative Cαs =
∂αϕ(t,s)
∂tα denotes the Caputo fractional derivative.

The Caputo fractional derivative of time is defined as

Cαs ϕ(t, s) =


1

Γ(ξ − α)

∫ s

0

∂ξϕ(t, τ)
∂τξ

dτ
(s − τ)α+1−ξ , m − 1 < ξ < m,

∂ξϕ(t, τ)
∂τξ

, ξ = m,

(1.3)

and Γ(α) is the Γ function. The time fractional convection-diffusion equation has been widely applied
in the modeling of the anomalous diffusive processes and in the description of viscoelastic damping
materials.

In [1], a class of time fractional reaction diffusion equations with variable coefficients and the
nonhomogeneous Neumann problem was solved by a compact finite difference method. It was proven
that the method was unconditionally stable for the general case of variable coefficients, and the
optimal error estimate for the numerical solution under the discrete L2 norm was also given. In [2], by
using Legendre spectral squares to discretize spatial variables, a high order numerical scheme for
solving nonlinear time fractional reaction diffusion equations was proposed. Then, a priori estimate,
existence, and uniqueness of the numerical solution were given, and the unconditional stability and
convergence was proven. In [3] a fast and accurate numerical method for fractional reaction diffusion
equations in unbounded domains using Fourier spectral method was constructed. In [4], an immersed
finite element (IFE) method for solving time fractional diffusion equations with discontinuous
coefficients was proposed. The singularity of the Caputo fractional derivative is approximated by the
non-uniform L1 scheme. In [5], a numerical method for diffusion problems with fractional derivatives
in a bilateral Riemannian Liouville space was proposed. Under appropriate constraints, the
monotonicity, positive retention, and linear stability of the method were proven. In [6], a locally
discontinuous Galerkin and finite difference method for solving multiple variable order time fractional
diffusion equations with variable order fractional derivatives was proposed, which proven that the
scheme was unconditionally stable. In [7], a finite difference method for solving time fractional wave
equations (TFWE) was proposed. For α ∈ (1, 2), the proposed difference scheme was of a second
order accuracy in space and time, and the stability of the H-1-norm of the method was given. In [8],
an hp discontinuous Galerkin method for solving nonlinear fractional differential equations with
Caputo type fractional derivatives was proposed. This method converts fractional differential
equations into either nonlinear Volterra or Fredholm integral equations, and then uses the hp
discontinuous Galerkin method to solve the equivalent integral equations. Time-fractional diffusion
equation [9] and nonlinear Caputo fractional differential equation [10] were studied by the finite
difference scheme and optimal adaptive grid method.

The above methods such as the finite difference method, the Legendre spectral method, the Fourier
spectral method, the finite element, and the discontinuous Galerkin method had been used to solve
fractional partial equation with the time direction and space direction solved separatively in different
directions. Different from the above methods, we construct the barycentric rational interpolation
method (BRIM) to solve the time-dependent fractional convection-diffusion (TFCD) equation with
time direction and space direction at the same time. For the barycentric interpolation method (BIM),
there are BRIM and the barycentric Lagrange interpolation method (BLIM) which can be used to
avoid the Runge phenomenon. In the recent years, linear rational interpolation (LRI) was proposed by
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Floater [14–16] and the error of linear rational interpolation [11–13] was also proven. BIM has been
developed by Wang et al. [17] and the algorithm of BIM has been used to linear/non-linear
problems [18, 19]. In recent research, the Volterra integro-differential equation (VIDE) [20], heat
equation (HE) [21], biharmonic equation (BE) [22, 23], telegraph equation (TE) [24], generalized
Poisson equations [26], semi-infinite domain problems [27], fractional reaction-diffusion
equation [28], and KPP equation [29] have been studied by linear BRIM and their convergence rate
are also proven.

In this paper, BRIM has been used to solve the TFCD equation. As the fractional derivative is
the nonlocal operator, spectral methods are developed to solve the TFCD equation and the coefficient
matrix is a full matrix. The fractional derivative of the TFCD equation is changed to nonsingular
integral by integral with order of density function plus one. The new Gauss formula is constructed to
compute it simply and the matrix equation of discrete the TFCD equation is obtained by the unknown
function replaced by the barycentric rational interpolation basis function. Then, the convergence rate
of BRIM is proven.

2. Calculation of time fractional derivative

By the definition of (1.3), there are certain kinds of singularities in (1.1). Solving the TDFC equation
is needed to efficiently calculate the Caputo fractional derivative. There are some methods to overcome
the difficulty of singularity, we adopt the fractional integration as follow:

Cαs ϕ(t, s)

=
1

Γ(ξ − α)

∫ s

0

∂ξϕ(t, τ)
∂τξ

dτ
(s − τ)α+1−ξ

=
1

(ξ − α)Γ(ξ − α)

[
∂ξϕ(t, 0)
∂sξ

sξ−α +
∫ s

0

∂ξ+1ϕ(t, τ)
∂τξ+1

dτ
(s − τ)α−ξ

]
= Γξα

[
∂ξϕ(t, 0)
∂sξ

sξ−α +
∫ s

0

∂ξ+1ϕ(t, τ)
∂τξ+1

dτ
(s − τ)α−ξ

]
,

(2.1)

where Γξα = 1
(ξ−α)Γ(ξ−α) .

Combining Eqs (2.1) and (1.1), we have

Γξα

[
∂ξϕ(t, 0)
∂sξ

sξ−α +
∫ s

0

∂ξ+1ϕ(t, τ)
∂τξ+1

dτ
(s − τ)α−ξ

]
− △ϕ(t, s) + ∇ϕ(t, s) = f (t, s) (2.2)

The discrete formula of TFCD equation is obtained as

ϕ(t, s) =
m∑

j=1

R j(t)ϕ j(s) (2.3)

where
ϕ(ti, s) = ϕi(s), i = 1, 2, · · · ,m

and

R j(t) =

λ j

t − t j
n∑

k=1

λk

t − tk

(2.4)
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is the basis function, see [20]. Taking (2.3) into (2.2), we get

Γξα

[
∂ξϕ(t, 0)
∂sξ

sξ−α +
∫ s

0

∂ξ+1ϕ(t, τ)
∂τξ+1

dτ
(s − τ)α−ξ

]
−

[
∂2ϕ(t, s)
∂t2 +

∂2ϕ(t, s)
∂s2

]
+

[
∂ϕ(t, s)
∂t

+
∂ϕ(t, s)
∂s

]
= f (t, s)

(2.5)

Then we get

Γξα

m∑
j=1

[
R j(t)ϕ(ξ)

j (0)sξ−α + R j(t)
∫ s

0

ϕ(ξ+1)(τ)dτ
(s − τ)α−ξ

]
−

m∑
j=1

[
R′′j (t)ϕ j(s) + R j(t)ϕ′′j (s)

]
+

m∑
j=1

[
R′j(t)ϕ j(s) + R j(t)ϕ′j(s)

]
= f (t, s),

(2.6)

As for the discrete of t and s, we get

ϕ j(s) =
n∑

k=1

Rk(s)ϕik (2.7)

where ϕi(s j) = ϕ(ti, s j) = ϕi j, i = 1, · · · ,m; j = 1, · · · , n and

Ri(s) =

wi

s − si
m∑

k=1

wk

s − sk

(2.8)

is the basis function.
Combining (2.6) and (2.7),

Γξα

m∑
j=1

n∑
k=1

R j(t)R(ξ)
k (0)sξ−α + R j(t)

∫ s

0

R(ξ+1)
k (τ)dτ

(s − τ)α−ξ

 ϕik −

m∑
j=1

n∑
k=1

[
R′′j (t)Rk(s) + R j(t)R′′i (s)

]
ϕik

+

m∑
j=1

n∑
k=1

[
R′j(t)Rk(s) + R j(t)R′k(s)

]
ϕik = f (t, s)

(2.9)

where

Rk(τ) =

λk

τ − τk
n∑

k=0

λk

τ − τk

and 

R
′

i (τ) = Ri(τ)

− 1
τ − τk

+

l∑
s=0

λk

(τ − τk)2

l∑
s=0

λk

τ − τk

 ,
...

R(ξ+1)
i (τ) = [R(ξ)

i (τ)]
′

, ξ ∈ N+.
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The term of (2.9) can be written as ∫ s

0

R(ξ+1)
j (τ)dτ

(s − τ)α−ξ
= Qαj (s), (2.10)

The integral (2.9) is calculated by

Qαj (s) =
∫ s

0

R(ξ+1)
j (τ)dτ

(s − τ)α−ξ
:=

g∑
i=1

R(ξ+1)
i (τθ,αi )Gθ,αi , (2.11)

where Gθ,αi is Gauss weight and τθ,αi is Gauss points with weights (s − τ)ξ−α, see reference [26].

3. Matrix equation of TFCD equation

3.1. Matrix equation of (1+1) dimensional TFCD equation

For the (1+1) dimensional TFCD equation with Ω1 = [a, b], (2.9) can be written as

Γξα

m1∑
j1=1

n∑
k=1

R j1(t1)R(ξ)
k (0)sξ−α + R j1(t1)

∫ s

0

R(ξ+1)
k (τ)dτ

(s − τ)α−ξ

 ϕik

−

m1∑
j1=1

n∑
k=1

[
R′′j1(t1)Rk(s) + R j1(t1)R′′i (s)

]
ϕik

+

m1∑
j1=1

n∑
k=1

[
R′j1(t1)Rk(s) + R j1(t1)R′k(s)

]
ϕik = f (t1, s)

(3.1)

Taking a = t11 < t12 < · · · < t1m1 = b, 0 = s1 < s2 < · · · < sn = T with ht = (b − a)/m1, hs = T/n as
either a uniform partition or uninform as a Chebychev point , (t1i, sl), 1i = 1, 2, · · · ,m1, l = 1, 2, · · · , n,
we get

Γξα

m1∑
j1=1

n∑
k=1

R j1(t1i)R
(ξ)
k (0)sξ−αl + R j1(t1i)

∫ sl

0

R(ξ+1)
k (τ)dτ

(sl − τ)α−ξ

 ϕik

−

m1∑
j1=1

n∑
k=1

[
R′′j1(t1i)Rk(sl) + R j1(t1i)R′′i (sl)

]
ϕik

+

m1∑
j1=1

n∑
k=1

[
R′j1(t1i)Rk(sl) + R j1(t1i)R′k(sl)

]
ϕik = f (t1i, sl)

(3.2)

By introducing the notation, R j1(t1i) = δ j1i,Rk(sl) = δkl,R′j1(t1i) = R(1,0)
i j1
,R′k(sl) = R(0,1)

i j ,R
′′
j1(t1i) =

R(2,0)
i j1
,R′′k (sl) = R(0,2)

kl where R(0,2)
il is the second order of the barycentric matrix.

Γξα

m1∑
j1=1

n∑
k=1

δ jiR
(ξ)
k (0)sξ−αl + δ j1i

∫ sl

0

R(ξ+1)
k (τ)dτ

(sl − τ)α−ξ

 ϕik −

m1∑
j1=1

n∑
k=1

[
R(2,0)

i j δkl + δ j1iR
(0,2)
kl

]
ϕik

+

m1∑
j1=1

n∑
k=1

[
R(1,0)

i j1
δkl + δ j1iR

(0,1)
kl

]
ϕik = f (t1i, sl)

(3.3)
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by taking (2.11),

Qαj1l = Qαj (sl) =
∫ sl

0

R(ξ+1)
j1

(τ)dτ

(sl − τ)α−ξ
(3.4)

then we get

Γξα

m1∑
j1=1

n∑
k=1

[
δ j1iR

(ξ)
k (0)sξ−αl + δ j1iQαkl

]
ϕik

−

m1∑
j1=1

n∑
k=1

[
R(2,0)

i j1
δkl + δ j1iR

(0,2)
kl − R(1,0)

i j1
δkl − δ j1iR

(0,1)
kl

]
ϕik = f (t1i, sl).

(3.5)

Systems of (3.5) can be written as

Γξα

[
diag(sξ−α)M(ξ0)

1 ⊗ In + Im1 ⊗ Qα2
]


ϕ11
...

ϕ1n

ϕm11
...

ϕm1n



−
[
M(2,0) ⊗ In + Im1 ⊗ M(0,2) − M(1,0) ⊗ In − Im1 ⊗ M(0,1)

]


ϕ11
...

ϕ1n

ϕm11
...

ϕm1n


=



f11
...

f1n

fm11
...

fm1n


,

(3.6)

where Im1 and In are identity matrices, and ⊗ is Kronecker product.

Then, we get Eq (3.6) as

[
Γξα

(
diag(sξ−α)M(ξ0)

1 ⊗ In + Im1 ⊗ Qα2
)
−

(
M(2,0) ⊗ In + Im1 ⊗ M(0,2) − M(1,0) ⊗ In − Im1 ⊗ M(0,1)

)]
Φ = F

(3.7)
and

MΦ = F, (3.8)

with M = Γξα
(
diag(sξ−α)M(ξ0)

1 ⊗ In + Im1 ⊗ Qα2
)
−

(
M(2,0) ⊗ In + Im1 ⊗ M(0,2) − M(1,0) ⊗ In − Im1 ⊗ M(0,1)

)
and Φ = [ϕ11. . .ϕ1n. . .ϕm11. . .ϕm1n]T , F = [ f11. . . f1n. . . fm11. . . fm1n]T .
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3.2. Matrix equation of (2+1) dimensional TFCD equation

For the (2+1) dimensional TFCD equation with Ω2 = [a, b] × [c, d], then we have

Γξα

m1∑
j1=1

m2∑
j2=1

n∑
k=1

R j1(t1)R j2(t2)R(ξ)
k (0)sξ−α + R j1(t1)R j2(t2)

∫ s

0

R(ξ+1)
k (τ)dτ

(s − τ)α−ξ

 ϕi jk

−

m1∑
j1=1

m2∑
j2=1

n∑
k=1

[
R′′j1(t1)R j2(t2)Rk(s) + R j1(t1)R′′j2(t2)Ri(s) + R j1(t1)R j2(t2)R′′i (s)

]
ϕi jk

+

m1∑
j1=1

m2∑
j2=1

n∑
k=1

[
R′j1(t1)R j2(t2)Rk(s) + R j1(t1)R′j2(t2)Ri(s) + R j1(t1)R j2(t2)R′i(s)

]
ϕi jk = f (t1, t2, s)

(3.9)

By a = t11 < t12 < · · · < t1m1 = b, c = t21 < t22 < · · · < t2m1 = d, 0 = s1 < s2 < · · · < sn = T
with ht1 = (b − a)/m1, ht2 = (d − c)/m2, hs = T/n or uninform as a Chebychev point , (t1i, t2i, sl), 1i =
1, 2, · · · ,m1, 2i = 1, 2, · · · ,m2, l = 1, 2, · · · , n, we get

Γξα

m1∑
j1=1

m2∑
j2=1

n∑
k=1

R j1(t1i)R j2(t2 j)R
(ξ)
k (0)sξ−α + R j1(t1i)R j2(t2 j)

∫ s

0

R(ξ+1)
k (τ)dτ

(s − τ)α−ξ

 ϕi jk

−

m1∑
j1=1

m2∑
j2=1

n∑
k=1

[
R′′j1(t1i)R j2(t2 j)Rk(sl) + R j1(t1i)R′′j2(t2 j)Ri(sl) + R j1(t1i)R j2(t2 j)R′′i (sl)

]
ϕi jk

+

m1∑
j1=1

m2∑
j2=1

n∑
k=1

[
R′j1(t1i)R j2(t2 j)Rk(s) + R j1(t1i)R′j2(t2 j)Ri(sl) + R j1(t1i)R j2(t2 j)R′i(sl)

]
ϕi jk = f (t1i, t2 j, sl)

(3.10)

By introducing the notation, R j1(t1i) = δ j1i,R j2(t1 j) = δ j2 j,Rk(sl) = δkl,R′j1(t1i) = R(1,0,0)
i j1
,R′j2(t1 j) =

R(0,1,0)
i j1
,R′k(sl) = R(0,0,1)

i j ,R′′j1(t1i) = R(2,0,0)
i j1
,R′′j2(t1 j) = R(0,2,0)

i j1
,R′′k (sl) = R(0,0,2)

i j , we get

Γξα

m1∑
j1=1

m2∑
j2=1

n∑
k=1

δ j1iδ j2 jR
(ξ)
k (0)sξ−α + δ j1iδ j2 j

∫ s

0

R(ξ+1)
k (τ)dτ

(s − τ)α−ξ

 ϕi jk

−

m1∑
j1=1

m2∑
j2=1

n∑
k=1

[
R(2,0,0)

i j1
δ j2 jδkl + δ j1iR

(0,2,0)
i j1
δkl + δ j1iδ j2 jR

(0,0,2)
i j

]
ϕi jk

+

m1∑
j1=1

m2∑
j2=1

n∑
k=1

[
R(1,0,0)

i j1
δ j2 jδkl + δ j1iR

(0,1,0)
i j1
δkl + δ j1iδ j2 jR

(0,0,1)
i j

]
ϕi jk = f (t1i, t2 j, sl)

(3.11)

Then, Eq (3.6) can be written as

Γξα

(
diag(sξ−α)M(ξ0)

1 ⊗ Im1 ⊗ Im2 + Im1 ⊗ Im2 ⊗ Qα2
)
Φ

−
(
M(2,0,0) ⊗ Im2 ⊗ In + Im1 ⊗ M(0,2,0) ⊗ In + Im1 ⊗ Im2 ⊗ M(0,0,2)

)
Φ

+
(
M(1,0,0) ⊗ Im2 ⊗ In + Im1 ⊗ M(0,1,0) ⊗ In + Im1 ⊗ Im2 ⊗ M(0,0,1)

)
Φ = F

(3.12)

and
MΦ = F, (3.13)

with M = Γ
ξ
α

(
diag(sξ−α)M(ξ0)

1 ⊗ Im1 ⊗ Im2 + Im1 ⊗ Im2 ⊗ Qα2
)

−(
M(2,0,0) ⊗ Im2 ⊗ In + Im1 ⊗ M(0,2,0) ⊗ In + Im1 ⊗ Im2 ⊗ M(0,0,2)

)
+
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M(1,0,0) ⊗ Im2 ⊗ In + Im1 ⊗ M(0,1,0) ⊗ In + Im1 ⊗ Im2 ⊗ M(0,0,1)

)
and Φ =

[ϕ111ϕ112. . .ϕ11n, ϕ121ϕ122. . .ϕ12n, . . ., ϕm1m21ϕm1m22. . .ϕm1m2n]T ,F = [ f111 f112. . . f11n, f121 f122. . . f12n, . . .,

fm1m21 fm1m22. . . fm1m2n]T .
The boundary condition can be solved by the substitution method, the additional method or the

elimination method, see [17]. In the following, we adopt the substitution method and the additional
method to add the boundary condition.

4. Convergence rate of TFCD equation

In this part, the error estimate of the TFCD equation is given with rn(s) =
n∑

i=1

ri(s)ϕi to replace ϕ(s),

where ri(s) is defined as (2.8) and ϕi = ϕ(si). We also define

e(s) := ϕ(s) − rn(s) = (s − si) · · · (s − si+d)ϕ [si, si+1, . . . , si+d, s] , (4.1)

see reference [20].
Then, we have

Lemma 1. For e(s) be defined by (4.1) and ϕ(s) ∈ Cd+2[a, b], d = 1, 2, · · · , there∣∣∣e(k)(s)
∣∣∣ ≤ Chd−k+1, k = 0, 1, · · · . (4.2)

For the TFCD equation, the rational interpolation function of ϕ(t, s) is defined as rmn(t, s)

rmn(t, s) =

m+ds∑
i=1

n+dt∑
j=1

wi, j

(s − si)
(
t − t j

)ϕi, j

m+ds∑
i=1

n+dt∑
j=1

wi, j

(s − si)
(
t − t j

) (4.3)

where

wi, j = (−1)i−ds+ j−dt
∑
k1∈Ji

k1+ds∏
h1=k1,h1, j

1∣∣∣si − sh1

∣∣∣ ∑k2∈Ji

k2+dt∏
h2=k2,h2, j

1∣∣∣t j − th2

∣∣∣ . (4.4)

We define e(t, s) be the error of ϕ(t, s) as

e(t, s) := ϕ(t, s) − rmn(t, s)
= (s − si) · · ·

(
s − si+ds

)
ϕ
[
si, si+1, . . . , si+d1 , s; t

]
+

(
t − t j

)
· · ·

(
t − t j+dt

)
ϕ
[
s; t j, t j+1, . . . , t j+d2 , t

]
− (s − si) · · ·

(
s − si+ds

) (
t − t j

)
· · ·

(
t − t j+dt

)
ϕ
[
si, si+1, . . . , si+d1 , s; t j, t j+1, . . . , t j+d2 , t

]
.

(4.5)

With a similar analysis of Lemma 1, we have

Theorem 1. For e(t, s) defined as (4.5) and ϕ(t, s) ∈ Cds+2[a, b] ×Cdt+2[0,T ], then we have∣∣∣e(k1,k2) (s, t)
∣∣∣ ≤ C(hds−k1+1

s + hdt−k2+1
t ), k1, k2 = 0, 1, · · · . (4.6)
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Let ϕ(sm, tn) be the approximate function of ϕ(t, s) and L to be bounded operator, there holds

Lϕ(tm, sn) = f (tm, sn) (4.7)

and

lim
m,n→∞

Lϕ(tm, sn) = ϕ(t, s). (4.8)

Then, we get

Theorem 2. For ϕ(tm, sn) : Lϕ(tm, sn) = ϕ(t, s) and L defined as (4.7), there

|ϕ(t, s) − ϕ(tm, sn)| ≤ C(hds−1 + τdt−1).

Proof. By the definition of (4.7), we have

Lϕ(t, s) − Lϕ(tm, sn)
= Cαs ϕ(t, s) − △ϕ(t, s) + ∇ϕ(t, s) − f (t, s)
−

[
Cαs ϕ(tm, sn) − △ϕ(tm, sn) + ∇ϕ(tm, sn) − f (tm, sn)

]
= Cαs ϕ(t, s) −Cαs ϕ(tm, sn) −

[
△ϕ(t, s) − △ϕ(sm, tn)

]
+

[
∇ϕ(t, s) − ∇ϕ(tm, sn))

]
−[ f (t, s) − f (tm, sn)]
:= E1(t, s) + E2(t, s) + E3(t, s) + E4(t, s)

(4.9)

here
E1(t, s) = Cαs ϕ(t, s) −Cαs ϕ(tm, sn),

E2(t, s) = △ϕ(t, s) − △ϕ(sm, tn),

E3(t, s) = ∇ϕ(t, s) − ∇ϕ(tm, sn)),

E4(t, s) = f (t, s) − f (tm, sn).

As for E1(t, s), we get

E1(t, s) = Cαs ϕ(t, s) −Cαs ϕ(tm, sn)

= Γξα

[
∂ξϕ(0, s)
∂tξ

sξ−α +
∫ t

0

∂ξ+1ϕ(τ, s)
∂τξ+1

dτ
(t − τ)α−ξ

]
−Γξα

[
∂ξϕ(0, sn)
∂tξ

sξ−αn +

∫ tm

0

∂ξ+1ϕ(τ, sn)
∂τξ+1

dτ
(tm − τ)α−ξ

]
= Γξα

[
∂ξϕ(0, s)
∂tξ

sξ−α −
∂ξϕ(0, sn)
∂tξ

sξ−αn

]
+Γξα

[∫ t

0

∂ξ+1ϕ(τ, s)
∂τξ+1

dτ
(t − τ)α−ξ

−

∫ tm

0

∂ξ+1ϕ(τ, sn)
∂τξ+1

dτ
(tm − τ)α−ξ

]
(4.10)
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and
|E1(t, s)|

≤

∣∣∣∣∣∣Γξα
[
∂ξϕ(0, s)
∂tξ

sξ−α −
∂ξϕ(0, sn)
∂tξ

sξ−αn

]∣∣∣∣∣∣
+

∣∣∣∣∣∣Γξα
[∫ t

0

∂ξ+1ϕ(τ, s)
∂τξ+1

dτ
(t − τ)α−ξ

−

∫ tm

0

∂ξ+1ϕ(τ, sn)
∂τξ+1

dτ
(tm − τ)α−ξ

]∣∣∣∣∣∣
≤ |Γξα|

∣∣∣∣∣∣∂ξϕ∂tξ (0, s) −
∂ξϕ

∂tξ
(0, sn)

∣∣∣∣∣∣ + |Γξα|
∣∣∣∣∣∣∂ξ+1ϕ

∂tξ+1 (t, s) −
∂ξ+1ϕ

∂tξ+1 (tm, sn)

∣∣∣∣∣∣
:= E11(t, s) + E12(t, s)

(4.11)

where

E11(t, s) = |Γξα|

∣∣∣∣∣∣∂ξϕ∂tξ (0, s) −
∂ξϕ

∂tξ
(0, sn)

∣∣∣∣∣∣
E12(t, s) = |Γξα|

∣∣∣∣∣∣∂ξ+1ϕ

∂tξ+1 (t, s) −
∂ξ+1ϕ

∂tξ+1 (tm, sn)

∣∣∣∣∣∣
(4.12)

Now we estimate E11(t, s) and E12(t, s) part by part, for the second part we have

E12(t, s) = |Γξα|

∣∣∣∣∣∣∂ξ+1ϕ

∂tξ+1 (t, s) −
∂ξ+1ϕ

∂tξ+1 (tm, sn)

∣∣∣∣∣∣
= |Γξα|

∣∣∣∣∣∣∂ξ+1ϕ

∂tξ+1 (t, s) −
∂ξ+1ϕ

∂tξ+1 (tm, s) +
∂ξ+1ϕ

∂tξ+1 (tm, s) −
∂ξ+1ϕ

∂tξ+1 (tm, sn)

∣∣∣∣∣∣
≤ |Γξα|

∣∣∣∣∣∣∂ξ+1ϕ

∂tξ+1 (t, s) −
∂ξ+1ϕ

∂tξ+1 (tm, s)

∣∣∣∣∣∣ + |Γξα|
∣∣∣∣∣∣∂ξ+1ϕ

∂tξ+1 (tm, s) −
∂ξ+1ϕ

∂tξ+1 (tm, sn)

∣∣∣∣∣∣

= |Γξα|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m−ds∑
i=1

(−1)i∂
ξ+1ϕ

∂tξ+1 [si, si+1, . . . , si+d1 , sn, t]

m−ds∑
i=1

λi(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+|Γξα|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n−dt∑
j=1

(−1) j∂
ξ+1ϕ

∂tξ+1 [t j, t j+1, . . . , t j+d2 , sn, tm]

n−dt∑
j=1

λ j(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |Γξα|

∣∣∣∣∣∣∂ξ+1e
∂tξ+1 (tm, s)

∣∣∣∣∣∣ + |Γξα|
∣∣∣∣∣∣∂ξ+1e
∂tξ+1 (tm, sn)

∣∣∣∣∣∣ .
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then we have

|E12(t, s)| ≤

∣∣∣∣∣∣∂ξ+1e
∂tξ+1 (tm, s)

∣∣∣∣∣∣ +
∣∣∣∣∣∣∂ξ+1e
∂tξ+1 (tm, sn)

∣∣∣∣∣∣ ≤ C(hds−1 + τdt−1). (4.13)

For E11(t, s), we get

|E11(t, s)| ≤ C(hds+1−ξ + τdt−1). (4.14)

Similarly as E2(t, s), for E3(t, s) we have

|E3(t, s)| ≤ C(hds + τdt). (4.15)

Combining (4.9), (4.14), and (4.15) together, the proof of theorem 2 is completed.

5. Numerical examples

In this part, two examples are presented to test the theorem.

Example 1. Consider the time-dependent fractional convection-diffusion equation



∂αϕ(t, s)
∂sα

−
∂2ϕ(t, s)
∂t2 +

∂ϕ(t, s)
∂t

= f (t, s) (t, s) ∈ [0, 1] × [0, 1],

ϕ(t, 0) = 0,
∂ϕ(t, 0)
∂t

= sin πt, t ∈ [0, 1],

ϕ(t, s)|Γ = g(t, s), s ∈ [0, 1],

(5.1)

with the analysis solution is

ϕ(t, s) = (s + s3) sin(πt)

with the initial condition

ϕ(t, 0) = 0

and boundary condition

ϕ(0, s) = ϕ(1, s) = 0

and

f (t, s) =
6t3−α

Γ(4 − α)
sin(πt) + π2(s + s3) sin(πt) + (s + s3) cos(πt)
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(a) uniform (b) nonuniform

Figure 1. Errors of m = n = 12, Ω1 = [0, 1], α = 1.2 in Example 1 (a) uniform; (b)
nonuniform.

(a) uniform (b) nonuniform

Figure 2. Errors of m = n = 12, dt = ds = 8, Ω1 = [0, 1], α = 1.2 in Example 1 (a) uniform;
(b) nonuniform.

In Figures 1 and 2, errors of m = n = 12, Ω1 = [0, 1], α = 1.2 and m = n = 12, dt = ds = 8,
Ω1 = [0, 1], α = 1.2 in Example 1 with uniform and nonuniform partition for the TFCD equation by
BRIM are presented, respectively. From the Figure, we know that the precision can reach to 10−8 for
both the uniform and nonuniform partition.
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(a) uniform (b) nonuniform

Figure 3. Errors of m = n = 12, Ω1 = [0, 1], α = 1.8 in Example 1 (a) uniform; (b)
nonuniform.

(a) uniform (b) nonuniform

Figure 4. Errors of m = n = 12, dt = ds = 8, Ω1 = [0, 1], α = 1.8 in Example 1 (a) uniform;
(b) nonuniform.

In Figures 3 and 4, errors of m = n = 12, Ω1 = [0, 1], α = 1.8 and m = n = 12, dt = ds = 8, α = 1.8,
Ω1 = [0, 1] in Example 1 with uniform and nonuniform partition for the TFCD equation by BRIM
are presented, respectively. From the Figure, we know that the precision can reach to 10−8 for both
uniform and nonuniform partition. For different value of α, BRIM can be used to solve the TFCD
equation efficiently.
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Table 1. Errors of TFCD equation for α1 = 1.8, dt = ds = 5.

uniform nonuniform uniform nonuniform
t (12, 12)dt = ds = 5 (12, 12)dt = ds = 5 (12, 12) (12, 12)
0.5 1.6077e-05 3.4641e-06 9.4012e-09 5.4710e-11
0.9 7.6161e-06 1.2065e-06 1.1950e-08 1.0220e-11
1 3.3826e-05 3.2595e-06 6.1614e-08 4.5688e-11
5 2.7710e-04 2.3571e-05 8.8436e-07 9.3036e-10
10 4.0780e-03 3.8953e-04 2.8067e-05 1.4820e-08
15 3.3288e-03 2.8728e-04 2.1309e-04 2.2781e-07

In Table 1, errors of the TFCD equation for α1 = 1.8, dt = ds = 5 with t = 0.1, 0.9, 1, 5, 10, 15
are presented under the uniform and nonuniform partition with BRIM and BLIM. As the time variable
increases from 0.5 to 15, there is still high accuracy. For BRIM, we can choose the parameters dt, ds

and m, n approximately to get high accuracy. Under the same partition of m, n, the accuracy of BLIM
is higher than BRIM.

Table 2. Errors of different α under BRIM with m = n = 10, dt = 5, ds = 5.

uniform nonuniform
1.05 1.3605e-05 5.0592e-05
1.1 1.5511e-06 1.0653e-05
1.3 3.7907e-06 2.0445e-05
1.5 2.9437e-07 3.9908e-06
1.6 1.5585e-06 7.4171e-06
1.8 1.7836e-07 1.7089e-06
1.9 2.5754e-07 3.4347e-06
1.99 6.0471e-08 9.9797e-07

In Table 2, for BRIM, the errors of different α1 = 1.05, 1.1, 1.3, 1.5, 1.6, 1.8, 1.9, 1.99 under uniform
with m = n = 10, dt = 5, ds = 5 are presented under the uniform and nonuniform partition. From the
table, we know that for different α, BRIM has a high accuracy with decreased values for m and n.

In the following table, numerical results are presented to test our theorem.
From Tables 3 and 4, the error of BRIM under uniform for α = 1.8, ds = 5 with different dt are given,

and the convergence rate is O(hdt). From Table 4, with space variable uniform for α = 1.8, dt = 5, the
convergence rate is O(h7), which we will investigate in future paper.

Table 3. Errors of BRIM under uniform for α = 1.8, ds = 5.

m, n dt = 2 dt = 3 dt = 4 dt = 5
8 1.0091e-03 1.0123e-03 1.0227e-03 1.0394e-03
10 2.0466e-04 7.1497 2.0526e-04 7.1511 2.0654e-04 7.1692 2.0796e-04 7.2107
12 5.5556e-05 7.1521 5.7191e-05 7.0089 5.7426e-05 7.0204 5.7744e-05 7.0278
14 1.9062e-05 6.9393 2.1790e-05 6.2599 2.8246e-05 4.6029 3.3826e-05 3.4693
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Table 4. Errors of BRIM under uniform for α = 1.8, dt = 5.

m, n ds = 2 ds = 3 ds = 4 ds = 5
8 1.4494e-02 4.3112e-03 2.0427e-03 1.0394e-03
10 7.1283e-03 3.1802 1.4415e-03 4.9096 6.7844e-04 4.9395 2.0796e-04 7.2107
12 3.9852e-03 3.1894 6.0013e-04 4.8062 2.7092e-04 5.0349 5.7744e-05 7.0278
14 2.9746e-03 1.8973 1.4504e-03 - 6.3278e-04 - 3.3826e-05 3.4693

For Tables 5 and 6, the errors of Chebyshev partition for s and t are presented. For α = 1.8, dt = 5,
the convergence rate is O(hds) in Table 5, while in Table 6, the convergence rate is O(hdt), which agrees
with our theorem.

Table 5. Errors of BRIM under Chebyshev partition with α = 1.8, dt = 5.

m, n ds = 2 ds = 3 ds = 4 ds = 5
8 1.9490e-02 4.4626e-03 7.1364e-04 1.0394e-03
10 8.1224e-03 3.9224 5.4856e-04 9.3939 4.5776e-04 1.9899 2.0796e-04 7.2107
12 3.9100e-03 4.0098 2.0389e-04 5.4284 1.0292e-04 8.1858 5.7744e-05 7.0278
14 2.1533e-03 3.8697 6.4616e-05 7.4546 2.0776e-05 10.380 3.3826e-05 3.4693

Table 6. Errors of BRIM under Chebyshev partition α = 1.8, ds = 5.

m, n dt = 2 dt = 3 dt = 4 dt = 5
8 7.4953e-05 7.4985e-05 7.4823e-05 7.4663e-05
10 4.4669e-05 2.3195 4.4515e-05 2.3369 4.4571e-05 2.3216 4.4558e-05 2.3133
12 1.3867e-05 6.4158 1.4149e-05 6.2868 1.4072e-05 6.3235 1.4030e-05 6.3383
14 4.0908e-06 7.9196 3.3018e-06 9.4397 3.4105e-06 9.1944 3.2595e-06 9.4687

In the following table, α = 1.2 is chosen to present numerical results. From Tables 7 and 8, the error
of BRIM under uniform for dt = 5 with different ds is given, and the convergence rate is O(h7). From
Table 7, with space variable s, ds = 5, the convergence rate is O(hdt), which agrees with our theorem.

Table 7. Errors of BRIM under uniform partition for α = 1.2, dt = 5.

m, n ds = 2 ds = 3 ds = 4
8 9.3201e-04 9.4352e-04 9.4689e-04
10 1.9149e-04 7.0919 1.8804e-04 7.2283 1.8804e-04 7.2443
12 4.9055e-05 7.4696 5.2968e-05 6.9491 5.1073e-05 7.1490
14 2.2723e-05 4.9923 2.0827e-05 6.0553 2.1242e-05 5.6910
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Table 8. Errors of BRIM under uniform partition for α = 1.2, ds = 5.

m, n dt = 1 dt = 2 dt = 3 dt = 4
8 1.3533e-02 3.9763e-03 1.8858e-03 9.5103e-04
10 6.6743e-03 3.1676 1.3072e-03 4.9852 6.1744e-04 5.0035 1.8959e-04 7.2270
12 3.7253e-03 3.1983 5.3934e-04 4.8559 2.4381e-04 5.0965 5.1750e-05 7.1218
14 2.5987e-03 2.3364 3.0681e-04 3.6595 1.3060e-04 4.0495 2.0609e-05 5.9726

For Tables 9 and 10, the errors of BRIM under the Chebyshev partition for with α = 1.2 are
presented. For dt = 5, the convergence rate is O(h7) in Table 9, while in Table 10, the convergence rate
is O(hdt), which agrees with our theorem.

Table 9. Errors of BRIM under Chebyshev partition with α = 1.2, dt = 5.

m, n ds = 2 ds = 3 ds = 4 ds = 5
8 7.3421e-05 7.3288e-05 7.3555e-05 7.3699e-05
10 4.5834e-05 2.1115 4.5522e-05 2.1341 4.6189e-05 2.0852 4.6041e-05 2.1083
12 1.4338e-05 6.3739 1.4995e-05 6.0906 1.4208e-05 6.4662 1.4082e-05 6.4975
14 2.8314e-06 10.523 3.3197e-06 9.7819 4.2225e-06 7.8714 4.4239e-06 7.5113

Table 10. Errors of BRIM under Chebyshev partition with α1 = 1.2, ds = 5.

m, n dt = 1 dt = 2 dt = 3
8 1.9844e-02 4.6715e-03 7.3397e-04
10 8.1292e-03 3.9994 5.3572e-04 9.7050 4.7628e-04 1.9380
12 3.9786e-03 3.9191 1.8927e-04 5.7066 9.7191e-05 8.7172
14 2.4670e-03 3.1002 9.6933e-05 4.3409 3.4887e-05 6.6466

Example 2. Consider the time-dependent fractional convection-diffusion equation

∂αϕ(t1, t2, s)
∂sα

−
∂2ϕ(t1, t2, , s)
∂t2

1

−
∂2ϕ(t1, t2, , s)
∂t2

2

+
∂ϕ(t1, t2, s)
∂t1

+
∂ϕ(t1, t2, s)
∂t2

= f (t1, t2, s) (t1, t2, s) ∈ Ω2 × [0, 1]

ϕ(t1, t2, 0) = 0,
∂ϕ(t1, t2, 0)
∂s

= 0, t1, t2 ∈ Ω
2

ϕ(t1, t2, s)|Γ = 0, s ∈ [0, 1],

(5.2)

with the analysis solution is
ϕ(t1, t2, s) = s3+α sin(πt1) sin(πt2)

with the initial condition
ϕ(t1, t2, 0) = 0
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and

f (t1, t2, s) =
(
Γ(4 + α)s3

6
+ 2π2s3+α

)
sin(πt1) sin(πt2) + πs3+α[cos(πt1) sin(πt2) + sin(πt1) cos(πt2)].

(a) uniform (b) nonuniform

Figure 5. Errors of m = n = l = 13, Ω2 = [0, 1] × [0, 1], α = 1.2 in Example 2 (a) uniform;
(b) nonuniform.

(a) uniform (b) nonuniform

Figure 6. Errors of m = n = l = 13, dt1 = dt2 = ds = 6, Ω2 = [0, 1] × [0, 1], α = 1.2 in
Example 2 (a) uniform; (b) nonuniform.

In Figures 5 and 6, errors of m = n = 13, Ω2 = [0, 1] × [0, 1], α = 1.2 and m = n = 13, dt = ds = 7,
Ω2 = [0, 1] × [0, 1], α = 1.2 in Example 2(a) uniform and 2(b) nonuniform for the TFCD equation by
the rational interpolation collocation methods are presented, respectively. From the Figure, we know
that the precision can reach to 10−6 for both the uniform and nonuniform partition.
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(a) uniform (b) nonuniform

Figure 7. Errors of m = n = l = 13, Ω2 = [0, 1] × [0, 1], α = 1.9 in Example 2 (a) uniform;
(b) nonuniform.

(a) uniform (b) nonuniform

Figure 8. Errors of m = n = l = 13, dt = ds = 6, Ω2 = [0, 1] × [0, 1], α = 1.8 in Example 2
(a) uniform; (b) nonuniform.

In Figures 7 and 8, the errors of m = n = 13, Ω2 = [0, 1] × [0, 1], α = 1.9 and m = n = 13, dt = ds =

6, α = 1.9, Ω2 = [0, 1] × [0, 1] in Example 2(a) uniform and 2(b) nonuniform for the TFCD equation
by rational interpolation collocation methods are presented, respectively. From the figure, we know
that the precision can reach to 10−6 for both the uniform and nonuniform partition.
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Table 11. Errors of TFCD equation with dt1 = dt2 = ds = 5, α = 1.9.

method of substitution method of additional
uniform nonuniform uniform nonuniform

8 7.0419e-04 3.3178e-04 3.1465e-03 3.3304e-03
10 3.3310e-04 1.0079e-04 9.2704e-04 3.2072e-04
12 1.8129e-04 3.1367e-05 5.3770e-04 1.0461e-04
14 1.0696e-04 1.3069e-05 3.2444e-04 2.7111e-05

In Table 11, the errors of the TFCD equation with dt1 = dt2 = ds = 5, α = 1.9 for substitution
methods and additional methods are presented, and there are nearly no differences for the two methods.
Compared with two methods, the additional method is more simple than the substitution methods. In
the following, we chose the substitution method to deal with the boundary condition.

Table 12. Errors of non-uniform with α = 1.2, ds = 5.

m, n, l dt1 = dt2 = 1 dt1 = dt2 = 2 dt1 = dt2 = 3 dt1 = dt2 = 4
8 2.7562e-02 1.2846e-02 2.8232e-03 2.1145e-04
10 2.4880e-02 0.4586 4.2585e-03 4.9481 4.1631e-04 8.5782 4.1373e-04 -
12 1.3801e-02 3.2323 2.2876e-03 3.4084 9.6620e-05 8.0115 1.0619e-04 7.4594
14 1.0876e-02 1.5456 1.2425e-03 3.9594 4.6241e-05 4.7805 3.9039e-05 6.4913

Table 13. Errors of non-uniform with α = 1.2, dt1 = dt2 = 5.

m, n, l ds = 2 ds = 3 ds = 4 ds = 5
8 1.3243e+00 7.8057e-02 1.5961e-02 6.2422e-04
10 7.3310e-01 2.6500 3.5876e-02 3.4837 4.9632e-03 5.2349 3.0553e-04 3.2017
12 6.2810e-01 0.8479 2.2361e-02 2.5930 2.1901e-03 4.4870 1.1816e-04 5.2105
14 5.5624e-01 0.7881 1.5276e-02 2.4719 1.1022e-03 4.4542 6.8114e-05 3.5737

From Tables 12 and 13, the error of BRIM under non-uniform for α = 1.2, ds = 5 with different
dt1, dt2 are given, and the convergence rate is O(hd1). From Table 13, with space variable uniform for
α = 1.2, dt1 = dt2 = 5, the convergence rate is O(hds), which we will investigate in future paper.

Table 14. Errors of uniform with α = 1.2, dt1 = dt2 = 5.

m, n, l ds = 2 ds = 3 ds = 4 ds = 5
8 1.4288e+00 7.6992e-01 7.8669e-02 2.0025e-03
10 3.3357e-01 6.5191 1.2495e+00 3.3837e-02 3.7810 1.0038e-03 3.0947
12 1.4418e-01 4.6005 2.8110e+00 1.6731e-02 3.8627 5.9571e-04 2.8621
14 1.0264e-01 2.2045 4.1671e+01 1.0120e-02 3.2616 5.0537e-04 1.0670
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Table 15. Errors of uniform with α1 = 1.2, ds = 5.

m, n, l dt1 = dt2 = 1 dt1 = dt2 = 2 dt1 = dt2 = 3 dt1 = dt2 = 4
8 1.2826e-02 5.7354e-03 1.5229e-03 1.2495e-03
10 9.0437e-03 1.5660 2.9311e-03 3.0082 4.9942e-04 4.9966 5.6185e-04 3.5819
12 6.2085e-03 2.0631 1.6990e-03 2.9911 2.0744e-04 4.8189 2.9431e-04 3.5465
14 4.8193e-03 1.6431 1.0705e-03 2.9963 1.1045e-04 4.0887 1.9707e-04 2.6017

For Tables 14 and 15, the errors of the uniform partition for s and t are presented. For α = 1.2, ds =

5, the convergence rate is O(hds) in Table 14, while in Table 15, the convergence rate is O(hdt1), which
agrees with our theorem.

Table 16. Errors of uniform with α = 1.9, ds = 5.

m, n, l dt1 = dt2 = 2 dt1 = dt2 = 3 dt1 = dt2 = 4 dt1 = dt2 = 5
8 7.2024e-03 4.2245e-03 1.1282e-03 7.7258e-04
10 4.6350e-03 1.9754 2.3361e-03 2.6550 4.1889e-04 4.4402 3.3536e-04 3.7399
12 3.2040e-03 2.0251 1.4242e-03 2.7142 1.8938e-04 4.3540 1.8214e-04 3.3481
14 2.3575e-03 1.9902 9.3114e-04 2.7567 1.0609e-04 3.7595 1.0722e-04 3.4378

Table 17. Errors of uniform with α = 1.9, dt1 = dt2 = 5.

m, n, l ds = 1 ds = 2 ds = 3 ds = 4
8 7.1413e-01 1.9907e-01 6.9366e-02 1.2212e-03
10 7.5039e-01 1.7041e-01 0.6966 4.4086e-02 2.0312 8.0096e-04 1.8900
12 7.7490e-01 1.4576e-01 0.8571 3.0184e-02 2.0778 5.3284e-04 2.2356
14 7.8155e-01 1.2601e-01 0.9444 2.1918e-02 2.0758 3.6584e-04 2.4392

In the following table, α = 1.9 is chosen to present numerical results. From Tables 16 and 17, the
error of BRIM under uniform for ds = 5 with different dt1, dt2 are given, and the convergence rate is
O(hdt1). From Table 17, with space variable dt1 = dt2 = 5, the convergence rate is O(hds−1), which
agrees with our theorem.

Table 18. Errors of non-uniform with α1 = 1.9, ds = 5.

m, n, l dt1 = dt2 = 2 dt1 = dt2 = 3 dt1 = dt2 = 4 dt1 = dt2 = 5
8 1.8544e-02 9.4605e-03 1.8420e-03 3.1671e-04
10 1.4747e-02 1.0267 3.2891e-03 4.7346 3.5472e-04 7.3821 2.6826e-04 0.7440
12 8.6541e-03 2.9234 1.4864e-03 4.3563 1.0556e-04 6.6478 7.3391e-05 7.1092
14 5.9605e-03 2.4189 8.7234e-04 3.4574 3.7193e-05 6.7671 1.8804e-05 8.8340
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Table 19. Errors of non-uniform with α = 1.9, dt1 = dt2 = 5.

m, n, l ds = 2 ds = 3 ds = 4 ds = 5
8 5.8112e-01 1.1023e-01 2.9033e-02 6.2495e-04
10 6.2713e-01 - 7.3871e-02 1.7937 1.2478e-02 3.7842 2.6071e-04 3.9179
12 6.4611e-01 - 5.1865e-02 1.9399 6.0291e-03 3.9897 1.0664e-04 4.9032
14 6.5178e-01 - 3.7744e-02 2.0616 3.1919e-03 4.1257 4.9371e-05 4.9957

For Tables 18 and 19, the errors of BRIM under thev Chebyshev partition for with α = 1.9 are
presented. For ds = 5, the convergence rate is O(ht1) in Table 18, while in Table 19, the convergence
rate is O(hds), which agrees with our theorem.

6. Concluding remarks

In this paper, BRIM is used to solve the TFCD equation. The singularity of fractional derivative
is overcome by thre integral to the density function from the singular kernel. For arbitrary fractional
derivative new Gauss formula is constructed to simply calculate it. For the Diriclet boundary condition,
the TFCD equation is changed to discrete the TFCD equation and the matrix equation. In the future, the
TFCD equation with the Nuemann condition can be solved by BRIM, and a high dimensional TFCD
equation can be studied by our methods.
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