Electronic
Research Archive

Research article

Uniqueness criteria for initial value problem of conformable fractional differential equation

Yumei Zou and Yujun Cui*

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China

* Correspondence: Email: cyj720201@163.com.

Abstract

This paper presents four uniqueness criteria for the initial value problem of a differential equation which depends on conformable fractional derivative. Among them is the generalization of Nagumo-type uniqueness theory and Lipschitz conditional theory, and advances its development in proving fractional differential equations. Finally, we verify the main conclusions of this paper by providing four concrete examples.

Keywords: conformable fractional differential equations; uniqueness of solution; initial value problem

1. Introduction

Fractional calculus is an effective assistant for explaining the mathematical analysis process in various research fields of finance, control systems and mechanics and so forth [1,2]. Latest results related to fractional differential equations, we recommend reference [3-5].

Uniqueness results play an integral role in the foundation of many of the results in applied science. Therefore, different types of initial value problem (IVP) and boundary value problems (BVP) for differential equation and differential system have been studied, we refer the reader to [2,6-13]. For example, [2] studied the existence and uniqueness results for a class of fractional differential equations (FDE), and the results obtained by Diethelm are very similar to the classical theorem in the first-order differential equation.

Mathematical models involving initial value problems established in scientific and engineering applications are described by ODE or FDE. Several examples are more convincing:

$$
\left\{\begin{array}{l}
\varphi^{\prime \prime}=f\left(y, \varphi, \varphi^{\prime}\right), \quad \varphi \in[0, T], \\
\varphi(0)=\alpha, \varphi^{\prime}(0)=\beta .
\end{array}\right.
$$

This nonlinear IVP is widely used in many places. It is used in [14] to give the description of the spatial variation for physical system. The initial value problem has also been significantly studied in chemical process design, [15] introduced the comparison of two interval methods to discuss the initial value problem of ODE.

Long ago, Nagumo [7] discussed the initial value problem consisting of the equation

$$
\varphi^{\prime}=f(y, \varphi(y)), \quad 0 \leq y \leq a,
$$

and the initial condition

$$
\varphi(0)=0,
$$

where $f:[0, a] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuous and satisfies

$$
f(y, 0)=0 ; \quad|f(y, \xi)-f(y, \eta)| \leq \frac{|\xi-\eta|}{y}, \quad y>0, \quad|\xi|,|\eta| \leq M
$$

Then, it is concluded that $\varphi(t) \equiv 0$ is the only solution of the above equation and is further generalized in [8]. It should be noted that for the n-th order equation in [8] when the coefficient $\frac{1}{y}$ in the above inequality is replaced by $\frac{w^{(n)}(y)}{w(y)}$, where w is an absolutely continuous function with $w(0)=0, w^{(n)}(y)>0$ on $[0, a]$, and if

$$
\frac{|f(y, \xi)-f(y, \eta)|}{w^{(n)}(y)} \rightarrow 0, \text { when } y \rightarrow 0^{+} \text {and } \xi, \eta \rightarrow 0
$$

uniqueness is also established at this time.
In [11, 12], K. Diethelm introduced a uniqueness theorem for Caputo-type fractional differential equation together with initial value problems using a mean value theorem for Caputo-type fractional derivative when $0<\alpha \leq 1$.

Motivated by the above works, the task of this paper is to analyze the following nonlinear conformal fractional differential equations

$$
\left\{\begin{array}{l}
D_{\alpha} \varphi(y)=f(y, \varphi(y)), \quad y \in[0, b] \tag{1.1}\\
\varphi(0)=0
\end{array}\right.
$$

where b is a nonnegative constant, $\alpha \in(0,1]$ and $D_{\alpha} \varphi(y)$ is the standard conformable fractional derivative. The conformable fractional derivative, regarded as a new simple fractional derivative, is introduced by the authors [16]. In 2015 Abdeljawad [17] improved the definitions of conformable fractional derivative by introducing a slight modification. In 2019, AbreuBlaya et al. [18] introduced a generalized conformable fractional derivative. Also in 2018, Nazli et al. [19] introduced multi-variable conformable derivative for a vector valued function with several variables. Now, conformable fractional calculus have drawn significant interest due to its wide range of applications in different fields of sciences and engineering [20-25], and the nature of these definitions combines all the requirements of the standard derivative such as chain rule, fractional integration by parts formulas and fractional power series expansion, mean value theorem. For recent results and applications on conformable fractional calculus we refer the reader to [26-30] and references therein.

A function $\varphi(y)$ is called a solution of $\mathrm{Eq}(1.1)$ if $\varphi \in C[0, b], D_{\alpha} \varphi(y)$ exists and $\varphi(y)$ satisfies Eq (1.1). We derived the uniqueness result of Eq (1.1) employing the mean value theorem of the conformable fractional calculus are proved in [17]. We then introduce the uniqueness of the initial
value problem for conformable fractional differential operators. This uniqueness theorem extends the classical Nagumo theorem of first-order differential equations (see [10]); later we further extend the Athanassov-like term and the classical Lipschitz condition as the uniqueness theorem. In addition, These effective methods are also derived from the ideas in [6] and [13].

2. Preliminaries

In this section, it is not doubtful that we introduce some necessary definitions, lemmas, and some related properties.
Definition 2.1. [16] Let $\varphi:[0,+\infty) \rightarrow \mathbb{R}, y>0$ and $\alpha \in(0,1]$. Then The α-conformable fractional derivative of a function $\varphi(y)$ is defined by

$$
D_{\alpha} \varphi(y)=\lim _{\xi \rightarrow 0} \frac{\varphi\left(y+\xi y^{1-\alpha}\right)-\varphi(y)}{\xi}
$$

for $y>0$ and the conformable fractional derivative at 0 is defined as $D_{\alpha} \varphi(0)=\lim _{y \rightarrow 0^{+}}\left(D_{\alpha} \varphi\right)(y)$. If φ is differentiable then $D_{\alpha} \varphi(y)=y^{1-\alpha} \varphi^{\prime}(y)$.
Definition 2.2. [16] The conformable fractional integral of a function $\varphi(y)$ of order α is given as

$$
\begin{equation*}
I_{\alpha} \varphi(y)=\int_{0}^{y} s^{\alpha-1} \varphi(s) d s \tag{2.1}
\end{equation*}
$$

Lemma 2.3. [17] Let $\varphi:(0,+\infty) \rightarrow \mathbb{R}$ be differentiable and $\alpha \in(0,1]$. Then,

$$
I_{\alpha} D_{\alpha} \varphi(y)=\varphi(y)-\varphi(0), \quad y>0 .
$$

Lemma 2.4 [17] Let $\alpha \in(0,1], \gamma, k, k_{1}, k_{2} \in \mathbb{R}$, and the function u, v be α-differentiable on $[0,+\infty)$, then:
(i) $D_{\alpha} u(y)=0$ for all constant functions $u(y)=k$;
(ii) $D_{\alpha}\left(k_{1} u+k_{2} v\right)=k_{1} D_{\alpha} u(x)+k_{2} D_{\alpha} v(x)$;
(iii) $D_{\alpha} y^{\gamma}=\gamma y^{\gamma-\alpha}$;
(iv) $D_{\alpha}(u v)=u(y) D_{\alpha} v(y)+v(y) D_{\alpha} u(y)$;
(v) $D_{\alpha}\left(\frac{u}{v}\right)=\frac{v(y) D_{\alpha} u(y)-u(y) D_{\alpha} v(y)}{v^{2}}$.

Lemma 2.5. [17] (Mean value theorem) Let $b>a>0$, and $u:[a, b] \rightarrow \mathbb{R}$ be a given function that satisfies
(i) u is continuous on $[a, b]$,
(ii) u is α-differentiable for some $\alpha \in(0,1)$.

Then there exists $a \zeta \in(a, b)$, such that $D_{\alpha} u(\zeta)=\frac{u(b)-u(a)}{\frac{1}{\alpha} b^{-1}-\frac{1}{\alpha} \alpha^{\alpha}}$.
Lemma 2.6. [31] Let $u:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and α-differentiable for some $\alpha \in(0,1)$. Then we have the following:
1). u is increasing on $[a, b]$ if $D_{\alpha} u(x)>0$ for any $x \in(a, b)$.
2). u is decreasing on $[a, b]$ if $D_{\alpha} u(x)<0$ for any $x \in(a, b)$.

3. Main results

This section is the most exciting part of this article, some uniqueness results for the IVP involving conformable fractional differential equation are stated as follows.
Theorem 3.1. Let $0<\alpha \leq 1$. Assume that $\lim _{(y, u) \rightarrow(0,0)} f(y, u)=f(0,0)$, and for all $y \in[0, b]$ and $u, v \in \mathbb{R}$, the function f satisfies the inequality

$$
\begin{equation*}
y^{\alpha}|f(y, u)-f(y, v)| \leq k|u-v|, \quad k \leq \alpha . \tag{3.1}
\end{equation*}
$$

Then Eq (1.1) has at most one solution.
Proof. Suppose that φ_{1}, φ_{2} are two different continuous solution of Eq (1.1) on [0,b], it is clear that $\varphi_{1}(0)=\varphi_{2}(0)=0$. We need to prove that $\varphi_{1}(y)=\varphi_{2}(y)$ for $y \in(0, b]$. Let $\varphi(y)=\varphi_{1}(y)-\varphi_{2}(y)$, now we define a function $\psi(y)$ by

$$
\psi(y)=\left\{\begin{array}{l}
y^{-\alpha}|\varphi(y)|, \quad y \in(0, b], \\
0, \quad y=0 .
\end{array}\right.
$$

Since both φ_{1} and φ_{2} are two solutions of Eq (1.1) and on account of Lemma 2.5, we conclude

$$
\begin{aligned}
\psi(y) & =y^{-\alpha}\left|\varphi_{1}(y)-\varphi_{2}(y)\right| \\
& =y^{-\alpha}\left|\left[\varphi_{1}(y)-\varphi_{1}(0)\right]-\left[\varphi_{2}(y)-\varphi_{2}(0)\right]\right| \\
& =y^{-\alpha}\left|\alpha^{-1} y^{\alpha} D_{\alpha} \varphi_{1}(\eta)-\alpha^{-1} y^{\alpha} D_{\alpha} \varphi_{2}(\eta)\right| \\
& =\alpha^{-1}\left|D_{\alpha} \varphi_{1}(\eta)-D_{\alpha} \varphi_{2}(\eta)\right| \\
& =\alpha^{-1}\left|f\left(\eta, \varphi_{1}(\eta)\right)-f\left(\eta, \varphi_{2}(\eta)\right)\right|, \eta \in(0, t) .
\end{aligned}
$$

Subsequently, we can get $\eta \rightarrow 0$, and $\varphi_{1}(\eta), \varphi_{2}(\eta) \rightarrow 0$ when $y \rightarrow 0$. From the continuity of f, we conclude that

$$
\psi(y)=\alpha^{-1}\left|f\left(\eta, \varphi_{1}(\eta)\right)-f\left(\eta, \varphi_{2}(\eta)\right)\right| \rightarrow \alpha^{-1}|f(0,0)-f(0,0)|=\psi(0) .
$$

That is to say that $\psi(y)$ is nonnegative continuous on $[0, b]$. If $\psi(y) \neq 0$ on $(0, b]$, then it is easy to conclude that there is a $y_{0} \in(0, b]$ such that $\max _{y \in[0, b]} \psi(y)=\psi\left(y_{0}\right)>0$ and that $\psi\left(y_{1}\right)<\psi\left(y_{0}\right)$ for $y_{1} \in\left(0, y_{0}\right)$. By help of Lemma 2.5 and Eq (3.1), we derive that

$$
\begin{aligned}
\psi\left(y_{0}\right) & =y_{0}^{-\alpha}\left|\varphi_{1}\left(y_{0}\right)-\varphi_{2}\left(y_{0}\right)\right| \\
& =y_{0}^{-\alpha}\left|\left[\varphi_{1}\left(y_{0}\right)-\varphi_{1}(0)\right]-\left[\varphi_{2}\left(y_{0}\right)-\varphi_{2}(0)\right]\right| \\
& =\alpha^{-1}\left|D_{\alpha} \varphi_{1}\left(y_{1}\right)-D_{\alpha} \varphi_{2}\left(y_{1}\right)\right| \\
& =\alpha^{-1}\left|f\left(y_{1}, \varphi_{1}\left(y_{1}\right)\right)-f\left(y_{1}, \varphi_{2}\left(y_{1}\right)\right)\right| \\
& \leq \alpha^{-1} y_{1}^{-\alpha} k\left|\varphi_{1}\left(y_{1}\right)-\varphi_{2}\left(y_{1}\right)\right| \\
& \leq \alpha^{-1} y_{1}^{-\alpha} \alpha\left|\varphi_{1}\left(y_{1}\right)-\varphi_{2}\left(y_{1}\right)\right| \\
& =\psi\left(y_{1}\right), \quad y_{1} \in\left(0, y_{0}\right) .
\end{aligned}
$$

The contradiction show that $\psi(y) \equiv 0, y \in[0, b]$, thus, $\varphi(y) \equiv 0, y \in[0, b]$, in other words, we have $\varphi_{1}(y)=\varphi_{2}(y)$ for $y \in[0, b]$. The proof of Theorem 3.1 is completed.

When $\alpha=1$ in Theorem 3.1, the conformable fractional derivative of order $\alpha=1$ coincides with the known usual derivatives. Thus Theorem 3.1 complement and extend the results in [10].

The following example shows that the restriction $k \leq \alpha$ imposed in Eq (3.1) is optimal.

Example 3.1. Consider IVP in the following form:

$$
\left\{\begin{array}{l}
D_{\alpha} \varphi(y)=f(y, \varphi(y)), \quad y \in[0, b], \tag{3.2}\\
\varphi(0)=0,
\end{array}\right.
$$

where

$$
f(y, u)=\left\{\begin{array}{l}
0, \quad y \in[0, b], u \leq 0 \\
\frac{(\alpha+\xi) u}{y^{\alpha}}, y \in[0, b], 0<u<y^{\varepsilon}, \varepsilon=\alpha+\xi>\alpha \\
(\alpha+\xi) y^{\varepsilon-\alpha}, y \in[0, b], y^{\varepsilon} \leq u
\end{array}\right.
$$

For $0<u<y^{\varepsilon}, f(y, u)=\frac{(\alpha+\xi) u}{y^{\alpha}}$. So we have

$$
|f(y, u)|=\left|\frac{(\alpha+\xi) u}{y^{\alpha}}\right|<(\alpha+\xi) y^{\varepsilon-\alpha},
$$

which easily implies that f is continuous on $[0, b] \times \mathbb{R}$. Moreover, f satisfies the $\mathrm{Eq}(3.1)$ on $[0, b] \times \mathbb{R}$ except that $k=\alpha+\xi>\alpha$. We have the following four cases to illustrate:

Case 1: When $0<u, \bar{u}<y^{\varepsilon}$, we have

$$
|f(y, u)-f(y, \bar{u})|=\left|\frac{(\alpha+\xi) u}{y^{\alpha}}-\frac{(\alpha+\xi) \bar{u}}{y^{\alpha}}\right|=\frac{(\alpha+\xi)}{y^{\alpha}}|u-\bar{u}| .
$$

Case 2: When $0<u<y^{\varepsilon} \leq \bar{u}$, we have

$$
\begin{aligned}
|f(y, u)-f(y, \bar{u})| & =\left|\frac{(\alpha+\xi) u}{y^{\alpha}}-(\alpha+\xi) y^{\varepsilon-\alpha}\right|=\frac{(\alpha+\xi)}{y^{\alpha}}\left(y^{\varepsilon}-u\right) \\
& \leq \frac{(\alpha+\xi)}{y^{\alpha}}|\bar{u}-u| .
\end{aligned}
$$

Case 3: When $u \leq 0<\bar{u}<y^{\varepsilon}$, we have

$$
|f(y, u)-f(y, \bar{u})|=\left|0-\frac{(\alpha+\xi) \bar{u}}{y^{\alpha}}\right| \leq \frac{(\alpha+\xi)}{y^{\alpha}}|u-\bar{u}| .
$$

Case 4: When $u \leq 0, y^{\varepsilon} \leq \bar{u}$, we have

$$
\begin{aligned}
|f(y, u)-f(y, \bar{u})| & =\left|0-(\alpha+\xi) y^{\varepsilon-\alpha}\right|=\frac{(\alpha+\xi)}{y^{\alpha}} y^{\varepsilon} \\
& \leq \frac{(\alpha+\xi)}{y^{\alpha}} \bar{u} \leq \frac{(\alpha+\xi)}{y^{\alpha}}|u-\bar{u}| .
\end{aligned}
$$

However, Eq (3.2) has multiple solutions $\varphi(y)=c y^{\alpha+\xi}$ with $c \in(0,1)$.
The fractional order integral equation is used in the proof process of the next uniqueness result.
Theorem 3.2. Assume that there is a function $w \in C^{\alpha}[0, b]=\left\{\varphi: \varphi \in C[0, b], D_{\alpha} \varphi \in C[0, b]\right\}$ such that $w(y)>0$ for all $y>0$ and $w(0)=0$. In addition, for $u, \bar{u} \in \mathbb{R}, w$ and f satisfies

$$
\begin{equation*}
|f(y, u)-f(y, \bar{u})| \leq \frac{D_{\alpha} w(y)}{w(y)}|u-\bar{u}|, \quad y \in(0, b], \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{y \rightarrow 0, u, \bar{u} \rightarrow 0} \frac{|f(y, u)-f(y, \bar{u})|}{D_{\alpha} w(y)}=0 . \tag{3.4}
\end{equation*}
$$

Then Eq (1.1) has at most one solution.
Proof. Assume that Eq (1.1) has two different continuous solutions φ_{1} and φ_{2}. On account of Lemma 2.3, we can infer that

$$
\varphi_{1}(y)=\int_{0}^{y} x^{\alpha-1} f\left(x, \varphi_{1}(x)\right) d x,
$$

and

$$
\varphi_{2}(y)=\int_{0}^{y} x^{\alpha-1} f\left(x, \varphi_{2}(x)\right) d x .
$$

Then take $\psi(y)=\varphi_{1}(y)-\varphi_{2}(y)$, we get

$$
\begin{align*}
|\psi(y)| & =\left|\varphi_{1}(y)-\varphi_{2}(y)\right| \\
& =\left|\int_{0}^{y} x^{\alpha-1}\left[f\left(x, \varphi_{1}(x)\right)-f\left(x, \varphi_{2}(x)\right)\right] d x\right| \tag{3.5}\\
& \leq \int_{0}^{y} x^{\alpha-1}\left|f\left(x, \varphi_{1}(x)\right)-f\left(x, \varphi_{2}(x)\right)\right| d x .
\end{align*}
$$

Now, for $y \in[0, b]$, define function $\phi(y)$ by

$$
\phi(y)=\left\{\begin{array}{l}
\frac{|\psi(y)|}{w(y)}, \quad y \in(0, b], \\
0, \quad y=0 .
\end{array}\right.
$$

In view of Eq (3.4) we obtain that for all $\varepsilon>0$ there exists a $\eta>0$ such that

$$
\frac{\left|f\left(x, \varphi_{1}(x)\right)-f\left(x, \varphi_{2}(x)\right)\right|}{D_{\alpha} w(x)}<\varepsilon, \quad 0<x<\eta .
$$

In other words,

$$
\left|f\left(x, \varphi_{1}(x)\right)-f\left(x, \varphi_{2}(x)\right)\right|<\varepsilon D_{\alpha} w(x)
$$

By Eqs (3.3) and (3.5), we obtain that

$$
\begin{aligned}
|\psi(y)| & \leq \int_{0}^{y} x^{\alpha-1}\left|f\left(x, \varphi_{1}(x)\right)-f\left(x, \varphi_{2}(x)\right)\right| d x \\
& <\varepsilon \int_{0}^{y} x^{\alpha-1} D_{\alpha} w(x) d x \\
& =\varepsilon I_{\alpha} D_{\alpha} w(y) \\
& =\varepsilon w(y), 0<y<\eta .
\end{aligned}
$$

In other words,

$$
\lim _{y \rightarrow 0} \frac{|\psi(y)|}{w(y)}=0 .
$$

Then, we get $\phi(y)$ is a nonnegative continuous on $[0, b]$. From the above assumption, it is clear that there exists a $y_{0} \in(0, b]$ be such that $\max _{y \in[0, b]} \phi(y)=\phi\left(y_{0}\right)>0$. Applying Eq (3.3), we can infer that

$$
\begin{aligned}
|\psi(y)| & \leq \int_{0}^{y} x^{\alpha-1}\left|f\left(x, \varphi_{1}(x)\right)-f\left(x, \varphi_{2}(x)\right)\right| d x \\
& \leq \int_{0}^{y} x^{\alpha-1} \frac{D_{\alpha} w(x)}{w(x)}\left|\varphi_{1}(x)-\varphi_{2}(x)\right| d x \\
& =\int_{0}^{y} x^{\alpha-1} D_{\alpha} w(x) \phi(x) d x \\
& <\phi\left(y_{0}\right) \int_{0}^{y} x^{\alpha-1} D_{\alpha} w(x) d x .
\end{aligned}
$$

Thus,

$$
\phi\left(y_{0}\right)=\frac{\left|\psi\left(y_{0}\right)\right|}{w\left(y_{0}\right)}<\frac{\phi\left(y_{0}\right)}{w\left(y_{0}\right)} \int_{0}^{y_{0}} x^{\alpha-1} D_{\alpha} w(x) d x=\frac{\phi\left(y_{0}\right)}{w\left(y_{0}\right)} w\left(y_{0}\right)=\phi\left(y_{0}\right) .
$$

From the above contradiction, we conclude that $\phi(y) \equiv 0$ on $[0, b]$. In other words, $\varphi_{1}(y) \equiv \varphi_{2}(y)$ for $y \in[0, b]$. So the proof is finished.

Subsequently, an example is given to share the application of the Theorem 3.2.
Example 3.2. Consider initial value problem in the following form:

$$
\left\{\begin{array}{l}
D_{\alpha} \varphi(y)=y^{1-\alpha} \cos ^{2} \varphi(y)+e^{y}, y \in[0,1], \quad \alpha \in(0,1] \tag{3.6}\\
\varphi(0)=0
\end{array}\right.
$$

Obviously, $f(y, u)=y^{1-\alpha} \cos ^{2} u+e^{y}$ and $b=1$. New let $w(y)=y$, so we get

$$
D_{\alpha} w(y)=y^{1-\alpha} .
$$

It is easy to obtain that

$$
\left|\cos ^{2} u-\cos ^{2} \bar{u}\right|=\frac{1}{2}|\cos 2 u-\cos 2 \bar{u}| \leq|u-\bar{u}| .
$$

Subsequently, we observe that

$$
|f(y, u)-f(y, \bar{u})|=y^{1-\alpha}\left|\cos ^{2} u-\cos ^{2} \bar{u}\right| \leq \frac{y^{1-\alpha}}{y}|u-\bar{u}|=\frac{D_{\alpha} w(y)}{w(y)}|u-\bar{u}|,
$$

and

$$
\begin{aligned}
\lim _{y \rightarrow 0, u, \bar{u} \rightarrow 0} \frac{|f(y, u)-f(y, \bar{u})|}{D_{\alpha} w(y)} & =\lim _{y \rightarrow 0, u, \bar{u} \rightarrow 0} \frac{y^{1-\alpha}\left|\cos ^{2} u-\cos ^{2} \bar{u}\right|}{y^{1-\alpha}} \\
& =\lim _{y \rightarrow 0, u, \bar{u} \rightarrow 0}\left|\cos ^{2} u-\cos ^{2} \bar{u}\right| \\
& =0 .
\end{aligned}
$$

With the help of Theorem 3.2, we can conclude that Eq (3.6) has at most one solution.
Theorem 3.3. Let $f \in C([0, b] \times \mathbb{R}, \mathbb{R})$ and $f(y, u)$ is nonincreasing in u for every $y \in[0, b]$. Then $E q$ (1.1) has at most one solution in $[0, b]$.

Proof. Assume that Eq (1.1) has two different solutions φ_{1}, φ_{2} on $[0, b]$. Then

$$
\begin{array}{ll}
D_{\alpha} \varphi_{1}(y)=f\left(y, \varphi_{1}(y)\right), & y \in[0, b], \\
D_{\alpha} \varphi_{2}(y)=f\left(y, \varphi_{2}(y)\right), & y \in[0, b],
\end{array}
$$

and

$$
\varphi_{1}(0)=\varphi_{2}(0)=0 .
$$

Without loss of generality, we assume that there exist $y_{1}, y_{2} \in[0, b]$ such that

$$
\begin{array}{ll}
\varphi_{2}(y)=\varphi_{1}(y), & 0 \leq y \leq y_{1}, \\
\varphi_{2}(y)>\varphi_{1}(y), & y_{1}<y \leq y_{2} . \tag{3.7}
\end{array}
$$

Thus for $y \in\left[y_{1}, y_{2}\right]$, we have

$$
D_{\alpha}\left(\varphi_{2}(y)-\varphi_{1}(y)\right)=f\left(y, \varphi_{2}(y)\right)-f\left(y, \varphi_{1}(y)\right) \leq 0 .
$$

Applying Lemma 2.6 to the above inequality, we get $\varphi_{2}(y)-\varphi_{1}(y)$ is nonincreasing on $\left[y_{1}, y_{2}\right]$. Further, since $\varphi_{2}\left(y_{1}\right)=\varphi_{1}\left(y_{1}\right)$, we have $\varphi_{2}(y) \leq \varphi_{1}(y)$ on $\left[y_{1}, y_{2}\right]$ which contradicts Eq (3.7). This contradiction shows that $\varphi_{2}(y) \equiv \varphi_{1}(y)$ for all $y \in[0, b]$. We complete the proof.

We shall illustrate Theorem 3.3 with an example.
Example 3.3. Consider IVP in the following form:

$$
\left\{\begin{array}{l}
D_{\alpha} \varphi(y)=-|\varphi(y)|^{\frac{1}{2}} \operatorname{sgn} \varphi(y), \quad y \in[0, b], \tag{3.8}\\
\varphi(0)=0,
\end{array}\right.
$$

Obviously, the function $f(y, u)=-|u|^{\frac{1}{2}} \operatorname{sgn} u$ is continuous on $[0, b] \times \mathbb{R}$ and it is nonincreasing in u for $y \in[0, b]$. Thus, it follows from Theorem 3.3 that $\varphi(y) \equiv 0$ is the only solution of $\mathrm{Eq}(3.8)$.

However, the function f in Eq (3.8) does not satisfy the Lipschitz condition. Then, the above description shows that the Lipschitz condition is a sufficient rather than a necessary condition to guarantee the uniqueness for Eq (1.1). The following example shows that the nonincreasing property in Theorem 3.3 cannot be replaced by nondecreasing property.

Example 3.4. Consider IVP in the following form:

$$
\left\{\begin{array}{l}
D_{\frac{1}{2}} \varphi(y)=|\varphi(y)|^{\frac{1}{2}} \operatorname{sgn} \varphi(y), \quad y \in[0, b], \tag{3.9}\\
\varphi(0)=0,
\end{array}\right.
$$

Clearly, $f(y, u)=|u|^{\frac{1}{2}} \operatorname{sgn} u$ is continuous on $[0, b] \times \mathbb{R}$ and it is nondecreasing in u for $y \in[0, b]$. However, Eq (3.9) has two solutions $\varphi(y) \equiv 0$ and $\varphi(y)=y$.
Theorem 3.4. Let $f \in C([0, b] \times \mathbb{R}, \mathbb{R})$. In addition, f satisfies one-sided Lipschitz condition

$$
\begin{equation*}
f(y, \bar{u})-f(y, u) \leq L(\bar{u}-u), y \in[0, b], u \leq \bar{u} . \tag{3.10}
\end{equation*}
$$

Then $E q$ (1.1) has at most one solution in $[0, b]$.

Proof. Let $\varphi(y)$ be a solution of (1.1). Take $\psi(y)=e^{-\frac{L}{\alpha} y^{\alpha}} \varphi(y)$. According to Lemma 2.4 it follows that

$$
\begin{aligned}
D_{\alpha} \psi(y) & =e^{-\frac{L}{\alpha} y^{\alpha}} D_{\alpha} \varphi(y)+\varphi(y) D_{\alpha} e^{-\frac{L}{\alpha} y^{\alpha}} \\
& =e^{-\frac{L}{\alpha} y^{\alpha}} f(y, \varphi(y))-L e^{-\frac{L}{\alpha} y^{\alpha}} \varphi(y) \\
& =e^{-\frac{L}{\alpha} y^{\alpha}} f\left(y, e^{\frac{L}{\alpha} y^{\alpha}} \psi(x)\right)-L \psi(x) .
\end{aligned}
$$

Therefore, $\varphi(y)$ solve of $\mathrm{Eq}(1.1)$ if and only if $\psi(y)$ satisfying the following conformable fractional differential equation

$$
\left\{\begin{array}{l}
D_{\alpha} u(y)=F(y, u(y)), \quad y \in[0, b], \tag{3.11}\\
u(0)=0,
\end{array}\right.
$$

where $F(y, u)=e^{-\frac{L}{\alpha} y^{\alpha}} f\left(y, e^{\frac{L}{\alpha} y^{\alpha}} u\right)-L u$. It follows from Eq (3.10) that the function $F(y, u)$ satisfying the conditions in Theorem 3.3. So, Eq (3.11) has at most one solution, equivalently, Eq (1.1) has at most one solution.

4. Conclusions

This paper is concerned with the study of uniqueness criteria for the initial value problem with the uses of a conformable fractional derivative. By using conformable fractional calculus, we present four uniqueness theorems which extends and complements the Nagumo-type uniqueness theory and Lipschitz conditional theory. Four concrete examples are given to better demonstrate our main results.

Acknowledgments

The research is supported by the National Natural Science Foundation of China (11571207) and Shandong Natural Science Foundation (ZR2018MA011).

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. R. P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109 (2010), 973-1033.
2. K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.
3. S. Asawasamrit, S. K. Ntoutas, P. Thiramanus, J. Tariboon, Periodic boundary value problems for impulsive conformable fractional integro-differential equations, Boundary Value Probl., 2016 (2016), 122. https://doi.org/10.1186/s13661-016-0629-0
4. R. A. C. Ferreira, Existence and uniqueness of solutions for two-point fractional boundary value problems, Electron. J. Differ. Equations, 2016 (2016), 1-5.
5. R. A. C. Ferreira, A uniqueness result for a fractional differential equation, Fract. Calc. Appl. Anal., 15 (2012), 611-615. https://doi.org/10.2478/s13540-012-0042-z
6. R. P. Agarwal, V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, World Scientific, Singapore, 1993. https://doi.org/10.1142/1988
7. M. Nagumo, Eine hinreichende Bedingung für die Unität der Lösung von Dierentialgleichungen erster Ordnung, Jpn. J. Math., 3 (1926), 107-112. https://doi.org/10.4099/JJM1924.3.0_107
8. A. Constantin, On the unicity of solutions for the dierential equation $x^{n}(t)=f(t, x)$, Rend. Circ. Mat. Palermo, 42 (1993), 59-64. https://doi.org/10.1007/BF02845110
9. D. Baleanu, O. G. Mustafa, D. O'Regan, A Nagumo-like uniqueness theorem for fractional differential equation, J. Phys. A: Math. Theor., 44 (2011), 104-116. https://doi.org/10.1088/17518113/44/39/392003
10. J. B. Diaz, W. L. Walter, On uniqueness theorems for ordinary differential equations and for partial differential equations of hyperbolic type, Trans. Am. Math. Soc., 96 (1960), 90-100. https://doi.org/10.2307/1993485
11. K. Diethelm, The mean value theorems and a Nagumo-type uniqueness theorem for Caputo's fractional calculus, Fract. Calc. Appl. Anal., 15 (2012), 304-313. https://doi.org/10.2478/s13540-012-0022-3
12. K. Diethelm, Erratum: the mean value theorems and a Nagumo-type uniqueness theorem for caputo's fractional calculus, Fract. Calc. Appl. Anal., 20 (2017), 1567-1570. https:/doi.org/10.1515/fca-2017-0082
13. O. G. Mustafa, A Nagumo-like uniqueness result for a second order ODE, Monatsh. Math., 168 (2012), 273-277. https://doi.org/10.1007/s00605-011-0324-2
14. M. Baccouch, Superconvergence of the discontinuous Galerkin method for nonlinear secondorder initial-value problems for ordinary differential equations, Appl. Numer. Math., 115 (2017), 160-179. https://doi.10.1016/j.apnum.2017.01.007
15. I. Bogle, L. David, Comparison between interval methods to solve initial value problems in chemical process design, Comput. Aided Chem. Eng., 33 (2014), 1405-1410. https://doi.org/10.1016/B978-0-444-63455-9.50069-6
16. R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivatuive, J. Comput. Appl. Math., 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002
17. T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. https://doi.org/10.1016/j.cam.2014.10.016
18. R. Abreu-Blaya, A. Fleitas, J. E. N. Valdés, R. Reyes, J. M. Rodríguez, J. M. Sigarreta, On the conformable fractional logistic models, Math. Methods Appl. Sci., 43 (2020), 4156-4167. https://doi.org/10.1002/mma. 6180
19. N. Gozutok, U. Gözütok, Multivariable conformable fractional calculus, Filomat, 32 (2018), 45-53.
20. M. Bohner, V. F. Hatipoǧlu, Cobweb model with conformable fractional derivatives, Math. Methods Appl. Sci., 41 (2018), 9010-9017. https://doi.org/10.1002/mma. 4846
21. A. Harir, S. Malliani, L. S. Chandli, Solutions of conformable fractional-order SIR epidemic model, Int. J. Differ. Equations, 2021 (2021), 6636686. https://doi.org/10.1155/2021/6636686
22. L. Martnez, J. J. Rosales, C. A. Carreo, J. M. Lozano, Electrical circuits described by fractional conformable derivative, Int. J. Circuit Theory Appl., 46 (2018), 1091-1100. https://doi.org/10.3389/fenrg.2022.851070
23. N. H. Tuan, T. N. Thach, N. H. Can, D. O'Regan, Regularization of a multidimensional diffusion equation with conformable time derivative and discrete data, Math. Methods Appl. Sci., 44 (2021), 2879-2891. https://doi.org/10.1002/mma. 6133
24. W. S. Chung, Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math., 290 (2015), 150-158. https://doi.org/10.1016/j.cam.2015.04.049
25. D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903-917. https://doi.org/10.1007/s10092-017-0213-8
26. M. Vivas-Cortez, M. P. Árciga, J. C. Najera, J. E. Hernández, On some conformable boundary value problems in the setting of a new generalized conformable fractional derivative, Demonstr. Math., 56 (2023), 20220212. https://doi.org/10.1515/dema-2022-0212
27. Y. H. Cheng, The dual eigenvalue problems of the conformable fractional Sturm-Liouville problems, Boundary Value Probl., 2021 (2021), 83. https://doi.org/10.1186/s13661-021-01556-z
28. W. C. Wang, Y. H. Cheng, On nodal properties for some nonlinear conformable fractional differential equations, Taiwan. J. Math., 26 (2022), 847-865. https://doi.org/10.11650/tjm/220104
29. E. R. Nwaeze, A mean value theorem for the conformable fractional calculus on arbitrary time scales, Progr. Fract. Differ. Appl., 4 (2016), 287-291. https://doi.org/10.18576/pfda/020406
30. M. Atraoui, M. Bouaouid, On the existence of mild solutions for nonlocal differential equations of the second order with conformable fractional derivative, Adv. Differ. Equations, 2021 (2021), 1-11. https://doi.org/10.1186/s13662-021-03593-5
31. O. S. Iyiola, E. R. Nwaeze, Some new results on the new conformable fractional calculus with application using D'Alambert approach, Progr. Fract. Differ. Appl., 2 (2016), 115-122. https://doi.org/10.18576/pfda/020204

AIMS Press

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

