Electronic
Research Archive

Research article

Global stability of multi-group SEIQR epidemic models with stochastic perturbation in computer network

Ramziya Rifhat, Kai Wang, Lei Wang, Ting Zeng and Zhidong Teng*
College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830017, China

* Correspondence: Email: zhidong_teng@sina.com; Tel: +8613899982411.

Abstract

In this paper, a class of multi-group SEIQR models with random perturbation in computer network is investigated. The existence and uniqueness of global positive solution with any positive initial value are obtained. The sufficient conditions on the asymptotic behavior of solutions around the disease-free equilibrium and endemic equilibrium of the corresponding deterministic model are established. Furthermore, the existence and uniqueness of stationary distribution are also obtained. Lastly, the analytical results are illustrated by the numerical simulations.

Keywords: computer network; multi-group stochastical SEIQR epidemic model; asymptotic behavior; lyapunov function; numerical simulation

1. Introduction

As is well known, the internet world has brought great changes in the society. In reality, we know that cyber world is being threatened by the attack of malicious objects. Malicious object is a code that infects computer systems. There are different kinds of malicious objects such as: Worm, Virus, Trojan horse, etc., which differ according to the way they attack computer systems and the malicious actions they perform (see $[1-3]$). With the development of the computer network, malicious objects be widely spread through a network, through an online service, through shared computer software or through a mobile storage tool, and so on. Because of the similarity between the transmission of human infectious diseases and transmission of malicious objects in the computer network, some authors employ the epidemic models to describe the transmission of malicious objects in the cyber world (see [2-17]).

Considering different contact patterns, different anti-virus software, or distinct number of contacts etc., it is more appropriate to divide individual hosts into groups in modeling epidemic disease. Therefore, it is reasonable to propose multi-group models to describe the transmission dynamics of malicious objects in heterogeneous host populations on computer network. At present, many scholars
have focused their study on various forms of multi-group epidemic models (see [18-23]). They have also proved the global stability of the unique endemic equilibrium through Lyapunov function, which is one of the main mathematical challenges in analyzing multi-group models. Particularly, Wang et al. [23] proposed the following multi-group SEIQR epidemic model for describing the transmission of malicious objects in computer network

$$
\left\{\begin{align*}
\mathrm{d} S_{k}(t) & =\left[\Lambda_{k}-\sum_{j=1}^{n} \beta_{k j} S_{k}(t) I_{j}(t)-d_{k}^{S} S_{k}\right] \mathrm{d} t, \tag{1.1}\\
\mathrm{~d} E_{k}(t) & =\left[\sum_{j=1}^{n} \beta_{k j} S_{k}(t) I_{j}(t)-\left(d_{k}^{E}+\epsilon_{k}\right) E_{k}\right] \mathrm{d} t, \\
\mathrm{~d} I_{k}(t) & =\left[\epsilon_{k} E_{k}-\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right) I_{k}\right] \mathrm{d} t, \\
\mathrm{~d} Q_{k}(t) & =\left[\delta_{k} I_{k}-\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}\right) Q_{k}\right] \mathrm{d} t, \\
\mathrm{~d} R_{k}(t) & =\left[\gamma_{k} I_{k}+\mu_{k} Q_{k}-d_{k}^{R} R_{k}\right] \mathrm{d} t, \quad 1 \leq k \leq n,
\end{align*}\right.
$$

where the total network nodes are divided into n groups of nodes, $n \geq 2$ is an integer. $S_{k}(t), E_{k}(t)$, $I_{k}(t), Q_{k}(t)$ and $R_{k}(t)$ express the numbers of susceptible nodes, exposed (infected but not yet infectious) nodes, infectious nodes, quarantined nodes and recovered nodes at time t in the k-th group ($1 \leq k \leq n$), respectively. The definitions of all parameters in model (1.1) are listed in Table 1. We assume that the parameters $d_{k}^{S}, d_{k}^{E}, d_{k}^{I}, d_{k}^{Q}, d_{k}^{R}$ and Λ_{k} are positive and the rest of parameters in model (1.1) ia nonnegative for all k. In particular, $\beta_{k j}=0$ if there is no transmission of the disease between compartments S_{k} and I_{j}. In model (1.1), the basic reproduction number $R_{0}=\rho\left(M_{0}\right)$, the spectral radius of matrix $M_{0}=\left(\frac{\beta_{k} \epsilon \epsilon_{k} \frac{k_{k}}{d_{k}}}{\left(d_{k}^{E_{k}}+\epsilon_{k}\right)\left(d_{k}^{l}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)}\right)_{n \times n}$, is a threshold which completely determines the persistence or extinction of the disease. It is shown that, if $R_{0} \leq 1$, the disease-free equilibrium E_{0} is globally stable in the feasible region and the disease always dies out, and if $R_{0}>1$, a unique endemic equilibrium E^{*} exists and is globally stable in the interior of the feasible region, and once the disease appears, it eventually persists at the unique endemic equilibrium level.

Table 1. Description of parameters in model (1.1).

Symbol	Description
Λ_{k}	influx of individuals into the kth group
$\beta_{k j}$	transmission coefficient between compartments S_{k} and I_{j}
$d_{k}^{S}, d_{k}^{E}, d_{k}^{I}, d_{k}^{Q}, d_{k}^{R}$	natural death rates of $S_{k}, E_{k}, I_{k}, Q_{k}, R_{k}$ compartments in the kth group ϵ_{k}
the rate constant for nodes leaving the exposed class E_{k} for infective compartment in the kth group	
δ_{k}	the rate constant for nodes leaving the infective compartment I_{k} for quarantine compartment in the kth group
α_{k}	the disease related death rate(crashing of nodes due to the attack of malicious objects)constant in the compartments the rates at which nodes recover temporarily after the runof anti-malicious γ_{k} and μ_{k}
software and return to recovered class R from compartments I_{k} and Q_{k} in the kth group	

On the other hand, there exist uncertainties and random phenomena everywhere in nature [23-27]. Environmental noises are usually considered to be harmful, which will lead to the disorder of the dynamics $[20,21]$. Nevertheless, the noises also play a positive role in the dynamics of complex nonlinear systems, especially in interdisciplinary physical models and biomathematics models, such as noise induced resonances, noise enhanced stability (NES) and so on [22-24, 28-30]. According to the noise source, the noises can be divided into the additive noise and the multiplicative noise. The former is not controlled by the system and can be directly introduced to the system, while the latter is related to system parameters and variables. The multiplicative noises can always ensure the nonnegativity of the solution. The two main peculiarities of the presence of the multiplicative noise are the presence of the absorbing barrier in zero population density and the phenomenon of the anomalous fluctuations [25,31]. The noise existing in biological systems is caused by environmental fluctuations, which is usually considered as the multiplicative white noise. For example, Caruso et al. [26] described the dynamic behavior of an ecosystem of two competing species by a stochastic Lotka-Volterra model with the multiplicative white noise. The multiplicative noise models the interaction between the environment and the species.

For human disease related epidemics, the nature of epidemic growth and spread is random due to the unpredictability in person to person contacts. Because of environmental noises, the deterministic approach has some limitations in the mathematical modeling transmission of an infectious disease, several authors began to consider the effect of white noise on the computer network systems (see [23-27]).

There are different approaches used in the literature to introduce random perturbations into population models, both from a mathematical and biological perspective (see [23-29,31]). One is to perturb the positive equilibria in order for making robust the equilibria of deterministic models. In this situation, the essence of the investigation using the approach is to check if the asymptotic stability of the positive equilibria of deterministic models can be preserved. For example, Wang et al. [23] investigated a multi-group SEIQR model with random perturbation around the positive equilibrium of corresponding deterministic model, which revealed that the stochastic stability of endemic equilibrium depends on the magnitude of the intensity of noise as well as the parameters involved within the model. The other important approach is with parameters perturbation. We find that there are many literatures on this approach, see [25-27] and the references cited therein. In epidemic models, the natural death rate and the disease transmission rate are two of the key parameters to disease transmission. And in the real situation, the natural death rate and the disease transmission rate always fluctuate around some average value due to continuous fluctuation in the environment. For example, El Ansari et al. [25] considered a stochastic version of model (1.1) with noises introduced in the rate at which nodes are crashed due to reasons other than the attacks of viruses and the transmission rate, and they proved the various conditions that control the extinction and stability of a nonlinear mathematical spread model with stochastic perturbations.

We now turn to a continuous time SEIQRS model which takes random effects into account. In SEIQRS model (1.1), the natural death rate $d_{k}^{X_{i}}$, where $1 \leq k \leq n$ and $\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right)=(S, E, I, Q, R)$, is one of the key parameters to disease transmission. May [30] pointed out that all the parameters involved in the population model exhibit random fluctuation as the factors controlling them are not constant. And in the real situation, the natural death rate d always fluctuate around some average value due to continuous fluctuation in the environment.

In this sense, $d_{k}^{X_{i}}$ can seem as a random variable $\tilde{d}_{k}^{X_{i}}$. More precisely, in $[t, t+d t)$,

$$
-\tilde{d}_{k}^{X_{i}} d t=-d_{k}^{X_{i}} d t+\sigma_{i k} d B_{i k}(t), 1 \leq k \leq n, i=1,2,3,4,5,
$$

where $B_{i k}(t)(1 \leq k \leq n, i=1,2,3,4,5)$ are the independent standard Brownian motion defined on the complete probability space $\left(\Omega,\left\{\mathcal{F}_{t}\right\}_{\geq \geq 0}, P\right)$ with a filtration $\left\{\mathcal{F}_{t}\right\}_{\geq 00}$ satisfying the usual conditions, and $\sigma_{i k}^{2}$ is the intensity of $B_{i k}(t)$. The reason of adopting $\sigma_{i k}^{2}(1 \leq k \leq n, i=1,2,3,4,5)$ as the intensity of the noise for the group $S_{k}, E_{k}, I_{k}, Q_{k}$ and R_{k}, respectively, is considering the difference between the group mobility response to infection risks. And then, in $[t, t+d t),-\tilde{d}_{k}^{X_{i}} d t$ is normally distributed with mean $\mathbb{E}\left(-\tilde{d}_{k}^{X_{i}} d t\right)=-d_{k}^{X_{i}} d t$ and variance $\operatorname{Var}\left(-\tilde{d}_{k}^{X_{i}} d t\right)=\sigma_{i}^{2} d t$. Due to $\operatorname{Var}\left(-\tilde{d}_{k}^{X_{i}} d t\right)=\sigma_{i}^{2} d t \rightarrow 0$ as $d t \rightarrow 0$, this is a biologically reasonable assumption. Indeed this is a well-established way of introducing stochastic environmental noise into biologically realistic population dynamic models.

Therefore, replace $-d_{k}^{X_{i}} d t$ in model (1.1) with $-\tilde{d}_{k}^{X_{i}} d t=-d_{k}^{X_{i}} d t+\sigma_{i k} d B_{i k}(t)(1 \leq k \leq n, i=1,2,3,4,5)$, and for simplicity, we replace $-\tilde{d}_{k}^{X_{i}}$ with $d_{k}^{X_{i}}$ again, then we can obtain the same SDE epidemic model as the following model (1.2) that is analog to its deterministic version model (1.1) by introducing stochastic perturbation terms to the growth equations of susceptible, infectious, recovered individuals to incorporate the effect of randomly fluctuating environments:

$$
\left\{\begin{align*}
\mathrm{d} S_{k} & =\left[\Lambda_{k}-\sum_{j=1}^{n} \beta_{k j} S_{k}(t) I_{j}(t)-d_{k}^{S} S_{k}\right] \mathrm{d} t+\sigma_{1 k} S_{k} d B_{1 k}, \tag{1.2}\\
\mathrm{~d} E_{k} & =\left[\sum_{j=1}^{n} \beta_{k j} S_{k}(t) I_{j}(t)-\left(d_{k}^{E}+\epsilon_{k}\right) E_{k}\right] \mathrm{d} t+\sigma_{2 k} E_{k} d B_{2 k}, \\
\mathrm{~d} I_{k} & =\left[\epsilon_{k} E_{k}-\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right) I_{k}\right] \mathrm{d} t+\sigma_{3 k} I_{k} d B_{3 k}, \\
\mathrm{~d} Q_{k} & =\left[\delta_{k} I_{k}-\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}\right) Q_{k}\right] \mathrm{d} t+\sigma_{4 k} Q_{k} d B_{4 k}, \\
\mathrm{~d} R_{k} & =\left[\gamma_{k} I_{k}+\mu_{k} Q_{k}-d_{k}^{R} R_{k}\right] \mathrm{d} t+\sigma_{5 k} R_{k} d B_{5 k}, \quad 1 \leq k \leq n
\end{align*}\right.
$$

Throughout this paper, we always assume that model (1.2) is defined on a complete probability space $\left(\Omega,\left\{\mathcal{F}_{t}\right\}_{\geq \geq 0}, P\right)$ with a filtration $\left\{\mathcal{F}_{t}\right\}_{\geq \geq 0}$ satisfying the usual conditions (i.e., it is right continuous and \mathcal{F}_{0} contain all P-null sets). Furthermore, we also always assume that the infection rate matrix $B=\left(\beta_{k j}\right)_{n \times n}$ in model (1.2) is irreducible.

In this paper, we will study the asymptotic behavior of positive solutions of model (1.2) around the disease-free and endemic equilibria of corresponding deterministic model (1.1) in probability meaning by using the theory of graphs, Lyapunov functions method, Itô's formula and the theory of stochastic analysis. Then by using the theory of stationary distributions of stochastic process we will study the existence of stationary distribution of model (1.2).

The paper is organized as follows. In Section 2, the criterion on the asymptotic behavior of positive solutions of model (1.2) around the disease-free equilibrium of the corresponding deterministic model is stated and proved. In Section 3, the sufficient condition the asymptotic behavior of positive solutions of model (1.2) around the endemic equilibrium of corresponding deterministic model and the existence of stationary distribution are stated and proved. In Section 4, we make some numerical simulations to illustrate our analytical results. Finally, in Section 5, we give a brief conclusion.

2. Asymptotic behavior around disease-free equilibrium of model (1.1)

We first give a lemma to show that for any positive initial value model (1.2) has a unique positive solution defined on $[0, \infty)$.
Lemma 1. For any initial value in $R_{+}^{5 n}$ model (1.2) has a unique positive solution defined for all $t \geq 0$ and the solution remain in $R_{+}^{5 n}$ with probability one.

This lemma can be easily proved by using the standard arguments as in [14,18] and with the help of Lyapunov function

$$
\begin{aligned}
& V\left(S_{k}, E_{k}, I_{k}, Q_{k}, R_{k}, 1 \leq k \leq n\right) \\
= & \sum_{k=1}^{n}\left[\left(S_{k}-a-a \log \frac{S_{k}}{a c_{k}}\right)+\left(E_{k}-1-\log E_{k}\right)\right. \\
& \left.+\left(I_{k}-1-\log I_{k}\right)+\left(Q_{k}-1-\log Q_{k}\right)+\left(R_{k}-1-\log R_{k}\right)\right],
\end{aligned}
$$

where positive constant a satisfies $a \leq \min \left\{\frac{d_{k}^{l}+\alpha_{k}}{\sum_{j=1}^{h} \beta_{j k}}, k=1,2, \cdots, n\right\}$.
For deterministic model (1.1), in [23] the authors have obtained that there is a disease-free equilibrium $E_{0}=\left(S_{1}^{0}, 0,0,0,0, S_{2}^{0}, 0,0,0,0, \cdots, S_{n}^{0}, 0,0,0,0\right)$, where $S_{k}^{0}=\frac{\Lambda_{k}}{d_{k}^{s}}$, and if $R_{0} \leq 1$, then E_{0} is globally asymptotically stable, which means the disease will die out. Therefore, it is interesting to study the stability of disease-free equilibrium for controlling the spread of infectious disease. However, for stochastic model (1.2) there is not any disease-free equilibrium. Therefore, it is natural to ask how we can consider the disease will be extinct. In this section we mainly through estimating the asymptotic oscillation around equilibrium E_{0} of any positive solutions of stochastic model (1.2) to reflect whether the disease in stochastic model (1.2) will die out. We have the following result.
Theorem 1. Assume that $R_{0} \leq 1$ and the following conditions hold

$$
\begin{align*}
& d_{k}^{S}>\sigma_{1 k}^{2}, d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}>\frac{1}{2} \sigma_{3 k}^{2}, d_{k}^{E}+\epsilon_{k}>\frac{1}{2} \sigma_{2 k}^{2}, \tag{2.1}\\
& d_{k}^{Q}+\alpha_{k}+\mu_{k}>\frac{1}{2} \sigma_{4 k}^{2}, d_{k}^{R}>\frac{1}{2} \sigma_{5 k}^{2}, 1 \leq k \leq n .
\end{align*}
$$

Then for any positive solution $\left(S_{k}(t), E_{k}(t), I_{k}(t), Q_{k}(t), R_{k}(t), 1 \leq k \leq n\right)$ of model (1.2) one has

$$
\begin{array}{r}
\limsup _{t \rightarrow \infty} \frac{1}{t} E \int_{0}^{t} \sum_{k=1}^{n}\left\{A_{k}\left(S_{k}(r)-\frac{\Lambda_{k}}{d_{k}^{S}}\right)^{2}+B_{k} E_{k}^{2}(r)+C_{k} I_{k}^{2}(r)\right. \\
\left.+D_{k} Q_{k}^{2}(r)+F_{k} R_{k}^{2}(r)\right\} d r \leq \sum_{k=1}^{n}\left(b a_{k}+1\right)\left(\frac{\sigma_{1 k} \Lambda_{k}}{d_{k}^{S}}\right)^{2},
\end{array}
$$

where $A_{k}=\left(d_{k}^{S}-\sigma_{1 k}^{2}\right), B_{k}=\frac{1}{4}\left(d_{k}^{E}+\epsilon_{k}-\frac{1}{2} \sigma_{2 k}^{2}\right)$ and

$$
\begin{aligned}
C_{k}= & c_{k}\left[2\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)-\sigma_{3 k}^{2}-\frac{4 c_{k} \epsilon_{k}^{2}}{\left[\left(d_{k}^{E}+\epsilon_{k}\right)-\frac{1}{2} \sigma_{2 k}^{2}\right]}\right] \\
& -\frac{d_{k} \delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}}-\frac{e_{k} \gamma_{k}^{2}}{d_{k}^{R}-\frac{1}{2} \sigma_{5 k}^{2}}, \\
D_{k}= & d_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}\right), F_{k}=e_{k}\left(d_{k}^{R}-\frac{1}{2} \sigma_{5 k}^{2}-\frac{e_{k} \mu_{k}^{2}}{d_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}\right)}\right),
\end{aligned}
$$

and positive constants $a_{k}, d_{k}, c_{k}, e_{k}(1 \leq k \leq n)$ and b will be confirmed in the proof of the theorem.
Proof. Let $u_{k}=S_{k}-\frac{\Lambda_{k}}{d_{k}^{s}}, v_{k}=E_{k}, w_{k}=I_{k}, y_{k}=Q_{k}, z_{k}=R_{k}(1 \leq k \leq n)$, then model (1.2) becomes into

$$
\left\{\begin{aligned}
\mathrm{d} u_{k} & =\left[-\sum_{j=1}^{n} \beta_{k j} u_{k}(t) w_{j}(t)-\sum_{j=1}^{n} \beta_{k j} w_{j}(t) \frac{\Lambda_{k}}{d_{k}^{S}}-d_{k}^{S} u_{k}\right] \mathrm{d} t+\sigma_{1 k}\left(u_{k}+\frac{\Lambda_{k}}{d_{k}^{S}}\right) d B_{1 k} \\
\mathrm{~d} v_{k} & =\left[\sum_{j=1}^{n} \beta_{k j} u_{k}(t) w_{j}(t)+\sum_{j=1}^{n} \beta_{k j} w_{j}(t) \frac{\Lambda_{k}}{d_{k}^{S}}-\left(d_{k}^{E}+\epsilon_{k}\right) v_{k}\right] \mathrm{d} t+\sigma_{2 k} v_{k} d B_{2 k} \\
\mathrm{~d} w_{k} & =\left[\epsilon_{k} v_{k}-\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right) w_{k}\right] \mathrm{d} t+\sigma_{3 k} w_{k} d B_{3 k} \\
\mathrm{~d} y_{k} & =\left[\delta_{k} w_{k}-\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}\right) y_{k}\right] \mathrm{d} t+\sigma_{4 k} y_{k} d B_{4 k} \\
\mathrm{~d} z_{k} & =\left[\gamma_{k} w_{k}+\mu_{k} y_{k}-d_{k}^{R} z_{k}\right] \mathrm{d} t+\sigma_{5 k} z_{k} d B_{5 k}
\end{aligned}\right.
$$

Since $B=\left(\beta_{k j}\right)_{n \times n}$ is irreducible, then M_{0} is also nonnegative and irreducible. Hence, by Lemma A. 1 in [3], M_{0} has a positive left eigenvector $\eta=\left(\eta_{1}, \eta_{2}, \cdots, \eta_{n}\right)$ such that

$$
\begin{equation*}
\left(\eta_{1}, \eta_{2}, \cdots, \eta_{n}\right) \rho\left(M_{0}\right)=\left(\eta_{1}, \eta_{2}, \cdots, \eta_{n}\right) M_{0} . \tag{2.2}
\end{equation*}
$$

Define a Lyapunov function as follows.

$$
V=V_{1}+b\left(V_{2}+V_{3}\right)+V_{4}+V_{5}+V_{6}
$$

with $V_{1}=\frac{1}{2} \sum_{k=1}^{n}\left(u_{k}+v_{k}\right)^{2}, V_{2}=\frac{1}{2} \sum_{k=1}^{n} a_{k} u_{k}^{2}, V_{3}=\sum_{k=1}^{n} \frac{\epsilon_{k} \eta_{k}}{\left(d_{k}^{E}+\epsilon_{k}\right)\left(d_{k}^{d}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)}\left(v_{k}+\frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}} w_{k}\right), V_{4}=\sum_{k=1}^{n} c_{k} w_{k}^{2}$, $V_{5}=\sum_{k=1}^{n} d_{k} y_{k}^{2}$ and $V_{6}=\sum_{k=1}^{n} e_{k} z_{k}^{2}$, where positive constants $a_{k}, c_{k}, d_{k}, e_{k}(1 \leq k \leq n)$ and b will be determined later. By Itô's formula, we get

$$
\begin{align*}
d V= & L V d t+\sum_{k=1}^{n} \sigma_{1 k}\left(u_{k}+\frac{\Lambda_{k}}{d_{k}^{S}}\right)\left[\left(1+b a_{k}\right) u_{k}+v_{k}\right] d B_{1 k}+\sum_{k=1}^{n} \sigma_{2 k} v_{k}\left[u_{k}+v_{k}\right. \\
& \left.+\frac{b \omega_{k} \epsilon_{k}}{\left(d_{k}^{E}+\epsilon_{k}\right)\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)}\right] d B_{2 k}+\sum_{k=1}^{n} \sigma_{3 k} w_{k}\left[\frac{b \omega_{k}}{d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}}\right. \tag{2.3}\\
& \left.+c_{k} w_{k}\right] d B_{3 k}+\sum_{k=1}^{n} d_{k} \sigma_{4 k} y_{k}^{2} d B_{4 k}+\sum_{k=1}^{n} e_{k} \sigma_{5 k} z_{k}^{2} d B_{5 k}
\end{align*}
$$

with $L V=L V_{1}+b\left(L V_{2}+L V_{3}\right)+L V_{4}+L V_{5}+L V_{6}$, where

$$
\begin{align*}
L V_{1}= & \sum_{k=1}^{n}\left(u_{k}+v_{k}\right)\left[-\sum_{j=1}^{n} \beta_{k j} u_{k}(t) w_{j}(t)-\sum_{j=1}^{n} \beta_{k j} w_{j}(t) \frac{\Lambda_{k}}{d_{k}^{S}}-d_{k}^{S} u_{k}+\sum_{j=1}^{n} \beta_{k j} u_{k}(t) w_{j}(t)\right. \\
& \left.+\sum_{j=1}^{n} \beta_{k j} w_{j}(t) \frac{\Lambda_{k}}{d_{k}^{S}}-\left(d_{k}^{E}+\epsilon_{k}\right) v_{k}\right]+\sum_{k=1}^{n}\left[\sigma_{1 k}^{2}\left(u_{k}+\frac{\Lambda_{k}}{d_{k}^{S}}\right)^{2}+\sigma_{2 k}^{2} v_{k}^{2}\right] \tag{2.4}\\
\leq & -\sum_{k=1}^{n}\left\{\left(d_{k}^{S}-\sigma_{1 k}^{2}\right) u_{k}^{2}+\left[d_{k}^{E}+\epsilon_{k}-\frac{1}{2} \sigma_{2 k}^{2}\right] v_{k}^{2}+\left(d_{k}^{S}+d_{k}^{E}+\epsilon_{k}\right) u_{k} v_{k}-\left(\frac{\Lambda_{k}}{d_{k}^{S}}\right)^{2} \sigma_{1 k}^{2}\right\},
\end{align*}
$$

$$
\begin{align*}
L V_{2}= & \sum_{k=1}^{n} a_{k} u_{k}\left[-\sum_{j=1}^{n} \beta_{k j} u_{k}(t) w_{j}(t)-\sum_{j=1}^{n} \beta_{k j} w_{j}(t) \frac{\Lambda_{k}}{d_{k}^{S}}-d_{k}^{S} u_{k}\right] \\
& +\sum_{k=1}^{n} a_{k} \sigma_{1 k}^{2} u_{k}^{2}+\sum_{k=1}^{n} a_{k} \sigma_{1 k}^{2}\left(\frac{\Lambda_{k}}{d_{k}^{S}}\right)^{2} \tag{2.5}\\
\leq & -\sum_{k=1}^{n} a_{k}\left[\left(d_{k}^{S}-\sigma_{1 k}^{2}\right) u_{k}^{2}+\sum_{j=1}^{n} \beta_{k j} \frac{\Lambda_{k}}{d_{k}^{S}} u_{k}(t) w_{j}(t)-\left(\frac{\sigma_{1 k} \Lambda_{k}}{d_{k}^{S}}\right)^{2}\right]
\end{align*}
$$

and

$$
\begin{aligned}
L V_{3}= & \sum_{k=1}^{n} \frac{\omega_{k} \epsilon_{k}}{\left(d_{k}^{E}+\epsilon_{k}\right)\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)}\left[\sum_{j=1}^{n} \beta_{k j} u_{k}(t) w_{j}(t)+\sum_{j=1}^{n} \beta_{k j} w_{j}(t) \frac{\Lambda_{k}}{d_{k}^{S}}\right. \\
& \left.-\left(d_{k}^{E}+\epsilon_{k}\right) v_{k}+\epsilon_{k} v_{k}-\frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}}\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right) w_{k}\right] \\
\leq & \sum_{k=1}^{n} \sum_{j=1}^{n} \frac{\beta_{k j} \omega_{k} \epsilon_{k}}{\left(d_{k}^{E}+\epsilon_{k}\right)\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)} u_{k}(t) w_{j}(t)-\sum_{k=1}^{n} \omega_{k} w_{k} \\
& +\sum_{k=1}^{n} \sum_{j=1}^{n} \frac{\beta_{k j} \omega_{k} \epsilon_{k}}{\left(d_{k}^{E}+\epsilon_{k}\right)\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)} \frac{\Lambda_{k}}{d_{k}^{S}} w_{j}(t) .
\end{aligned}
$$

Note from (2.2) that

$$
-\eta_{k} w_{k}+\sum_{k=1}^{n} \sum_{j=1}^{n} \frac{\beta_{k j} \omega_{k} \epsilon_{k}}{\left(d_{k}^{E}+\epsilon_{k}\right)\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)} \frac{\Lambda_{k}}{d_{k}^{S}} w_{j}(t)=\left(R_{0}-1\right) \eta w,
$$

where $w=\left(w_{1}, w_{2}, \cdots, w_{n}\right)^{T}$. If $R_{0} \leq 1$, then

$$
\begin{equation*}
L V_{3} \leq \sum_{k=1}^{n} \sum_{j=1}^{n} \frac{\beta_{k j} \eta_{k} \epsilon_{k}}{\left(d_{k}^{E}+\epsilon_{k}\right)\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)} u_{k}(t) w_{j}(t) . \tag{2.6}
\end{equation*}
$$

Furthermore, we also have

$$
\begin{align*}
L V_{4} & =-\sum_{k=1}^{n} c_{k}\left[2\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)-\sigma_{3 k}^{2}\right] w_{k}^{2}+2 \sum_{k=1}^{n} c_{k} \epsilon_{k} w_{k} v_{k}, \\
L V_{5} & =-\sum_{k=1}^{n} d_{k}\left[2\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}\right)-\sigma_{4 k}^{2}\right] y_{k}^{2}+2 \sum_{k=1}^{n} d_{k} \delta_{k} w_{k} y_{k}, \tag{2.7}\\
L V_{6} & =-\sum_{k=1}^{n} e_{k}\left[2 d_{k}^{R}-\sigma_{5 k}^{2}\right] z_{k}^{2}+2 \sum_{k=1}^{n} e_{k} \gamma_{k} w_{k} z_{k}+2 \sum_{k=1}^{n} e_{k} \mu_{k} y_{k} z_{k} .
\end{align*}
$$

and

$$
\begin{align*}
& 2 c_{k} \epsilon_{k} w_{k} v_{k} \leq \frac{1}{4}\left[\left(d_{k}^{E}+\epsilon_{k}\right)-\frac{1}{2} \sigma_{2 k}^{2}\right] v_{k}^{2}+\frac{4 c_{k}^{2} \epsilon_{k}^{2}}{\left[\left(d_{k}^{E}+\epsilon_{k}\right)-\frac{1}{2} \sigma_{2 k}^{2}\right]} w_{k}^{2}, \\
& 2 d_{k} \delta_{k} w_{k} y_{k} \leq d_{k}\left[\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}\right)-\frac{1}{2} \sigma_{4 k}^{2}\right] y_{k}^{2}+\frac{d_{k}^{2} \delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}} w_{k}^{2}, \tag{2.8}\\
& 2 e_{k} \gamma_{k} w_{k} z_{k} \leq e_{k}\left(d_{k}^{R}-\frac{1}{2} \sigma_{5 k}^{2}\right) z_{k}^{2}+\frac{e_{k} \gamma_{k}^{2}}{d_{k}^{R}-\frac{1}{2} \sigma_{5 k}^{2}} w_{k}^{2}, \\
& 2 e_{k} \mu_{k} y_{k} z_{k} \leq d_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}\right) y_{k}^{2}+\frac{e_{k}^{2} \mu_{k}^{2}}{d_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}\right)} z_{k}^{2} .
\end{align*}
$$

Choosing $a_{k}=\frac{d_{k}^{S} \eta_{k} \epsilon_{k}}{\left(d_{k}^{E}+\epsilon_{k}\right)\left(d_{k}^{d}+\alpha_{k}+\delta_{k}+\gamma_{k}\right) \Lambda_{k}}(1 \leq k \leq n)$ and $b=\max _{1 \leq k \leq n}\left\{\frac{\left(d_{k}^{S}+d_{k}^{E}+\epsilon_{k}\right)^{2}}{2 a_{k}\left(d_{k}^{E}+\epsilon_{k}-\frac{1}{2} \sigma_{2 k}^{2}\right\}}\right\}$, then from (2.4)-(2.8) we finally obtain

$$
\begin{equation*}
L V \leq-\sum_{k=1}^{n}\left\{A_{k} u_{k}^{2}+B_{k} v_{k}^{2}+C_{k} w_{k}^{2}+D_{k} y_{k}^{2}+F_{k} z_{k}^{2}\right\}+\sum_{k=1}^{n}\left(b a_{k}+1\right)\left(\frac{\sigma_{1 k} \Lambda_{k}}{d_{k}^{S}}\right)^{2} \tag{2.9}
\end{equation*}
$$

where $A_{k}, B_{k}, C_{k}, D_{k}$ and F_{k} are given in the above.
If (2.1) holds, then $A_{k}>0, B_{k}>0$ and $D_{k}>0$. Further, we can choose c_{k}, d_{k} and e_{k} such that

$$
\begin{aligned}
& 0<c_{k}<\frac{\left[\left(d_{k}^{E}+\epsilon_{k}\right)-\frac{1}{2} \sigma_{2 k}^{2}\right]}{4 \epsilon_{k}^{2}}\left[2\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)-\sigma_{3 k}^{2}\right], \\
& 0<d_{k}<\frac{c_{k}}{\eta_{k}}\left[2\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)-\sigma_{3 k}^{2}-\frac{4 c_{k} \epsilon_{k}^{2}}{\left[\left(d_{k}^{E}+\epsilon_{k}\right)-\frac{1}{2} \sigma_{2 k}^{2}\right]}\right] \\
& 0<e_{k}<\frac{d_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}\right)\left(d_{k}^{R}-\frac{1}{2} \sigma_{5 k}^{2}\right)}{\mu_{k}^{2}} .
\end{aligned}
$$

Particularly, we can take

$$
\begin{aligned}
& c_{k}=\frac{\left[\left(d_{k}^{E}+\epsilon_{k}\right)-\frac{1}{2} \sigma_{2 k}^{2}\right]}{8 \epsilon_{k}^{2}}\left[2\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)-\sigma_{3 k}^{2}\right], \\
& d_{k}=\frac{c_{k}}{2 \eta_{k}}\left[2\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)-\sigma_{3 k}^{2}-\frac{4 c_{k} \epsilon_{k}^{2}}{\left[\left(d_{k}^{E}+\epsilon_{k}\right)-\frac{1}{2} \sigma_{2 k}^{2}\right]}\right], \\
& e_{k}=\frac{d_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}\right)\left(d_{k}^{R}-\frac{1}{2} \sigma_{5 k}^{2}\right)}{2 \mu_{k}^{2}},
\end{aligned}
$$

where $\eta_{k}=\frac{\delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}}+\frac{\gamma_{k}^{2}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}\right)}{\mu_{k}^{2}}>0$. Thus, we have

$$
\begin{aligned}
C_{k}= & c_{k}\left[2\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)-\sigma_{3 k}^{2}-\frac{4 c_{k} \epsilon_{k}^{2}}{\left[\left(d_{k}^{E}+\epsilon_{k}\right)-\frac{1}{2} \sigma_{2 k}^{2}\right]}\right] \\
& -\frac{d_{k} \delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}}-\frac{e_{k} \gamma_{k}^{2}}{d_{k}^{R}-\frac{1}{2} \sigma_{5 k}^{2}} \\
> & c_{k}\left[2\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)-\sigma_{3 k}^{2}-\frac{4 c_{k} \epsilon_{k}^{2}}{\left[\left(d_{k}^{E}+\epsilon_{k}\right)-\frac{1}{2} \sigma_{2 k}^{2}\right]}\right] \\
& -d_{k}\left[\frac{\delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}}+\frac{\gamma_{k}^{2}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}\right)}{\mu_{k}^{2}}\right]>0
\end{aligned}
$$

and $F_{k}=e_{k}\left(d_{k}^{R}-\frac{1}{2} \sigma_{5 k}^{2}-\frac{e_{k} \mu_{k}^{2}}{d_{k}\left(d_{k}^{D}+\alpha_{k}+\mu_{k}-\frac{1}{2} \sigma_{4 k}^{2}\right)}\right)>0$. By integration and taking expectation of both sides of (2.3), from (2.9) we obtain

$$
\begin{aligned}
& E(V(t))-E(V(0))=E\left[\int_{0}^{t} L V(r) d r\right] \\
\leq & -E \int_{0}^{t} \sum_{k=1}^{n}\left\{A_{k} u_{k}^{2}(r)+B_{k} v_{k}^{2}(r)+C_{k} w_{k}^{2}(r)+D_{k} y_{k}^{2}(r)+F_{k} z_{k}^{2}(r)\right\} d r+\sum_{k=1}^{n}\left(b a_{k}+1\right)\left(\frac{\sigma_{1 k} \Lambda_{k}}{d_{k}^{S}}\right)^{2} .
\end{aligned}
$$

Therefore,

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} E \int_{0}^{t} \sum_{k=1}^{n}\left\{A_{k} u_{k}^{2}(r)+B_{k} v_{k}^{2}(r)+C_{k} w_{k}^{2}(r)+D_{k} y_{k}^{2}(r)+F_{k} z_{k}^{2}(r)\right\} d r \leq \sum_{k=1}^{n}\left(b a_{k}+1\right)\left(\frac{\sigma_{1 k} \Lambda_{k}}{d_{k}^{S}}\right)^{2} .
$$

Consequently,

$$
\begin{aligned}
\limsup _{t \rightarrow \infty} \frac{1}{t} E \int_{0}^{t} & \sum_{k=1}^{n}\left\{A_{k}\left(S_{k}(r)-\frac{\Lambda_{k}}{d_{k}^{S}}\right)^{2}+B_{k} E_{k}^{2}(r)+C_{k} I_{k}^{2}(r)\right. \\
& \left.+D_{k} Q_{k}^{2}(r)+F_{k} R_{k}^{2}(r)\right\} d r \leq \sum_{k=1}^{n}\left(b a_{k}+1\right)\left(\frac{\sigma_{1 k} \Lambda_{k}}{d_{k}^{S}}\right)^{2}
\end{aligned}
$$

This completes the proof.
Remark 1. From Theorem 1, we see that under some conditions the solution of model (1.2) will oscillates around the disease-free equilibrium of deterministic model (1.1), and the intensity of fluctuation is only relation to the intensity of the white noise $B_{1 k}(t)$, but do not relation to the intensities of the other white noises. In a biological interpretation, as the intensity of stochastic perturbations is small, the solution of model (1.2) will be close to the disease-free equilibrium of model (1.1) most of the time.

As a special case of model (1.2), when $\sigma_{1 k}=0$, then model (1.2) becomes into

$$
\left\{\begin{align*}
\mathrm{d} S_{k} & =\left[\Lambda_{k}-\sum_{j=1}^{n} \beta_{k j} S_{k}(t) I_{j}(t)-d_{k}^{S} S_{k}\right] \mathrm{d} t \tag{2.10}\\
\mathrm{~d} E_{k} & =\left[\sum_{j=1}^{n} \beta_{k j} S_{k}(t) I_{j}(t)-\left(d_{k}^{E}+\epsilon_{k}\right) E_{k}\right] \mathrm{d} t+\sigma_{2 k} E_{k} d B_{2 k} \\
\mathrm{~d} I_{k} & =\left[\epsilon_{k} E_{k}-\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right) I_{k}\right] \mathrm{d} t+\sigma_{3 k} I_{k} d B_{3 k} \\
\mathrm{~d} Q_{k} & =\left[\delta_{k} I_{k}-\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}\right) Q_{k}\right] \mathrm{d} t+\sigma_{4 k} Q_{k} d B_{4 k} \\
\mathrm{~d} R_{k} & =\left[\gamma_{k} I_{k}+\mu_{k} Q_{k}-d_{k}^{R} R_{k}\right] \mathrm{d} t+\sigma_{5 k} R_{k} d B_{5 k}
\end{align*}\right.
$$

Obviously, E_{0} is also the disease-free equilibrium of model (2.10). From the proof of Theorem 2, we get

$$
L V \leq-\sum_{k=1}^{n}\left\{2 a_{k} d_{k}^{S}\left(S_{k}(r)-\frac{\Lambda_{k}}{d_{k}^{S}}\right)^{2}+B_{k} E_{k}^{2}(r)+C_{k} I_{k}^{2}(r)+D_{k} Q_{k}^{2}(r)+F_{k} R_{k}^{2}(r)\right\},
$$

which is negative definite if for each $1 \leq k \leq n$

$$
\begin{equation*}
d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}>\frac{1}{2} \sigma_{3 k}^{2}, d_{k}^{R}>\frac{1}{2} \sigma_{5 k}^{2}, d_{k}^{E}+\epsilon_{k}>\frac{1}{2} \sigma_{2 k}^{2}, d_{k}^{Q}+\alpha_{k}+\mu_{k}>\frac{1}{2} \sigma_{4 k}^{2} . \tag{2.11}
\end{equation*}
$$

Therefore, as a consequence of Theorem 1 we have the following result.
Corollary 1. Assume that $R_{0} \leq 1$ and condition (2.11) holds. Then disease-free equilibrium E_{0} of model (2.9) is globally stochastically asymptotically stable.

3. Asymptotic behavior around endemic equilibrium of model (1.1)

Firstly, we introduce some concepts and conclusions of graph theory (see [10]). A directed graph $g=(V, E)$ contains a set $V=\{1,2, \cdots, n\}$ of vertices and a set E of $\operatorname{arcs}(k, j)$ leading from initial vertex k to terminal vertex j. A subgraph H of g is said to be spanning if H and g have the same vertex set. A directed digraph g is weighted if each arc (k, j) is assigned a positive weight $a_{k j}$. Given a weighted digraph g with n vertices, define the weight matrix $A=\left(a_{k j}\right)_{n \times n}$ whose entry $a_{k j}$ equals the weight of $\operatorname{arc}(k, j)$ if it exists, and 0 otherwise. A weighted digraph is denoted by (g, A). A digraph g is strongly connected if for any pair of distinct vertices, there exists a directed path from one to the other and it is well known that a weighted digraph (g, A) is stronly connected if and only if the weight matrix A is irreducible (see [32]).

The Laplacian matrix of graph (g, A) is defined by

$$
L_{A}=\left(\begin{array}{cccc}
\sum_{k \neq 1} a_{1 k} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & \sum_{k \neq 2} a_{2 k} & \cdots & -a_{2 n} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
-a_{n 1} & -a_{n 2} & \cdots & \sum_{k \neq n} a_{n k}
\end{array}\right)
$$

Let $c_{k}(1 \leq k \leq n)$ denote the cofactor of the k-th diagonal element of L_{A}. The following lemmas are the classical results of graph theory (see $[21,33]$) which will be used in this paper.

Lemma 2. Assume that A is a irreducible matrix and $n \geq 2$. Then $c_{k}>0$ for all $1 \leq k \leq n$.
Lemma 3. Assume that A is a irreducible matrix and $n \geq 2$. Then the following equality holds

$$
\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} a_{k j} G_{k}\left(x_{k}\right)=\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} a_{k j} G_{j}\left(x_{j}\right),
$$

where $G_{k}\left(x_{k}\right)(1 \leq k \leq n)$ are arbitrary functions.

For model (1.2), we see that there is not any endemic equilibrium. Therefore, in order to study the persistence of disease in model (1.2), we need to study the asymptotic behavior of the endemic equilibrium of model (1.2) which is surrounding the deterministic model (1.1), we obtain the following result.

Theorem 2. Assume that $R_{0}>1$ and the following conditions hold

$$
\begin{equation*}
\sigma_{1 k}^{2}<d_{k}^{S}, \sigma_{2 k}^{2}<\frac{1}{2} d_{k}^{E}, \sigma_{3 k}^{2}<\frac{1}{2}\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right), \sigma_{4 k}^{2}<\frac{1}{2}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}\right), \sigma_{5 k}^{2}<\frac{1}{2} d_{k}^{R}, 1 \leq k \leq n \tag{3.1}
\end{equation*}
$$

Then for any positive solution $\left(S_{k}(t), E_{k}(t), I_{k}(t), Q_{k}(t), R_{k}(t), 1 \leq k \leq n\right)$ of model (1.2) one has

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left\{\sum_{k=1}^{n}\left\{c_{k} r \frac{d_{k}^{S}-\sigma_{1 k}^{2}}{S_{k}^{*}}-2 a_{k} D_{k}\right\}\left(S_{k}(s)-S_{k}^{*}\right)^{2}+2 \sum_{k=1}^{n}\left(d_{k}^{E}-2 \sigma_{2 k}^{2}\right)\left(E_{k}(s)-E_{k}^{*}\right)^{2}\right. \\
& \quad+\sum_{k=1}^{n}\left\{a_{k}\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}-2 \sigma_{3 k}^{2}\right)-b_{k} \frac{\delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}}-d_{k} \frac{\gamma_{k}^{2}}{d_{k}^{R}}\right\}\left(I_{k}(s)-I_{k}^{*}\right)^{2} \\
& \quad+\sum_{k=1}^{n}\left\{b_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-2 \sigma_{4 k}^{2}\right)-\mu_{k}^{2}\right\}\left(Q_{k}(s)-Q_{k}^{*}\right)^{2} \\
& \left.\quad+\sum_{k=1}^{n} d_{k}\left\{\left(d_{k}^{R}-2 \sigma_{5 k}^{2}\right)-d_{k}\right\}\left(R_{k}(s)-R_{k}^{*}\right)^{2}\right\} d s \leq \sum_{k=1}^{n} \rho_{k},
\end{aligned}
$$

where $E^{*}=\left(S_{k}^{*}, E_{k}^{*}, I_{k}^{*}, Q_{k}^{*}, R_{k}^{*}, 1 \leq k \leq n\right)$ be the endemic equilibrium of model (1.1), and

$$
\begin{aligned}
\rho_{k}= & 2 \sum_{k=1}^{n} a_{k}\left\{\sigma_{1 k}^{2}\left(S_{k}^{*}\right)^{2}+\sigma_{2 k}^{2}\left(E_{k}^{*}\right)^{2}+\left(1+\frac{d_{k}^{E}+d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}}{\epsilon_{k}}\right) \sigma_{3 k}^{2}\left(I_{k}^{*}\right)^{2}\right\} \\
& +2 \sum_{k=1}^{n} b_{k} \sigma_{4 k}^{2}\left(Q_{k}^{*}\right)^{2}+2 \sum_{k=1}^{n} d_{k} \sigma_{5 k}^{2}\left(R_{k}^{*}\right)^{2}+\frac{1}{2} \sum_{k=1}^{n} c_{k}\left[(K+2) \sigma_{1 k}^{2} S_{k}^{*}\right. \\
& \left.+(K+1) \sigma_{2 k}^{2} E_{k}^{*}+(K+1) \frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}} \sigma_{3 k}^{2} I_{k}^{*}\right],
\end{aligned}
$$

and positive constants r, a_{k}, b_{k}, c_{k} and $D_{k}(1 \leq k \leq n)$ will be confirmed in the proof of the theorem.
Proof. When $R_{0}>1$, from [23] there exits an endemic equilibrium E^{*} of model (1.1), then

$$
\begin{gathered}
\Lambda_{k}=\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*}+d_{k}^{S} S_{k}^{*}, \sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*}=\left(d_{k}^{E}+\epsilon_{k}\right) E_{k}^{*}, \\
\epsilon_{k} E_{k}^{*}=\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right) I_{k}^{*}, \delta_{k} I_{k}^{*}=\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}\right) Q_{k}^{*}, \\
\gamma_{k} I_{k}^{*}+\mu_{k} Q_{k}^{*}=d_{k}^{R} R_{k}^{*}, 1 \leq k \leq n .
\end{gathered}
$$

Let matrix $A=\left(a_{k j}\right)_{n \times n}$ with $a_{k j}=\beta_{k j} S_{k}^{*} I_{j}^{*}, k, j=1,2, \cdots, n$. Since $B=\left(\beta_{k j}\right)_{n \times n}$ is irreducible, then A also is irreducible.

Firstly, define the C^{2}-function $V_{1}: R_{+}^{3 n} \rightarrow R_{+}$by

$$
\begin{aligned}
& V_{1}\left(S_{k}, E_{k}, I_{k}, 1 \leq k \leq n\right) \\
= & \sum_{k=1}^{n} c_{k}\left[\left(S_{k}-S_{k}^{*}-S_{k}^{*} \log \frac{S_{k}}{S_{k}^{*}}\right)+\left(E_{k}-E_{k}^{*}-E_{k}^{*} \log \frac{E_{k}}{E_{k}^{*}}\right)+\frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}}\left(I_{k}-I_{k}^{*}-I_{k}^{*} \log \frac{I_{k}}{I_{k}^{*}}\right)\right],
\end{aligned}
$$

where $c_{k}(1 \leq k \leq n)$ are the cofactor of the k-th diagonal element of L_{A}. V_{1} is positive definite. From

Itô's formula, by calculating we can get

$$
\begin{align*}
& L V_{1}=\sum_{k=1}^{n} c_{k}\left[3 \sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*}+2 d_{k}^{S} S_{k}^{*}-d_{k}^{S} S_{k}-\frac{\left(S_{k}^{*}\right)^{2} d_{k}^{S}}{S_{k}}-\sum_{j=1}^{n} \frac{\beta_{k j}\left(S_{k}^{*}\right)^{2} I_{j}^{*}}{S_{k}}\right. \\
& +\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}-\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{S_{k} I_{j} E_{k}^{*}}{S_{k}^{*} E_{k} I_{j}^{*}}-\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*}{ }_{k}^{*} E_{k}^{*} E_{k}^{*} I_{k} \\
& \left.-\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{I_{k}}{I_{k}^{*}}\right]+\frac{1}{2} \sum_{k=1}^{n} c_{k}\left(\sigma_{1 k}^{2} S_{k}^{*}+\sigma_{2 k}^{2} E_{k}^{*}+\frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}} \sigma_{3 k}^{2} I_{k}^{*}\right) \\
& =\sum_{k=1}^{n} c_{k} d_{k}^{S} S_{k}^{*}\left(2-\frac{S_{k}}{S_{k}^{*}}-\frac{S_{k}^{*}}{S_{k}}\right)+\sum_{k=1}^{n} c_{k}\left[3 \sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*}-\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{\frac{S_{j}}{*}} \frac{S_{k}}{S_{k}}\right. \tag{3.2}\\
& \left.-\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{S_{k} I_{j} E_{k}^{*}}{S_{k}^{*} E_{k} I_{j}^{*}}-\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{I_{j}^{*}} \frac{I_{k}^{*} E_{k}}{E_{k}^{*} I_{k}}\right]+\sum_{k=1}^{n} c_{k}\left[\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}\right. \\
& \left.-\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{I_{k}}{I_{k}^{*}}\right]+\frac{1}{2} \sum_{k=1}^{n} c_{k}\left(\sigma_{1 k}^{2} S_{k}^{*}+\sigma_{2 k}^{2} E_{k}^{*}+\frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}} \sigma_{3 k}^{2} I_{k}^{*}\right) .
\end{align*}
$$

By Lemma 2, we obtain

$$
\begin{align*}
& \sum_{k=1}^{n} c_{k}\left[\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}-\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{I_{k}}{I_{k}^{*}}\right] \\
= & \sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{I_{j}}{I_{j}^{*}}-\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{I_{k}}{I_{k}^{*}} \tag{3.3}\\
= & \sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{I_{k}}{I_{k}^{*}}-\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{I_{k}}{I_{k}^{*}}=0 .
\end{align*}
$$

Similarly, we also get

$$
\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{I_{j}^{*}} \frac{I_{k}^{*} E_{k}}{E_{k}^{*} I_{k}}=\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{I_{j}^{*} E_{j}}{E_{j}^{*} I_{j}} .
$$

Hence

$$
\begin{align*}
& \sum_{k=1}^{n} c_{k}\left[3 \sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*}-\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*} S_{k}^{*}\right. \\
S_{k} & \sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{S_{k} I_{j} E_{k}^{*}}{S_{k}^{*} E_{k} I_{j}^{*}}-\sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*} I_{k}^{*} E_{k} \\
= & \sum_{k=1}^{n} c_{k}^{*} I_{k} \sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*}\left[3-\frac{S_{k}^{*}}{S_{k}}-\frac{S_{k} I_{j} E_{k}^{*}}{S_{k}^{*} E_{k} I_{j}^{*}}-\frac{I_{j}^{*} E_{j}}{E_{j}^{*} I_{j}}\right] \tag{3.4}\\
\leq & \sum_{k=1}^{n} c_{k} \sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*}\left[3-3-\ln \frac{E_{k}^{*}}{E_{k}}-\ln \frac{E_{j}}{E_{j}^{*}}\right] \\
= & \sum_{k=1}^{n} c_{k} \sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*} \ln \frac{E_{k}}{E_{k}^{*}}-\sum_{k=1}^{n} c_{k} \sum_{j=1}^{n} \beta_{k j} S_{k}^{*} I_{j}^{*} \ln \frac{E_{j}}{E_{j}^{*}}=0,
\end{align*}
$$

where the last equality is derived from Lemma 3. Substituting (3.3) and (3.4) into (3.2), we have

$$
\begin{equation*}
L V_{1} \leq \sum_{k=1}^{n} c_{k} d_{k}^{S} S_{k}^{*}\left(2-\frac{S_{k}}{S_{k}^{*}}-\frac{S_{k}^{*}}{S_{k}}\right)+\frac{1}{2} \sum_{k=1}^{n} c_{k}\left(\sigma_{1 k}^{2} S_{k}^{*}+\sigma_{2 k}^{2} E_{k}^{*}+\frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}} \sigma_{3 k}^{2} I_{k}^{*}\right) \tag{3.5}
\end{equation*}
$$

Secondly, define the C^{2}-function $V_{2}: R_{+}^{2 n} \rightarrow R_{+}$as follows.

$$
V_{2}\left(E_{k}, I_{k}, 1 \leq k \leq n\right)=\sum_{k=1}^{n} c_{k}\left[\left(E_{k}-E_{k}^{*}-E_{k}^{*} \log \frac{E_{k}}{E_{k}^{*}}\right)+\frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}}\left(I_{k}-I_{k}^{*}-I_{k}^{*} \log \frac{I_{k}}{I_{k}^{*}}\right)\right]
$$

where $c_{k}(1 \leq k \leq n)$ are given as in $V_{1} . V_{2}$ is positive definite. It follows from Itô's formula that

$$
\begin{align*}
L V_{2}= & \sum_{k=1}^{n} c_{k}\left[\sum_{j=1}^{n} \beta_{k j} S_{k} I_{j}-\frac{\left(d_{k}^{E}+\epsilon_{k}\right)\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)}{\epsilon_{k}} I_{k}\right. \\
& -\sum_{j=1}^{n} \beta_{k j} S_{k} I_{j} E_{k}^{*}+\left(d_{k}^{E}+\epsilon_{k}\right) E_{k}^{*}-\frac{\left(d_{k}^{E}+\epsilon_{k}\right) E_{k} I_{k}^{*}}{I_{k}} \\
& \left.\left.+\frac{\left(d_{k}^{E}+\alpha_{k}+\delta_{k}+\epsilon_{k}\right)\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)}{\epsilon_{k}} I_{k}^{*}\right]+\frac{1}{2} \sum_{k=1}^{n} c_{k}\left(\sigma_{2 k}^{2} E_{k}^{*}+\frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}} \sigma_{3 k}^{2} I_{k}^{*}\right)\right] \\
= & \sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j}\left(S_{k}-S_{k}^{*}\right)\left(I_{j}-I_{j}^{*}\right)+\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*}\left[1+\frac{S_{k}}{S_{k}^{*}}\right. \tag{3.6}\\
& \left.-\frac{S_{k} E_{k}^{*} I_{j}}{S_{k}^{*} E_{k} I_{j}^{*}}-\frac{E_{k} I_{k}^{*}}{E_{k}^{*} I_{k}}\right]+\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{I_{j}}{I_{j}^{*}} \\
& \left.-\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{I_{k}}{I_{k}^{*}}+\frac{1}{2} \sum_{k=1}^{n} c_{k}\left(\sigma_{2 k}^{2} E_{k}^{*}+\frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}} \sigma_{3 k}^{2} I_{k}^{*}\right)\right] .
\end{align*}
$$

We have

$$
\begin{aligned}
& \sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*}\left[1+\frac{S_{k}}{S_{k}^{*}}-\frac{S_{k} E_{k}^{*} I_{j}}{S_{k}^{*} E_{k} I_{j}^{*}}-\frac{E_{k} I_{k}^{*}}{E_{k}^{*} I_{k}}\right] \\
& \leq \sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*}\left[\frac{S_{k}}{S_{k}^{*}}-1-\log \frac{S_{k} E_{k}^{*} I_{j}}{S_{k}^{*} E_{k} I_{j}^{*}}-\log \frac{E_{k} I_{k}^{*}}{E_{k}^{*} I_{k}}\right] \\
& =\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*}\left[\frac{S_{k}}{S_{k}^{*}}-1-\log \frac{S_{k}}{S_{k}^{*}}-\log \frac{I_{j}}{I_{j}^{*}}-\log \frac{I_{k}^{*}}{I_{k}}\right] \\
& \leq \sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*}\left[\frac{S_{k}}{S_{k}^{*}}+\frac{S_{k}^{*}}{S_{k}}-2\right]-\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*}\left[\log \frac{I_{j}}{I_{j}^{*}}+\log \frac{I_{k}^{*}}{I_{k}}\right] \\
& =\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*}\left[\frac{S_{k}}{S_{k}^{*}}+\frac{S_{k}^{*}}{S_{k}}-2\right],
\end{aligned}
$$

where the last equality is derived from Lemma 3 such that

$$
\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{k}^{*} \log \frac{I_{j}}{I_{j}^{*}}-\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{k}^{*} \log \frac{I_{k}}{I_{k}^{*}}=0
$$

We further get

$$
\begin{equation*}
\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{*} \frac{I_{j}}{I_{j}^{*}}-\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{j}^{\frac{I_{k}}{I_{k}^{*}}}=0 . \tag{3.8}
\end{equation*}
$$

Substituting (3.7) and (3.8) into (3.6), we have

$$
\begin{align*}
L V_{2} \leq & \sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j}\left(S_{k}-S_{k}^{*}\right)\left(I_{j}-I_{j}^{*}\right)+\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{k}^{*}\left[\frac{S_{k}}{S_{k}^{*}}+\frac{S_{k}^{*}}{S_{k}}-2\right] \tag{3.9}\\
& \left.+\frac{1}{2} \sum_{k=1}^{n} c_{k}\left(\sigma_{2 k}^{2} E_{k}^{*}+\frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}} \sigma_{3 k}^{2} I_{k}^{*}\right)\right] .
\end{align*}
$$

Thirdly, define the C^{2}-function $V_{3}: R_{+}^{n} \rightarrow R_{+}$by

$$
V_{3}\left(S_{k}, 1 \leq k \leq n\right)=\sum_{k=1}^{n} c_{k} \frac{\left(S_{k}-S_{k}^{*}\right)^{2}}{2 S_{k}^{*}}
$$

where $c_{k}(1 \leq k \leq n)$ are given as in V_{1}. We obtain

$$
\begin{align*}
L V_{3}= & -\sum_{k=1}^{n} c_{k} \frac{d_{k}^{S}\left(S_{k}-S_{k}^{*}\right)^{2}}{S_{k}^{*}}-\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} \frac{\left(S_{k}-S_{k}^{*}\right)^{2} I_{j}}{S_{k}^{*}} \\
& +\frac{1}{2} \sum_{k=1}^{n} c_{k} S_{k}^{2} \sigma_{1 k}^{2}-\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j}\left(S_{k}-S_{k}^{*}\right)\left(I_{j}-I_{j}^{*}\right) \tag{3.10}\\
\leq & -\sum_{k=1}^{n} c_{k} \frac{\left(d_{k}^{S}-\sigma_{1 k}^{2}\right)\left(S_{k}-S_{k}^{*}\right)^{2}}{S_{k}^{*}} \\
& -\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j}\left(S_{k}-S_{k}^{*}\right)\left(I_{j}-I_{j}^{*}\right)+\sum_{k=1}^{n} c_{k} S_{k}^{*} \sigma_{1 k}^{2} .
\end{align*}
$$

Choose $K=\sum_{j=1}^{n} \beta_{k j} \frac{I_{k}^{*}}{d_{k}^{s}}$, then (3.5) together with (3.9) and (3.10) implies

$$
\begin{align*}
& L\left(K V_{1}+V_{2}+V_{3}\right) \\
\leq & \sum_{k=1}^{n} K c_{k} d_{k}^{S} S_{k}^{*}\left(2-\frac{S_{k}}{S_{k}^{*}}-\frac{S_{k}^{*}}{S_{k}}\right)+\frac{1}{2} \sum_{k=1}^{n} K c_{k}\left(\sigma_{1 k}^{2} S_{k}^{*}+\sigma_{2 k}^{2} E_{k}^{*}+\frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}} \sigma_{3 k}^{2} I_{k}^{*}\right) \\
& +\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j}\left(S_{k}-S_{k}^{*}\right)\left(I_{j}-I_{j}^{*}\right)+\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j} S_{k}^{*} I_{k}^{*}\left[\frac{S_{k}}{S_{k}^{*}}+\frac{S_{k}^{*}}{S_{k}}-2\right] \\
& \left.+\frac{1}{2} \sum_{k=1}^{n} c_{k}\left(\sigma_{2 k}^{2} E_{k}^{*}+\frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}} \sigma_{3 k}^{2} I_{k}^{*}\right)\right]-\sum_{k=1}^{n} c_{k} \frac{\left(d_{k}^{S}-\sigma_{1 k}^{2}\right)\left(S_{k}-S_{k}^{*}\right)^{2}}{S_{k}^{*}} \tag{3.11}\\
& -\sum_{k=1}^{n} \sum_{j=1}^{n} c_{k} \beta_{k j}\left(S_{k}-S_{k}^{*}\right)\left(I_{j}-I_{j}^{*}\right)+\sum_{k=1}^{n} c_{k} S_{k}^{*} \sigma_{1 k}^{2} \\
\leq & -\sum_{k=1}^{n} c_{k} \frac{\left(d_{k}^{S}-\sigma_{1 k}^{2}\right)\left(S_{k}-S_{k}^{*}\right)^{2}}{S_{k}^{*}}+A_{k},
\end{align*}
$$

where $A_{k}=\frac{1}{2} \sum_{k=1}^{n} c_{k}\left[(K+2) \sigma_{1 k}^{2} S_{k}^{*}+(K+1) \sigma_{2 k}^{2} E_{k}^{*}+(K+1) \frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}} \sigma_{3 k}^{2} I_{k}^{*}\right]$.
Next, define the C^{2}-function $V_{4}: R_{+}^{3 n} \rightarrow R_{+}$by

$$
V_{4}\left(S_{k}, E_{k}, I_{k}, 1 \leq k \leq n\right)=\sum_{k=1}^{n} a_{k}\left(S_{k}-S_{k}^{*}+E_{k}-E_{k}^{*}+I_{k}-I_{k}^{*}\right)^{2},
$$

where $a_{k}(1 \leq k \leq n)$ are positive constants to be determined later. By calculating, we can get

$$
\begin{aligned}
L V_{4}= & -2 \sum_{k=1}^{n} a_{k}\left[d_{k}^{S}\left(S_{k}-S_{k}^{*}\right)^{2}+d_{k}^{E}\left(E_{k}-E_{k}^{*}\right)^{2}+\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)\left(I_{k}-I_{k}^{*}\right)^{2}\right] \\
& -2 \sum_{k=1}^{n}\left\{a_{k}\left(d_{k}^{S}+d_{k}^{E}\right)\left(S_{k}-S_{k}^{*}\right)\left(E_{k}-E_{k}^{*}\right)+\left(d_{k}^{S}+d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)\right. \\
& \left.\times\left(S_{k}-S_{k}^{*}\right)\left(I_{k}-I_{k}^{*}\right)+\left(d_{k}^{E}+d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)\left(E_{k}-E_{k}^{*}\right)\left(I_{k}-I_{k}^{*}\right)\right\} \\
& +\sum_{k=1}^{n} a_{k}\left(\sigma_{1 k}^{2} S_{k}^{2}+\sigma_{2 k}^{2} E_{k}+\sigma_{3 k}^{2} I_{k}\right)
\end{aligned}
$$

Since $2\left(d_{k}^{S}+d_{k}^{E}\right)\left(S_{k}-S_{k}^{*}\right)\left(E_{k}-E_{k}^{*}\right) \leq \frac{\left(d_{k}^{S}+d_{k}^{E}\right)^{2}}{d_{k}^{E}}\left(S_{k}-S_{k}^{*}\right)^{2}+d_{k}^{E}\left(E_{k}-E_{k}^{*}\right)^{2}$ and

$$
\begin{aligned}
& 2\left(d_{k}^{S}+d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)\left(S_{k}-S_{k}^{*}\right)\left(I_{k}-I_{k}^{*}\right) \\
& \leq \frac{\left(d_{k}^{S}+d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)^{2}}{\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)}\left(S_{k}-S_{k}^{*}\right)^{2}+\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)\left(I_{k}-I_{k}^{*}\right)^{2}
\end{aligned}
$$

we further obtain

$$
\begin{align*}
L V_{4} \leq & 2 \sum_{k=1}^{n} a_{k}\left[D_{k}\left(S_{k}-S_{k}^{*}\right)^{2}-\left(d_{k}^{E}-2 \sigma_{2 k}^{2}\right)\left(E_{k}-E_{k}^{*}\right)^{2}\right. \\
& \left.-\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}-2 \sigma_{3 k}^{2}\right)\left(I_{k}-I_{k}^{*}\right)^{2}\right] \tag{3.12}\\
& -2 \sum_{k=1}^{n} a_{k}\left(d_{k}^{E}+d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)\left(E_{k}-E_{k}^{*}\right)\left(I_{k}-I_{k}^{*}\right) \\
& +2 \sum_{k=1}^{n} a_{k}\left(\sigma_{1 k}^{2}\left(S_{k}^{*}\right)^{2}+\sigma_{2 k}^{2}\left(E_{k}^{*}\right)^{2}+\sigma_{3 k}^{2}\left(I_{k}^{*}\right)^{2}\right),
\end{align*}
$$

where $D_{k}=d_{k}^{S}+d_{k}^{E}+\frac{\left(d_{k}^{S}\right)^{2}}{d_{k}^{E}}+\frac{\left(d_{k}^{S}+d_{l}^{l}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)^{2}}{d_{k}^{l}+\alpha_{k}+\delta_{k}+\gamma_{k}}+\sigma_{1 k}^{2}$.
Further, define the C^{2}-function $V_{5}: R_{+}^{n} \rightarrow R_{+}$by

$$
V_{5}\left(I_{k}, 1 \leq k \leq n\right)=\sum_{k=1}^{n} a_{k} \frac{\left(d_{k}^{E}+d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)}{\epsilon_{k}}\left(I_{k}-I_{k}^{*}\right)^{2} .
$$

We obtain

$$
\begin{align*}
L V_{5}= & -2 \sum_{k=1}^{n} a_{k}\left[\frac { (d _ { k } ^ { E } + d _ { k } ^ { I } + \alpha _ { k } + \delta _ { k } + \gamma _ { k }) } { \epsilon _ { k } } \left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right.\right. \\
& \left.\left.-\sigma_{3 k}^{2}\right)\left(I_{k}-I_{k}^{*}\right)^{2}-\left(d_{k}^{E}+d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)\left(E_{k}-E_{k}^{*}\right)\left(I_{k}-I_{k}^{*}\right)\right] \tag{3.13}\\
& +2 \sum_{k=1}^{n} a_{k} \frac{\left(d_{k}^{E}+d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right)}{\epsilon_{k}} \sigma_{3 k}^{2}\left(I_{k}^{*}\right)^{2} .
\end{align*}
$$

Finally, define the C^{2} functions V_{6} and $V_{7}: R_{+}^{n} \rightarrow R_{+}$as follows.

$$
V_{6}\left(Q_{k}, 1 \leq k \leq n\right)=\sum_{k=1}^{n} b_{k}\left(Q_{k}-Q_{k}^{*}\right)^{2}, V_{7}\left(R_{k}, 1 \leq k \leq n\right)=\sum_{k=1}^{n} d_{k}\left(R_{k}-R_{k}^{*}\right)^{2}
$$

where $b_{k}, d_{k}(1 \leq k \leq n)$ are positive constants to be determined later. We get

$$
\begin{align*}
L V_{6}= & -2 \sum_{k=1}^{n} b_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-\sigma_{4 k}^{2}\right)\left(Q_{k}-Q_{k}^{*}\right)^{2} \\
& +2 \sum_{k=1}^{n} b_{k} \delta_{k}\left(Q_{k}-Q_{k}^{*}\right)\left(I_{k}-I_{k}^{*}\right)+2 \sum_{k=1}^{n} b_{k} \sigma_{4 k}^{2}\left(Q_{k}^{*}\right)^{2} \tag{3.14}\\
\leq & -\sum_{k=1}^{n} b_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-2 \sigma_{4 k}^{2}\right)\left(Q_{k}-Q_{k}^{*}\right)^{2} \\
& +\sum_{k=1}^{n} b_{k} \frac{\delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}}\left(I_{k}-I_{k}^{*}\right)^{2}+2 \sum_{k=1}^{n} b_{k} \sigma_{4 k}^{2}\left(Q_{k}^{*}\right)^{2}
\end{align*}
$$

and

$$
\begin{align*}
L V_{7}= & -2 \sum_{k=1}^{n} d_{k}\left(d_{k}^{R}-\sigma_{5 k}^{2}\right)\left(R_{k}-R_{k}^{*}\right)^{2}+2 \sum_{k=1}^{n} d_{k} \gamma_{k}\left(R_{k}-R_{k}^{*}\right)\left(I_{k}-I_{k}^{*}\right) \\
& +2 \sum_{k=1}^{n} d_{k} \mu_{k}\left(Q_{k}-Q_{k}^{*}\right)\left(R_{k}-R_{k}^{*}\right)+2 \sum_{k=1}^{n} d_{k} \sigma_{5 k}^{2}\left(R_{k}^{*}\right)^{2} \\
\leq & -\sum_{k=1}^{n=1} d_{k}\left(d_{k}^{R}-2 \sigma_{5 k}^{2}\right)\left(R_{k}-R_{k}^{*}\right)^{2}+\sum_{k=1}^{n} d_{k} \frac{\gamma_{k}^{2}}{d_{k}^{R}}\left(I_{k}-I_{k}^{*}\right)^{2} \tag{3.15}\\
& +\sum_{k=1}^{n} \mu_{k}^{2}\left(Q_{k}-Q_{k}^{*}\right)^{2}+\sum_{k=1}^{n} d_{k}^{2}\left(R_{k}-R_{k}^{*}\right)^{2}+2 \sum_{k=1}^{n} d_{k} \sigma_{5 k}^{2}\left(R_{k}^{*}\right)^{2},
\end{align*}
$$

where the last equality is derived by the inequality $2 a b \leq a^{2}+b^{2}$.
From (3.12)-(3.15) we obtain

$$
\begin{align*}
& L\left(V_{4}+V_{5}+V_{6}+V_{7}\right) \\
\leq & 2 \sum_{k=1}^{n} a_{k} D_{k}\left(S_{k}-S_{k}^{*}\right)^{2}-2 \sum_{k=1}^{n}\left(d_{k}^{E}-2 \sigma_{2 k}^{2}\right)\left(E_{k}-E_{k}^{*}\right)^{2} \\
& -\sum_{k=1}^{n}\left\{a_{k}\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}-2 \sigma_{3 k}^{2}\right)-b_{k} \frac{\delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}}-d_{k} \frac{\gamma_{k}^{2}}{d_{k}^{R}}\right\}\left(I_{k}-I_{k}^{*}\right)^{2} \tag{3.16}\\
& -\sum_{k=1}^{n}\left\{b_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-2 \sigma_{4 k}^{2}\right)-\mu_{k}^{2}\right\}\left(Q_{k}-Q_{k}^{*}\right)^{2} \\
& -\sum_{k=1}^{n} d_{k}\left\{\left(d_{k}^{R}-2 \sigma_{5 k}^{2}\right)-d_{k}\right\}\left(R_{k}-R_{k}^{*}\right)^{2}+\sum_{k=1}^{n} C_{k},
\end{align*}
$$

where

$$
\begin{aligned}
C_{k}= & \left.2 \sum_{k=1}^{n} a_{k}\left\{\sigma_{1 k}^{2}\left(S_{k}^{*}\right)^{2}+\sigma_{2 k}^{2}\left(E_{k}^{*}\right)^{2}+\left(1+\frac{d_{k}^{E}+d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}}{\epsilon_{k}}\right) \sigma_{3 k}^{2}\left(I_{k}^{*}\right)^{2}\right)\right\} \\
& +2 \sum_{k=1}^{n} b_{k} \sigma_{4 k}^{2}\left(Q_{k}^{*}\right)^{2}+2 \sum_{k=1}^{n} d_{k} \sigma_{5 k}^{2}\left(R_{k}^{*}\right)^{2} .
\end{aligned}
$$

From condition (3.1), we can choose positive numbers r, a_{k}, b_{k} and d_{k} for $k=1,2, \cdots, n$ satisfying
$d_{k}<d_{k}^{R}-2 \sigma_{5 k}^{2}$ and

$$
r>\frac{2 S_{k}^{*} D_{k} a_{k}}{\left(d_{k}^{S}-\sigma_{1 k}^{2}\right) c_{k}}, a_{k}>\frac{\left[b_{k} \frac{\delta_{k}^{2}}{d_{k}^{O}+\alpha_{k}+\mu_{k}}+d_{k} \frac{\gamma_{k}^{2}}{d_{k}^{l}}\right]}{\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}-2 \sigma_{3 k}^{2}\right)}, b_{k}>\frac{\mu_{k}^{2}}{\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-2 \sigma_{4 k}^{2}\right)}
$$

such that for each $1 \leq k \leq n$

$$
\begin{gathered}
a_{k}\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}-2 \sigma_{3 k}^{2}\right)-\left[b_{k} \frac{\delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}}+d_{k} \frac{\gamma_{k}^{2}}{d_{k}^{R}}\right]>0, d_{k}^{R}-2 \sigma_{5 k}^{2}-d_{k}>0, \\
b_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-2 \sigma_{4 k}^{2}\right)-\mu_{k}^{2}>0, c_{k} r-\frac{S_{k}^{*}}{d_{k}^{S}-\sigma_{1 k}^{2}} 2 a_{k} D_{k}>0 .
\end{gathered}
$$

Lastly, define a Lyapunov function as follows

$$
V=r\left(K V_{1}+V_{2}+V_{3}\right)+V_{4}+V_{5}+V_{6}+V_{7}
$$

By Itô's formula, we obtain

$$
\begin{align*}
d V= & L V d t+\sum_{k=1}^{n} \sigma_{1 k}\left[c_{k} r\left(K+\frac{S_{k}}{S_{k}^{*}}\right)\left(S_{k}-S_{k}^{*}\right)+2 a_{k}\left(S_{k}-S_{k}^{*}+E_{k}-E_{k}^{*}+I_{k}-I_{k}^{*}\right) S_{k}\right] d B_{1 k} \\
& +2 \sum_{k=1}^{n} \sigma_{2 k}\left[c_{k} r K\left(E_{k}-E_{k}^{*}\right)+a_{k}\left(S_{k}-S_{k}^{*}+E_{k}-E_{k}^{*}+I_{k}-I_{k}^{*}\right) E_{k}\right] d B_{2 k} \\
& +\sum_{k=1}^{n} \sigma_{3 k}\left\{\left[r(K+1) c_{k} \frac{d_{k}^{E}+\epsilon_{k}}{\epsilon_{k}}+a_{k} \frac{d_{k}^{E}+d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}}{\epsilon_{k}} I_{k}\right]\left(I_{k}-I_{k}^{*}\right)+2 a_{k}\right. \tag{3.17}\\
& \left.\times\left(S_{k}-S_{k}^{*}+I_{k}-I_{k}^{*}+E_{k}-E_{k}^{*}\right) I_{k}\right\} d B_{3 k}+\sum_{k=1}^{n} \sigma_{4 k} b_{k}\left(Q_{k}-Q_{k}^{*}\right) Q_{k} d B_{4 k} \\
& +\sum_{k=1}^{n} \sigma_{5 k} d_{k}\left(R_{k}-R_{k}^{*}\right) R_{k} d B_{5 k},
\end{align*}
$$

where (3.11) together with (3.16) implies

$$
\begin{align*}
L V \leq & -\sum_{k=1}^{n}\left[\left\{c_{k} r \frac{\left(d_{k}^{S}-\sigma_{1 k}^{2}\right)}{S_{k}^{*}}-2 a_{k} D_{k}\right\}\left(S_{k}-S_{k}^{*}\right)^{2}+2\left(d_{k}^{E}-2 \sigma_{2 k}^{2}\right)\left(E_{k}-E_{k}^{*}\right)^{2}\right. \\
& +\left\{a_{k}\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}-2 \sigma_{3 k}^{2}\right)-b_{k} \frac{\delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}}-d_{k} \frac{\gamma_{k}^{2}}{d_{k}^{R}}\right\}\left(I_{k}-I_{k}^{*}\right)^{2} \tag{3.18}\\
& +\left\{b_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-2 \sigma_{4 k}^{2}\right)-\mu_{k}^{2}\right\}\left(Q_{k}-Q_{k}^{*}\right)^{2} \\
& \left.+\left\{\left(d_{k}^{R}-2 \sigma_{5 k}^{2}\right)-d_{k}\right\}\left(R_{k}-R_{k}^{*}\right)^{2}\right]+\sum_{k=1}^{n} \rho_{k} .
\end{align*}
$$

By integration and taking expectation of both sides of (3.17), we obtain

$$
\begin{aligned}
& E(V(t))-E(V(0))=E\left[\int_{0}^{t} L V(r) d r\right] \\
\leq & -E \int_{0}^{t} \sum_{k=1}^{n}\left[\left\{c_{k} r \frac{\left(d_{k}^{S}-\sigma_{1 k}^{2}\right)}{S_{k}^{*}}-2 a_{k} D_{k}\right\}\left(S_{k}-S_{k}^{*}\right)^{2}+2\left(d_{k}^{E}-2 \sigma_{2 k}^{2}\right)\left(E_{k}-E_{k}^{*}\right)^{2}\right. \\
& +\left\{a_{k}\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}-2 \sigma_{3 k}^{2}\right)-b_{k} \frac{\delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}}-d_{k} \frac{\gamma_{k}^{2}}{d_{k}^{R}}\right\}\left(I_{k}-I_{k}^{*}\right)^{2} \\
& +\left\{b_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-2 \sigma_{4 k}^{2}\right)-\mu_{k}^{2}\right\}\left(Q_{k}-Q_{k}^{*}\right)^{2} \\
& \left.+\left\{\left(d_{k}^{R}-2 \sigma_{5 k}^{2}\right)-d_{k}\right\}\left(R_{k}-R_{k}^{*}\right)^{2}\right] d r+t \sum_{k=1}^{n} \rho_{k} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\limsup _{t \rightarrow \infty} \frac{1}{t} E \int_{0}^{t} & \sum_{k=1}^{n}\left[\left\{c_{k} r \frac{\left(d_{k}^{S}-\sigma_{1 k}^{2}\right)}{S_{k}^{*}}-2 a_{k} D_{k}\right\}\left(S_{k}-S_{k}^{*}\right)^{2}+2\left(d_{k}^{E}-2 \sigma_{2 k}^{2}\right)\left(E_{k}-E_{k}^{*}\right)^{2}\right. \\
& +\left\{a_{k}\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}-2 \sigma_{3 k}^{2}\right)-b_{k} \frac{\delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}}-d_{k} \frac{\gamma_{k}^{2}}{d_{k}^{R}}\right\}\left(I_{k}-I_{k}^{*}\right)^{2} \\
& +\left\{b_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-2 \sigma_{4 k}^{2}\right)-\mu_{k}^{2}\right\}\left(Q_{k}-Q_{k}^{*}\right)^{2} \\
& \left.+\left\{\left(d_{k}^{R}-2 \sigma_{5 k}^{2}\right)-d_{k}\right\}\left(R_{k}-R_{k}^{*}\right)^{2}\right] d r \leq \sum_{k=1}^{n} \rho_{k} .
\end{aligned}
$$

This completes the proof.
As a consequence of Theorem 2, we have the following result on the existence and uniqueness of stationary distribution for model (1.2).

Theorem 3. Assume that all conditions in Theorem 2 hold. Then model (1.2) has a unique stationary distribution $\mu(\cdot)$ in $R_{+}^{5 n}$.

Proof. Choose region Ω in ([34], Lemma 2.5) by $\Omega=R_{+}^{5 n}$. Consider the following inequality

$$
\begin{aligned}
& \sum_{k=1}^{n}\left\{c_{k} \frac{\left(d_{k}^{S}-\sigma_{1 k}^{2}\right)}{S_{k}^{*}}-2 a_{k} B_{k}\right\}\left(S_{k}-S_{k}^{*}\right)^{2}+2 \sum_{k=1}^{n}\left(d_{k}^{E}-2 \sigma_{2 k}^{2}\right)\left(E_{k}-E_{k}^{*}\right)^{2} \\
& +\sum_{k=1}^{n}\left\{a_{k}\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}-2 \sigma_{3 k}^{2}\right)-b_{k} \frac{\delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}}-d_{k} \frac{\gamma_{k}^{2}}{d_{k}^{R}}\right\}\left(I_{k}-I_{k}^{*}\right)^{2} \\
& +\sum_{k=1}^{n}\left\{b_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-2 \sigma_{4 k}^{2}\right)-\mu_{k}^{2}\right\}\left(Q_{k}-Q_{k}^{*}\right)^{2} \\
& +\sum_{k=1}^{n} d_{k}\left\{\left(d_{k}^{R}-2 \sigma_{5 k}^{2}\right)-d_{k}\right\}\left(R_{k}-R_{k}^{*}\right)^{2} \leq H .
\end{aligned}
$$

Let region U_{1} denote all points ($S_{k}, E_{k}, I_{k}, Q_{k}, R_{k}, 1 \leq k \leq n$) which satisfy the above inequality with $H=2 \sum_{k=1}^{n} \rho_{k}$ and region U_{2} denote all points ($S_{k}, E_{k}, I_{k}, Q_{k}, R_{k}, 1 \leq k \leq n$) which satisfy the above
inequality with $H=3 \sum_{k=1}^{n} \rho_{k}$. Obviously, U_{2} is a neighborhood of U_{1} and the closure $\bar{U}_{2} \subset \Omega$. Then from (3.18), for any $x \in \Omega \backslash U_{1}$,

$$
\begin{aligned}
L V \leq & -\sum_{k=1}^{n}\left[\left\{c_{k} r \frac{\left(d_{k}^{S}-\sigma_{1 k}^{2}\right)}{S_{k}^{*}}-2 a_{k} D_{k}\right\}\left(S_{k}-S_{k}^{*}\right)^{2}+2\left(d_{k}^{E}-2 \sigma_{2 k}^{2}\right)\left(E_{k}-E_{k}^{*}\right)^{2}\right. \\
& +\left\{a_{k}\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}-2 \sigma_{3 k}^{2}\right)-b_{k} \frac{\delta_{k}^{2}}{d_{k}^{Q}+\alpha_{k}+\mu_{k}}-d_{k} \frac{\gamma_{k}^{2}}{d_{k}^{R}}\right\}\left(I_{k}-I_{k}^{*}\right)^{2} \\
& +\left\{b_{k}\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}-2 \sigma_{4 k}^{2}\right)-\mu_{k}^{2}\right\}\left(Q_{k}-Q_{k}^{*}\right)^{2} \\
& \left.+\left\{\left(d_{k}^{R}-2 \sigma_{5 k}^{2}\right)-d_{k}\right\}\left(R_{k}-R_{k}^{*}\right)^{2}\right]+\sum_{k=1}^{n} \rho_{k} \leq-\sum_{k=1}^{n} \rho_{k},
\end{aligned}
$$

which implies condition (ii) in ([35], Lemma 2.5) is satisfied.
For model (1.2), the diffusion matrix is

$$
A(x)=\operatorname{diag}\left(\sigma_{1 k}^{2} S_{k}^{2}, \sigma_{2 k}^{2} E_{k}^{2}, \sigma_{3 k}^{2} I_{k}^{2}, \sigma_{4 k}^{2} Q_{k}^{2}, \sigma_{5 k}^{2} R_{k}^{2}, 1 \leq k \leq n\right)
$$

Choose a positive constant $M \geq \inf _{\bar{U}_{2}}\left\{\sigma_{1 i}^{2} S_{i}^{2}, \sigma_{2 i}^{2} E_{i}^{2}, \sigma_{3 i}^{2} I_{i}^{2}, \sigma_{4 i}^{2} Q_{i}^{2}, \sigma_{5 i}^{2} R_{i}^{2}, 1 \leq i \leq n\right\}$. Then,

$$
\begin{aligned}
\sum_{i, j=1}^{5 n} a_{i j} \xi_{i} \xi_{j}= & \sum_{i=1}^{n} \sigma_{1 i}^{2} S_{i}^{2} \xi_{5 i-4}^{2}+\sum_{i=1}^{n} \sigma_{2 i}^{2} E_{i}^{2} \xi_{5 i-3}^{2}+\sum_{i=1}^{n} \sigma_{3 i}^{2} I_{i}^{2} \xi_{5 i-2}^{2} \\
& +\sum_{i=1}^{n} \sigma_{4 i}^{2} Q_{i}^{2} \xi_{5 i-1}^{2}+\sum_{i=1}^{n} \sigma_{5 i}^{2} R_{i}^{2} \xi_{5 i}^{2} \geq M\|\xi\|^{2}
\end{aligned}
$$

for all $\left(S_{i}, E_{i}, I_{i}, Q_{i}, R_{i}, 1 \leq i \leq n\right) \in \bar{U}_{2}$ and $\xi \in R^{5 n}$. This implies condition (i) in ([34], Lemma 2.5) is also satisfied. Therefore, by ([34], Lemma 2.5), model (1.2) has a unique stationary distribution μ in $R_{+}^{5 n}$. This completes the proof.

4. Numerical simulation

In this section, we analyse the stochastic behaviour of model (1.2) by means of the numerical simulations in order to make readers understand our results more better. The numerical simulation method can be found in [36]. The corresponding discretization system of

$$
\left\{\begin{aligned}
S_{k, i+1}= & S_{k, i}+\left[\Lambda_{k}-\beta_{k 1} S_{k, i} I_{1, i}-\beta_{k 2} S_{k, i} I_{2, i}-d_{k}^{S} S_{k, i}\right] \Delta t \\
& +\sigma_{1 k} S_{k, i} \sqrt{\Delta t} \varepsilon_{1 k, i}+\frac{\sigma_{1 k}^{2} S_{k, i}}{2}\left(\varepsilon_{1 k, i}^{2} \Delta t-\Delta t\right), \\
E_{k, i+1}= & E_{k, i}+\left[\beta_{k 1} S_{k, i} I_{1, i}+\beta_{k 2} S_{k, i} I_{2, i}-\left(d_{k}^{E}+\epsilon_{k}\right) E_{k, i}\right] \Delta t \\
& +\sigma_{2 k} E_{k, i} \sqrt{\Delta t} \varepsilon_{2 k, i}+\frac{\sigma_{2 k}^{2} E_{k, i}}{2}\left(\varepsilon_{2 k, i}^{2} \Delta t-\Delta t\right), \\
I_{k, i+1}= & I_{k, i}+\left[\epsilon_{k} E_{k, i}-\left(d_{k}^{I}+\alpha_{k}+\delta_{k}+\gamma_{k}\right) I_{k, i}\right] \Delta t \\
& +\sigma_{3 k} I_{k, i} \sqrt{\Delta t} \varepsilon_{3 k, i}+\frac{\sigma_{3 k}^{2} I_{k, i}}{2}\left(\varepsilon_{3 k, i}^{2} \Delta t-\Delta t\right), \\
Q_{k, i+1}= & Q_{k, i}+\left[\delta_{k} I_{k, i}-\left(d_{k}^{Q}+\alpha_{k}+\mu_{k}\right) Q_{k, i}\right] \Delta t+\sigma_{4 k} Q_{k, i} \sqrt{\Delta t} \varepsilon_{4 k, i} \\
& +\frac{\sigma_{4 k}^{2} Q_{k, i}}{2}\left(\varepsilon_{4 k, i}^{2} \Delta t-\Delta t\right), \\
R_{k, i+1}= & R_{k, i}+\left[\gamma_{k} I_{k, i}+\mu_{k} Q_{k, i}-d_{k}^{R} R_{k, i}\right] \Delta t+\sigma_{5 k} R_{k, i} \sqrt{\Delta t} \varepsilon_{5 k, i} \\
& +\frac{\sigma_{5 k}^{2} R_{k, i}}{2}\left(\varepsilon_{5 k, i}^{2} \Delta t-\Delta t\right),
\end{aligned}\right.
$$

where time increment $\Delta t>0$, and $\varepsilon_{1 k, i}, \varepsilon_{2 k, i}, \varepsilon_{3 k, i}, \varepsilon_{4 k, i}, \varepsilon_{5 k, i}$ for $1 \leq k \leq n$ are $N(0,1)$-distributed independent random variables which be generated numerically by pseudo-random number generators.

Example 1. In model (1.2), we choose $n=2$ and the parameters $\Lambda_{1}=3.2, \epsilon_{1}=0.1, \alpha_{1}=0.1$, $\beta_{11}=0.409, d_{1}^{S}=0.9, d_{1}^{E}=0.7, d_{1}^{I}=0.81, d_{1}^{Q}=0.2, d_{1}^{R}=0.65, \mu_{1}=0.3, \gamma_{1}=0.04, \beta_{12}=0.02$, $\delta_{1}=0.1, \sigma_{11}=0.15, \sigma_{21}=0.1, \sigma_{31}=0.41, \sigma_{41}=0.2, \sigma_{51}=0.3, \Lambda_{2}=7.5, \epsilon_{2}=2.4, \alpha_{2}=0.2$, $\beta_{21}=0.05, d_{2}^{S}=0.49, d_{2}^{E}=0.25, d_{2}^{I}=0.15, d_{2}^{Q}=0.25, d_{2}^{R}=0.39, \mu_{2}=0.5, \gamma_{2}=0.15, \beta_{22}=0.0014$, $\delta_{2}=0.43, \sigma_{12}=0.2, \sigma_{22}=0.6, \sigma_{32}=0.5, \sigma_{42}=0.8$ and $\sigma_{52}=0.8$.

By computing, we have $R_{0} \doteq 0.8675<1$ and disease-free equilibrium $E_{0}=(3.56,0,0,0,0,15.31$, $0,0,0,0$) for corresponding deterministic model (1.1), and the conditions in Theorem 1 are satisfied. Therefore, according to the conclusion in Theorem 1 by numerical calculation we can obtain that for the solution $\quad\left(S_{k}(t), E_{k}(t), I_{k}(t), Q_{k}(t), R_{k}(t), k \quad=\quad 1,2\right) \quad$ satisfying the initial values $\left(S_{1}(0), E_{1}(0), I_{1}(0), Q_{1}(0), R_{1}(0)\right) \quad=\quad(0.75,0.8,0.8,0.2,0.2) \quad$ and $\left(S_{2}(0), E_{2}(0), I_{2}(0), Q_{2}(0), R_{2}(0)\right)=(1.7,4.5,2.7,4.3,5)$ one has

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \frac{1}{t} E \int_{0}^{t} \sum_{k=1}^{2}\left\{A_{k}\left(S_{k}(r)-S_{k}^{0}\right)^{2}+B_{k} E_{k}^{2}(r)+C_{k} I_{k}^{2}(r)+D_{k} Q_{k}^{2}(r)+F_{k} R_{k}^{2}(r)\right\} d t \leq 10.49, \tag{4.1}
\end{equation*}
$$

where $S_{1}^{0}=3.56, S_{2}^{0}=15.31, A_{1}=0.8775, A_{2}=0.48, B_{1}=0.1988, B_{2}=0.6175, C_{1}=18.21$, $C_{2}=0.04295, D_{1}=0.1482, D_{2}=0.0077, F_{1}=0.1507$ and $F_{2}=3.7551 \times 10^{5}$.

From the numerical simulations given in Figure 1 we easily see that the above formula (4.1) holds. That is, the solution of stochastic model (1.2) asymptotically oscillates in probability around diseasefree equilibrium E_{0}.

In addition, from Figure 1 we also easily see that the mean of susceptible $S_{k}(t)(k=1,2)$ tend to S_{k}^{0} and all exposed E_{k}, infectious I_{k}, quarantined Q_{k} and recovered R_{k} for $k=1,2$ tend to zero in probability as $t \rightarrow \infty$.

Example 2. In model (1.2), we choose $n=2$ and the parameters $\Lambda_{1}=0.8, \epsilon_{1}=0.1, \alpha_{1}=0.1$, $\beta_{11}=0.109, d_{1}^{S}=0.19, d_{1}^{E}=1.107, d_{1}^{I}=0.081, d_{1}^{Q}=0.2, d_{1}^{R}=0.65, \mu_{1}=0.3, \gamma_{1}=0.04, \beta_{12}=0.02$, $\delta_{1}=0.01, \sigma_{11}=1.15, \sigma_{21}=1.1, \sigma_{31}=1.41, \sigma_{41}=01.2, \sigma_{51}=1.3, \Lambda_{2}=1.5, \epsilon_{2}=2.4, \alpha_{2}=0.2$, $\beta_{21}=0.05, d_{2}^{S}=0.49, d_{2}^{E}=0.25, d_{2}^{I}=0.15, d_{2}^{Q}=0.25, d_{2}^{R}=0.39, \mu_{2}=0.5, \gamma_{2}=0.15, \beta_{22}=0.0014$, $\delta_{2}=0.043, \sigma_{12}=1.2, \sigma_{22}=1.6, \sigma_{32}=0.5, \sigma_{42}=0.8$ and $\sigma_{52}=0.8$.

By computing, we have $R_{0} \doteq 0.5174 \leq 1$. Since $d_{1}^{S}-\sigma_{11}^{2}=-1.13<0, d_{2}^{S}-\sigma_{12}^{2}=-0.33<0$, $d_{1}^{R}-\frac{1}{2} \sigma_{51}^{2}=-0.2<0$ and $d_{2}^{R}-\frac{1}{2} \sigma_{52}^{2}=-0.46<0$, the condition (2.1) in Theorem 1 does not hold. However, from the numerical simulations given in Figure 2, we can see that the solution $\left(S_{k}(t), E_{k}(t), I_{k}(t), Q_{k}(t), R_{k}(t), k \quad=\quad 1,2\right)$ of stochastic model (1.2) with initial values $\left(S_{1}(0), E_{1}(0), I_{1}(0), Q_{1}(0), R_{1}(0)\right) \quad=\quad(0.75,0.8,0.8,0.2,0.2) \quad$ and $\left(S_{2}(0), E_{2}(0), I_{2}(0), Q_{2}(0), R_{2}(0)\right)=(1.7,4.5,2.7,4.3,5)$ asymptotically oscillates in probability around the disease-free equilibrium $E_{0}=(4.21,0,0,0,0,3.06,0,0,0,0)$ of corresponding deterministic model (1.1). This example seems to indicate that the condition (2.1) in Theorem 1 can be weakened or taken out.

Figure 1. The numerical simulations of asymptotic oscillation in probability around diseasefree equilibrium E_{0} for the solution $\left(S_{k}(t), E_{k}(t), I_{k}(t), Q_{k}(t), R_{k}(t), k=1,2\right)$ of stochastic model with initial values $\left(S_{1}(0), E_{1}(0), I_{1}(0), Q_{1}(0), R_{1}(0)\right)=(0.75,0.8,0.8,0.2,0.2)$ and $\left(S_{2}(0), E_{2}(0), I_{2}(0), Q_{2}(0), R_{2}(0)\right)=(1.7,4.5,2.7,4.3,5)$.

Figure 2. The numerical simulations of asymptotic oscillation in probability around diseasefree equilibrium E_{0} for the solution ($\left.S_{k}(t), E_{k}(t), I_{k}(t), Q_{k}(t), R_{k}(t), k=1,2\right)$ of stochastic model (1.2) with initial values $\left(S_{1}(0), E_{1}(0), I_{1}(0), Q_{1}(0), R_{1}(0)\right)=(0.75,0.8,0.8,0.2,0.2)$ and $\left(S_{2}(0), E_{2}(0), I_{2}(0), Q_{2}(0), R_{2}(0)\right)=(1.7,4.5,2.7,4.3,5)$.

Example 3. In model (1.2), we choose $n=2$ and the parameters $\Lambda_{1}=4.5, \epsilon_{1}=1, \alpha_{1}=0.1$, $\beta_{11}=1.55, d_{1}^{S}=0.5, d_{1}^{E}=0.15, d_{1}^{I}=0.1, d_{1}^{Q}=0.2, d_{1}^{R}=0.65, \mu_{1}=0.3, \gamma_{1}=0.4, \beta_{12}=1.35$, $\delta_{1}=0.6, \sigma_{11}=0.3, \sigma_{21}=0.5, \sigma_{31}=0.4, \sigma_{41}=0.2, \sigma_{51}=0.4, \Lambda_{2}=7.5, \epsilon_{2}=2.4, \alpha_{2}=0.2, \beta_{21}=1.5$, $d_{2}^{S}=0.49, d_{2}^{E}=0.25, d_{2}^{I}=0.15, d_{2}^{Q}=0.25, d_{2}^{R}=0.39, \mu_{2}=0.5, \gamma_{2}=0.15, \beta_{22}=1.24, \delta_{2}=0.43$, $\sigma_{12}=0.2, \sigma_{22}=0.6, \sigma_{32}=0.5, \sigma_{42}=0.8$ and $\sigma_{52}=0.3$.

By computing, we have $R_{0} \doteq 1.1032>1$ and the conditions in Theorem 2 are satisfied. The numerical simulations are given in Figures 3 and 4 . Figure 3 shows that the solution $\left(S_{k}(t), E_{k}(t), I_{k}(t), Q_{k}(t), R_{k}(t), k=1,2\right)$ of stochastic model (1.2) satisfying the initial values
$\left(S_{1}(0), E_{1}(0), I_{1}(0), Q_{1}(0), R_{1}(0)\right) \quad=\quad(0.75,0.8,0.8,0.2,0.2) \quad$ and $\left(S_{2}(0), E_{2}(0), I_{2}(0), Q_{2}(0), R_{2}(0)\right)=(1.7,4.5,2.7,4.3,5)$ asymptotically oscillates in probability around the endemic equilibrium $E^{*}=(0.37,3.35,0.27,0.38,0.19,0.79,2.68,6.93,3.14,6.68)$ of corresponding deterministic model (1.1). Figure 4 shows that the solution has a unique stationary distribution. Therefore, the conclusions of Theorem 3 are validated by the numerical example.

In addition, from Figure 3 we also easily see that the mean value of the solution for stochastic model (1.2) asymptotically oscillates in probability around the endemic equilibrium E^{*} of corresponding deterministic model (1.1). From Figure 5 we can find the relationship between variances of the solution $\left(S_{k}(t), E_{k}(t), I_{k}(t), Q_{k}(t), R_{k}(t), k=1,2\right)$ and the intensities of noises $\left(\sigma_{i k}^{2}, \sigma_{2 k}^{2}, \sigma_{3 k}^{2}, \sigma_{4 k}^{2}, \sigma_{5 k}^{2}, k=1,2\right)$ as time t is enough large.

Figure 3. The numerical simulations of asymptotic oscillation in probability around endemic equilibrium E^{*} for the solution $\left(S_{k}(t), E_{k}(t), I_{k}(t), Q_{k}(t), R_{k}(t), k=1,2\right)$ of stochastic model (1.2) with initial values $\left(S_{1}(0), E_{1}(0), I_{1}(0), Q_{1}(0), R_{1}(0)\right)=(0.75,0.8,0.8,0.2,0.2)$ and $\left(S_{2}(0), E_{2}(0), I_{2}(0), Q_{2}(0), R_{2}(0)\right)=(1.7,4.5,2.7,4.3,5)$.

Figure 4. The stationary distribution of the solution $\left(S_{k}(t), E_{k}(t), I_{k}(t), Q_{k}(t), R_{k}(t), k=1,2\right)$ for the stochastic model (1.2).

Figure 5. The numerical simulations of variances for the solution $\left(S_{k}(t), E_{k}(t), I_{k}(t), Q_{k}(t)\right.$, $\left.R_{k}(t), k=1,2\right)$ of stochastic model (1.2) with initial values $\left(S_{1}(0), E_{1}(0), I_{1}(0), Q_{1}(0), R_{1}(0)\right)$ $=(0.75,0.8,0.8,0.2,0.2)$ and $\left(S_{2}(0), E_{2}(0), I_{2}(0), Q_{2}(0), R_{2}(0)\right)=(1.7,4.5,2.7,4.3,5)$.

Example 4. In model (1.2), we choose $n=2$ and the parameters $\Lambda_{1}=4.5, \epsilon_{1}=0.1, \alpha_{1}=0.1$, $\beta_{11}=1.55, d_{1}^{S}=2.05, d_{1}^{E}=1.015, d_{1}^{I}=0.51, d_{1}^{Q}=0.02, d_{1}^{R}=0.65, \mu_{1}=0.3, \gamma_{1}=0.04, \beta_{12}=1.35$, $\delta_{1}=0.6, \sigma_{11}=2.3, \sigma_{21}=1.5, \sigma_{31}=0.5, \sigma_{41}=0.4, \sigma_{51}=0.4, \Lambda_{2}=7.5, \epsilon_{2}=2.4, \alpha_{2}=0.2, \beta_{21}=1.5$, $d_{2}^{S}=0.49, d_{2}^{E}=0.25, d_{2}^{I}=0.15, d_{2}^{Q}=0.25, d_{2}^{R}=0.39, \mu_{2}=0.5, \gamma_{2}=0.15, \beta_{22}=0.24, \delta_{2}=0.43$, $\sigma_{12}=1.2, \sigma_{22}=0.6, \sigma_{32}=0.5, \sigma_{42}=0.8$ and $\sigma_{52}=0.3$.

By computing, we have $R_{0} \doteq 1.09013>1$. Since $d_{1}^{S}-\sigma_{11}^{2}=-10.12<0, d_{2}^{S}-\sigma_{21}^{2}=-0.43<0$ and $d_{1}^{E}-\frac{1}{2} \sigma_{21}^{2}=-0.11<0$, the condition (3.1) in Theorem 2 does not hold. However, from the
numerical simulations are given in Figures 6 we can see that the solution $\left(S_{k}(t), E_{k}(t), I_{k}(t), Q_{k}(t), R_{k}(t), k \quad=\quad 1,2\right)$ of stochastic model (1.2) with initial values $\left(S_{1}(0), E_{1}(0), I_{1}(0), Q_{1}(0), R_{1}(0)\right) \quad=\quad(0.75,0.8,0.8,0.2,0.2) \quad$ and $\left(S_{2}(0), E_{2}(0), I_{2}(0), Q_{2}(0), R_{2}(0)\right)=(1.7,4.5,2.7,4.3,5)$ asymptotically oscillates in probability around the endemic equilibrium $E^{*}=(0.43,3.24,0.26,0.37,0.19,3.34,2.22,5.7,2.59,5.51)$ of corresponding deterministic model (1.1). This example seems to indicate that the condition (3.1) in Theorem 2 can be weakened or taken out.

Figure 6. The numerical simulations of asymptotic oscillation in probability around endemic equilibrium E^{*} for the solution $\left(S_{k}(t), E_{k}(t), I_{k}(t), Q_{k}(t), R_{k}(t), k=1,2\right)$ of stochastic model (1.2) with initial values $\left(S_{1}(0), E_{1}(0), I_{1}(0), Q_{1}(0), R_{1}(0)\right)=(0.75,0.8,0.8,0.2,0.2)$ and $\left(S_{2}(0), E_{2}(0), I_{2}(0), Q_{2}(0), R_{2}(0)\right)=(1.7,4.5,2.7,4.3,5)$.

5. Conclusions

In this research we consider a class of stochastic multi-group SEIQR (susceptible, exposed, infectious, quarantined and recovered) models in computer network. For the deterministic system, if the reproduction number $R_{0}>1$, the system has unique endemic equilibrium which is globally stable, this means that the disease will persist at the endemic equilibrium level if it is initially present. It is clear that when the disease is endemic, the recovery nodes increases with the increasing quarantine nodes, and finally both reach the steady state values. Thus, it will be of great importance for one to run anti-malicious software to quarantine infected nodes. In order to study the asymptotic behavior of model (1.2), we first introduce the global existence of a positive solution. Then by using the theory of graphs, stochastic Lyapunov functions method, Itô's formula and the theory of stochastic analysis, we carry out a detailed analysis on the asymptotic behavior of model (1.2). If $R_{0} \leq 1$, the solution of model (1.2) oscillates around the disease-free equilibrium, while if $R_{0}>1$, the solution of model (1.2) fluctuates around the endemic equilibrium. The investigation of this stochastic model revealed that the stochastic stability of E^{*} depends on the magnitude of the intensity of noise as well as the parameters involved within the model system. finally, numerical methods are employed to illustrate the dynamic behavior of the model. The effect of quarantine on recovered nodes is also analyzed in the stochastic model.

Some interesting topics deserve further consideration. On the one hand, we can solve the corresponding probability density function of various stochastic epidemic models. On the other hand, we need to establish a more complete and systematic theory to obtain more accurate conditions and density function. The reader is referred to [37-45]. These problems are expected to be studied and solved as planned future work.

Acknowledgments

This research is supported by the Natural Science Foundation of Xinjiang of China (Grant Nos. 2020D01C178) and the National Natural Science Foundation of China (Grant Nos. 12101529, 12061079, 72163033, 72174175,11961071).

Conflict of interest

The authors declare there is no conflicts of interest.

References

1. R. M. May, A. L. Lloyd, Infection dynamics on scale-free networks, Phys. Rev. E, 64 (2001), 1-3. https://doi.org/10.1103/PhysRevE.64.066112
2. B. K. Mishra, D. K. Saini, SEIRS epidemic model with delay for transmission of malicious objects in computer network, Appl. Math. Comput., 188 (2007), 1476-1482. https://doi.org/10.1016/j.amc.2006.11.012
3. B. K. Mishra, D. Saini, Mathematical models on computer virus, Appl. Math. Comput., 187 (2007), 929-936. https://doi.org/10.1016/j.amc.2006.09.062
4. B. K. Mishra, N. Jha, Fixed period of temporary immunity after run of antimalicious software on computer nodes, Appl. Math. Comput., 190 (2007), 1207-1212. https://doi.org/10.1016/j.amc.2007.02.004
5. H. Yuan, G. Chen, Network virus-epidemic model with the point-togroup information propagation, Appl. Math. Comput., 206 (2008), 357-367. https://doi.org/10.1016/j.amc.2008.09.025
6. J. B. Shukla, G. Singh, P. Shukla, A. Tripathi, Modeling and analysis of the effects of antivirus software on an infected computer network, Appl. Math. Comput., 227 (2014), 11-18. https://doi.org/10.1016/j.amc.2013.10.091
7. M. Sun, Q. Liu, An SIS epidemic model with time delay and stochastic perturbation on heterogeneous networks, Math. Biosci. Eng., 18 (2021), 6790-6805. https://doi.org/10.3934/mbe. 2021337
8. R. Zhao, Q. Liu, M. Sun, Dynamical behavior of a stochastic SIQS epidemic model on scalefree networks, J. Appl. Math. Comput., 68 (2022), 813-838. https://doi.org/10.1007/s12190-021-01550-9
9. Y. E. Ansari, A. E. Myr, L. Omari, Deterministic and stochastic study for an infected computer network model powered by a system of antivirus programs, Discrete Dyn. Nat. Soc., (2017), 3540278. https://doi.org/10.1155/2017/3540278
10. Y. Xu, X. Sun, H. Hu, Extinction and stationary distribution of a stochastic SIQR epidemic model with demographics and non-monotone incidence rate on scale-free networks, J. Appl. Math. Comput., 68 (2022), 3367-3395. https://doi.org/10.1007/s12190-021-01645-3
11. R. Ikram, A. Khan, M. Zahri, A. Saeed, M. Yavuz, P. Kumam, Extinction and stationary distribution of a stochastic COVID-19 epidemic model with time-delay, Comput. Biol. Med., 141 (2022), 105115. https://doi.org/10.1016/j.compbiomed.2021.105115
12. M. Naim, Y. Sabbar, A. Zeb, Stability characterization of a fractional-order viral system with the non-cytolytic immune assumption, Math. Modell. Numer. Simul. Appl., 2 (2022), 164-176. https://doi.org/10.53391/mmnsa.2022.013
13. H. Joshi, M. Yavuz, S. Townley, B. K. Jha, Stability analysis of a non-singular fractional-order covid-19 model with nonlinear incidence and treatment rate, Phys. Scr., 98 (2023), 045216. https://doi.org/10.1088/1402-4896/acbe7a
14. M. Yavuz, F. Özköse, M. Susam, M. Kalidass, A new modeling of fractional-order and sensitivity analysis for Hepatitis-B disease with real data, Fractal Fract., 7 (2023), 165. https://doi.org/10.3390/fractalfract7020165
15. A. Din, M. Z. Abidin, Analysis of fractional-order vaccinated Hepatitis-B epidemic model with Mittag-Leffler kernels, Math. Modell. Numer. Simul. Appl., 2 (2022), 59-72. https://doi.org/10.53391/mmnsa.2022.006
16. H. Joshi, B. K. Jha, M. Yavuz, Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data, Math. Biosci. Eng., 20 (2023), 213-240. https://doi.org/10.3934/mbe. 2023010
17. Y. Sabbar, M. Yavuz, F. Özköse, Infection eradication criterion in a general epidemic model with logistic growth, quarantine strategy, media intrusion, and quadratic perturbation, Mathematics, 10 (2022), 4213. https://doi.org/10.3390/math 10224213
18. B. K. Mishra, N. Jha, SEIQRS model for the transmission of malicious objects in computer network, Appl. Math. Modell., 34 (2010), 710-715. https://doi.org/10.1016/j.apm.2009.06.011
19. B. K. Mishra, A. K. Singh, Two quarantine models on the attack of malicious objects in computer network, Math. Probl. Eng., (2012), 407064. https://doi.org/10.1155/2012/407064
20. H. Guo, M. Y. Li, Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Am. Math. Soc., 136 (2008), 2793-2802. https://doi.org/10.1090/S0002-9939-08-09341-6
21. M. Y. Li, Z. Shuai, Global-stability problem for coupled systems of differential equation on networks, J. Differ. Equations, 248 (2010), 1-20. https://doi.org/10.1016/j.jde.2009.09.003
22. H. Guo, M. Y. Li, Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14 (2006), 259-284.
23. Z. Wang, X. Fan, Q. Han, Global stability of deterministic and stochastic multigroup SEIQR models in computer network, Appl. Math. Modell., 37 (2013), 8673-8686. https://doi.org/10.1016/j.apm.2013.07.037
24. A. L. Krause, L. Kurowski, K. Yawar, R. A. Van Gorder, Stochastic epidemic metapopulation models on networks: SIS dynamics and control strategies, J. Theor. Biol., 449 (2018), 35-52. https://doi.org/10.1016/j.jtbi.2018.04.023
25. Y. El Ansari, A. El Myr, L. Omari, Deterministic and stochastic study for an infected computer network model powered by a system of antivirus programs, Discrete Dyn. Nat. Soc., 2017, 3540278. https://doi.org/10.1155/2017/3540278
26. A. Caruso, M. E. Gargano, D. Valenti, A. Fiasconaro, B. Spagnolo, Cyclic fluctuations, climatic changes and role of noise in planktonic foraminifera in the mediterranean sea, Fluctuation Noise Lett., 5 (2005), 349-355. https://doi.org/10.1142/S0219477505002768
27. C. Zhang, Y. Zhao, Y. Wu, S. Deng, A stochastic dynamic model of computer viruses, Discrete Dyn. Nat. Soc., (2012), 264874. https://doi.org/10.1155/2012/264874
28. C. Yuan, D. Jiang, D. O'Regan, R. P. Agarwal, Stochastically asymptotically stability of the multigroup SEIR and SIR models with random perturbation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2501-2516. https://doi.org/10.1016/j.cnsns.2011.07.025
29. J. Yu, D. Jiang, N. Shi, Global stability of two-group SIR model with random perturbation, J. Math. Anal. Appl., 360 (2009), 235-244. https://doi.org/10.1016/j.jmaa.2009.06.050
30. R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1973. https://doi.org/10.1515/9780691206912
31. C. Ji, D. Jiang, N. Shi, Multigroup SIR epidemic model with stochastic perturbation, Phys. A, 390 (2011), 1747-1762. https://doi.org/10.1016/j.physa.2010.12.042
32. A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
33. J. D. Brown, Microprobe analysis, X-Ray Spectrom., 3 (1974), 28. https://doi.org/10.1002/xrs. 1300030415
34. R. Z. Khas'Miniskii, Stochastic Stability of Differential Equation, Springer Dordrecht, The Netherlands, 1980.
35. Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, Asymptotic behavior of multigroup epidemic models with distributed delays, Phys. A, 467 (2017), 527-541. https://doi.org/10.1016/j.physa.2016.10.034
36. D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525-546. https://doi.org/10.1137/S0036144500378302
37. B. Zhou, X. Zhang, D. Jiang, Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate, Chaos Solitons Fractals, 137 (2020), 109865. https://doi.org/10.1016/j.chaos.2020.109865
38. B. Zhou, D. Jiang, Y. Dai, T. Hayat, A. Alsaedi, Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies, Chaos Solitons Fractals, 143 (2021), 110601. https://doi.org/10.1016/j.chaos.2020.110601
39. J. Ge, W. Zuo, D. Jiang, Stationary distribution and density function analysis of a stochastic epidemic HBV model, Math. Comput. Simul., 191 (2022), 232-255. https://doi.org/10.1016/j.matcom.2021.08.003
40. B. Zhou, B. Han, D. Jiang, T. Hayat, A. Alsaedi , Stationary distribution, extinction and probability density function of a stochastic vegetation-water model in arid ecosystems, J. Nonlinear Sci., 32 (2022), 30. https://doi.org/10.1007/s00332-022-09789-7
41. D. H. Nguyen, G. Yin, C. Zhu, Long-term analysis of a stochastic SIRS model with general incidence rates, SIAM J. Appl. Math., 80 (2020), 814-838. https://doi.org/10.1137/19M1246973
42. S. Pan, Q. Zhang, M. Anke, Near-optimal control of a stochastic vegetation-water system with reaction diffusion, Math. Meth. Appl. Sci., 43 (2020), 6043-6061. https://doi.org/10.1002/mma. 6346
43. S. Pan, Q. Zhang, A. Meyer-Baese, Stationary distribution of a stochastic vegetationwater system with reaction-diffusion, Appl. Math. Lett., 123 (2022), 107589. https://doi.org/10.1016/j.aml.2021.107589
44. B. Han, D. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, Stationary distribution and extinction of a stochastic staged progression AIDSdel with staged treatment and second-order perturbation, Chaos Solitons Fractals, 140 (2020), 110238. https://doi.org/10.1016/j.chaos.2020.110238
45. B. Han, D. Jiang, B. Zhou, T. Hayat, A. Alsaedi, Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth, Chaos Solitons Fractals, 142 (2021), 110519. https://doi.org/10.1016/j.chaos.2020.110519
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
