
Electronic  
Research Archive

http://www.aimspress.com/journal/era

ERA, 31(7): 4216–4231.
DOI: 10.3934/era.2023214
Received: 18 April 2023
Revised: 15 May 2023
Accepted: 28 May 2023
Published: 01 June 2023

Research article

Muti-frequency extended sampling method for the inverse acoustic source
problem

Jiyu Sun*and Jitao Zhang

School of Measurement-Control Technology and Communications Engineering, Harbin University of
Science and Technology, Harbin 150080, China

* Correspondence: Email: sunjiyu@hrbust.edu.cn.

Abstract: We consider the reconstruction of the compact support of an acoustic source given multiple
frequency far field data. We propose a multi-frequency extended sampling method (MESM). The
MESM computes the solutions of some ill-posed integral equations and constructs an indicator function
to image the source. The behavior of the indicator function is justified. The method is fast and easy
to implement. Various numerical examples are presented to show the effectiveness of the MESM for
both frequency-independent and frequency-dependent sources.
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1. Introduction

Inverse source problems (ISP) have many important applications including pollution source detec-
tion, optical tomography, antenna synthesis, sound source localization [1–6]. Inverse source problem
with a single frequency data does not have a unique solution due to the existence of non-radiating
sources and thus is very challenging [4, 7, 8]. It is possible to impose additional constraints on the
source to obtain uniqueness. For example, one can seek the solution with a minimum L2-norm [9].
The uniqueness of the inverse source source problem can be restored using multiple frequency data if
the frequencies coincide with the Dirichlet eigenvalues of D [10]. It is shown in [11] that the unique-
ness can be obtained using a set of frequencies with an accumulation point. A logarithmic stability is
also obtained. Recently, Isakov showed that multiple frequency data can improve the stability for the
inverse source problem [12]. Algorithms using multiple frequency data for the inverse source problem
have attracted many researchers [11–20].

The extended sampling method (ESM) was proposed for the inverse scattering problem using the
incident wave of a fixed direction or a fixed point source [21]. Similar to the linear sampling method
[22, 23] but with much less data, the ESM uses the solutions of ill-posed linear integral equations

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023214


4217

based on the far field operator. Since the ESM uses a small set of data and is effective to reconstruct
the location and approximate the size of the target, it is attractive for the inverse source problems. In
our pervious work [24], we generalize the ESM for the inverse source problem. A two-step strategy is
used. The location of the source is reconstructed first. Then one looks for a disc centered at the found
location such that the source is contained in the disc. An iterative algorithm is devised to optimize
the radius of disc. As a consequence, the ESM only provides a rough approximation of the compact
support of the source.

In this paper, assuming multiple frequency far field data are given, we propose the multi-frequency
ESM (MESM) for the inverse acoustic source problem by introducing a new indicator function. The
indicator function is constructed based on some linear ill-posed integral equations. We show that the
indicator is small if the sampling point is inside the compact support of the source function and is large
otherwise. In contrast to the ESM, the MESM lifts the restriction on the choice of the radius of the
disc and relies mainly on the indicator function to reconstruct the source. The performance improves
significantly as expected since more data are used. Numerical examples are presented to validate the
effectiveness of the MESM.

The proposed method is fast and easy to implement. It provides satisfactory reconstruction of the
compact support of the source. The result can serve as the initial guess for other methods, e.g., the
optimization method, which reconstruct further information of the source. The rest of this paper is
arranged as follows. In Section 2, we introduce the acoustic source problem at a fixed frequency and
state the multiple frequency inverse source problem. Section 3 contains a brief introduction of the ESM
for the inverse source problem using the single frequency data. In Section 4 we propose a multiple
frequency ESM and define an imaging function based on the solutions of some linear ill-posed integral
equations. Section 5 contains numerical examples of various sources. We draw some conclusions and
discuss future work in Section 6.

2. Direct and inverse source problems

We first introduce the acoustic source problem in the frequency domain and then state the multiple
frequency inverse source problem. Let D ⊂ R2 be a bounded simply-connected domain and k > 0
be the wave number. Note that the wave number is proportional to the frequency and thus we do not
distinguish them in the rest of the paper. Assume the source function is given by f (x) ∈ L2(D), the set
of the square integrable functions defined on D. Let H1

loc(R
2) be the set of locally integrable functions

whose derivatives are also locally integrable. The direct problem is to find a function u ∈ H1
loc(R

2)
satisfying the Helmholtz equation

∆u + k2u = f (x) in R2 (2.1)

and the Sommerfeld radiation condition

lim
r−→∞

r
1
2

(
∂u
∂r
− iku

)
= 0, r = |x|. (2.2)

It is well-known that the above problem has a solution u (see, e.g., [2]) given by

u(x, k) =

∫
R2

Φ(x, y, k) f (y)ds(y), x ∈ R2, (2.3)
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where Φ(x, y, k) = − i
4 H(1)

0 (k|x − y|) is the fundamental solution of the Helmholtz equation and H(1)
0 is

the Hankel function of the first kind and order zero [2]. Note that k > 0 is a fixed parameter and we
emphasize that u depends on k.

The well-posedness of the above direct problem defines a solution operator. To be precise, let B be
a disc that is large enough such that D ⊂ B. One defines an operator S : L2(B) → L2(∂B) such that it
maps f (x) ∈ L2(B) to u|∂B ∈ L2(∂B), where u is the solution to the above problem. It is known that S
is a compact operator. Consequently, the inverse problem of reconstructing f (x) from u|∂B is ill-posed.
Furthermore, the kernel of S is non-empty, which relates to the non-uniqueness of the inverse source
problem at a fixed frequency. In fact, the functions in the kernel of S are the so-called non-radiating
sources [4, 8].

Since the solution u satisfies the radiation condition, it precesses an asymptotic behavior as the
location x moves away from the source

u(x, k) =
eiπ/4

√
8πk

eik|x|

|x|
1
2

u∞(x̂, k) + O(|x|−1), |x| → ∞, (2.4)

where x̂ = x
|x| ∈ S := {x̂ ∈ R2||x̂| = 1} and u∞(x̂, k) is called the far field pattern of u(x, k). Due to the

asymptotic behavior of the fundamental solution Φ(x, y, k) and (2.3), it holds that

u∞(x̂, k) =

∫
D

e−ikx̂· y f (y)dy, x̂ ∈ S. (2.5)

The multiple frequency inverse source problem (MISP) considered in this paper is to approximate
the compact support D of f (x) given the far field pattern u∞(x̂, k) for x̂ ∈ S and k ∈ [k1, k2], 0 < k1 < k2.

3. Extended sampling method

In this section, we give a brief introduction of the ESM for the inverse source problem proposed
in [24] and then analyze the property of the regularized solutions to an ill-posed integral equation. We
start with the radiating solution to the scattering of a plane wave by a sound soft obstacle, which is the
main ingredient for the ESM.

Let B ⊂ R2 be a sound soft obstacle. Denote by ui(x, d) := eikx·d, x, d ∈ R2 the incident plane wave,
where |d| = 1 is the direction. The scattering problem is to find the total field u = ui + us, where us is
the scattered field, such that

∆u + k2u = 0 in R2 \ B,
u = 0 on ∂B,

lim
r→∞

√
r(∂us/∂r − ikus) = 0 r = |x|.

(3.1)

There exists a unique solution u to the above problem [23]. Furthermore, similar to (2.4), the scattered
field us has the asymptotic expansion

us(x, d, k) =
ei π4
√

8kπ

eikr

√
r

{
u∞(x̂, d, k) + O

(
1
r

)}
as r = |x| → ∞

uniformly in all directions x̂ = x/|x|.

Electronic Research Archive Volume 31, Issue 7, 4216–4231.



4219

When the obstacle is a disc centered at the origin with radius R, denoted by BR, the far-field pattern
for the scattered field can be written down in a closed form (Chp. 3 of [23]):

uB
∞(x̂; d, k) = −e−i π4

√
2
πk

[ J0(kR)

H(1)
0 (kR)

+ 2
∞∑

n=1

Jn(kR)

H(1)
n (kR)

cos(nθ)
]
, x̂ ∈ S, (3.2)

where Jn is the Bessel function, H(1)
n is the Hankel function of the first kind of order n, θ = ∠(x̂, d), the

angle between x̂ and d. If the center of the disc is shifted to z, i.e.,

BR
z := {x + z; x ∈ BR, z ∈ R2}

the far field pattern is simply

uBR
z
∞ (x̂; d, k) = eikz·(d−x̂)uBR

∞ (x̂, d, k), x̂ ∈ S. (3.3)

Let z ∈ R2 and we define a far field operator Fz : L2(S) → L2(S) using the far field pattern of the
disc Bz due to the incident plane waves of all directions d ∈ S:

(Fzg) (x̂; d, k) =

∫
S

uBR
z
∞ (x̂, d, k)g(d)ds(d), x̂ ∈ S. (3.4)

Now we introduce the ESM for the inverse source problem for a fixed frequency proposed in [24].
Note that there is no incident wave any more, i.e., no dependence on d for the radiating field. However,
the kernel of the far field equation is the same, which depends on d. Let u∞(x̂, k) be the far field pattern
for the inverse source problem defined in (2.5). The far field equation for the inverse source problem is∫

S

uBR
z
∞ (x̂, d, k)gz(d)ds(d) = u∞(x̂, k), x̂ ∈ S. (3.5)

The above equation is ill-posed. One usually seek some regularized solution gεz(d, k) for (3.5). The
ESM uses gεz(d, k) to decide the location and rough size of the source.

We check the property of the regularized solution gεz(d, k). Let BR
z be a ball centered at z with a large

enough radius R. We shall consider two cases: (a) D ⊂ BR
z and (b) D ∩ BR

z = ∅.
(a) D ⊂ BR

z . One can find a domain D0 such that D ⊂ D0 ⊂ BR
z . Define

d1 = max
x∈∂D,y∈∂D0

|x − y|, d2 = min
x∈∂D,y∈∂D0

|x − y|.

Then there exists a positive number σ small enough such that 0 < d2 < d1 < σ.
Consider an auxiliary scattering problem for a sound soft obstacle of finding the scattered field us

such that
∆us

0 + k2us
0 = 0 in R2 \ D0,

us
0 = u|∂D0 on ∂D0,

lim
r→∞

√
r(∂us

0/∂r − ikus
0) = 0,

(3.6)

where u is the solution to the source problem (2.1) and (2.2). The above scattering problem has a
solution us such that us coincides with u in R2 \ D0 [23]. Define the Herglotz wave function operator
H : L2(S)→ H1/2(∂Bz):

(Hg)(x) :=
∫
S

eikx·dg(d)ds(d), x ∈ ∂BR
z . (3.7)
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We call k2 a Dirichlet eigenvalue for the negative Laplacian for a domain Ω if there exists a nontrivial
function w satisfying

−∆w = k2w in Ω,

w = 0 on ∂Ω.

If the wavenumber k2 is not a Dirichlet eigenvalue for the negative Laplacian for BR
z ,H is injective and

has a dense range.
Define the near-to-far field operator N : H1/2(∂BR

z ) → L2(S), which maps the boundary value of
u ∈ H1

loc(R
2 \ BR

z ) to its far field pattern u∞. Note that u|∂BR
z

uniquely determines the far field pattern of
u. Furthermore, the operator N is bounded, injective and has a dense range [23].

For any ε > 0, there exists a kernel function gεz such that

‖Hgεz + us‖L2(∂BR
z ) ≤

ε

‖N‖
. (3.8)

From the definition of the Herglotz wave function (3.7) and the far field pattern of the scattered field of
a disc due to a plane incident wave (3.3), one has that

N(−Hgεz ) =

∫
S

uBR
z
∞ (·, d)gεz (d)ds(d). (3.9)

Due to the fact that D0 ⊂ BR
z , it holds that

N(us) = u∞, (3.10)

where us is the solution to (3.6). Subtracting (3.9) from (3.10), and using (3.8), one obtains that∥∥∥∥∥ ∫
S

uBR
z
∞ (x̂, d)gεz (d)ds(d) − u∞(x̂)

∥∥∥∥∥
L2(S)

= ‖N(−Hgεz ) − N(us)‖L2(S)

≤ ‖N‖ · ‖Hgεz + us‖L2(S)

≤ ε. (3.11)

Taking ε→ 0 in (3.8), the Herglotz wave function vgεz (x) :=
∫
S

eikx·dgεz (d)ds(d) converges to the unique
solution w ∈ H1(BR

z ) of the following problem

∆w + k2w = 0, in BR
z ,

w = −us, on ∂BR
z .

(b) D ∩ BR
z = ∅. There exists gεz ∈ L2(S) such that∥∥∥∥∥ ∫

S

uBR
z
∞ (x̂, d, k)gεz (d)ds(d) − u∞(x̂, k)

∥∥∥∥∥
L2(S)

< ε. (3.12)

Assume that there exists a sequence vgεn
z

such that ‖vgεn
z
‖H1(BR

z ) remains bounded as εn → 0, n → ∞.
Without loss of generality, we assume that vgεn

z
converges to vgz ∈ H1(BR

z ) weakly as n → ∞, where
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vgz(x) =
∫
S

eikx·dgz(d)ds(d), x ∈ BR
z . Let vs ∈ H1

loc(R
2 \ BR

z ) be the unique solution of the following
problem

∆vs + k2vs = 0 in R2 \ BR
z ,

vs = −vgz on ∂BR
z ,

lim
r→∞

√
r(∂vs/∂r − ikvs) = 0.

The corresponding far field pattern is v∞ =
∫
S

uBR
z
∞ (x, d)gz(d)ds(d). From (3.12), as ε → 0, we have∫

S
uBR

z
∞ (x, d)gz(d)ds(d) = u∞. Consequently, v∞ = u∞. Then by Rellich’s lemma (see Lemma 2.12

in [23]), the scattered fields coincide in R2 \ (BR
z ∪ D0) and

ũs := vs = us in R2 \ (BR
z ∪ D0).

We have that vs has an extension into R2 \ Bz and us has an extension into R2 \ D0. Since D0 ∩ BR
z = ∅,

ũs can be extended from R2 \ (BR
z ∪ D0) into all of R2, that is, ũs is an entire solution to the Helmholtz

equation. Since ũs also satisfies the radiation condition, it must vanish identically in all of R2. Since
ũs does not vanish identically, it leads to a contradiction and hence there does not exist a sequence vgεn

z

such that ‖vgεn
z
‖H1(BR

z ) remains bounded as εn → 0, n→ ∞.
The above derivation proves the following properties of the regularized solution for the integral

equation (3.5).

Lemma 3.1. Let BR
z be a sound-soft disc centered at z with a large enough radius R such that D ⊂ BR

z .
Furthermore, assume that k2 is not a Dirichlet eigenvalue for BR

z . Let u∞(x̂, k) be the far field pattern
for the acoustic source problem defined in (2.5). Then the following properties hold.

(a) If D ⊂ BR
z , for a given ε > 0, there exists a function gεz ∈ L2(S) to (3.12) and the Herglotz wave

function vgεz (x) :=
∫
S

eikx·dgεz (d)ds(d) converges to the solution w ∈ H1(BR
z ) of the Helmholtz equation

with w = u on ∂BR
z as ε→ 0.

(b) If D ∩ BR
z = ∅, every gεz ∈ L2(S) that satisfies (3.12) for a given ε > 0 is such that

limε→0 ‖vgεz ‖H1(Bz) = ∞.

4. Multiple frequency extended sampling method

The above method can reconstruct the location of the source. However, the size of the source
is not always satisfactory. In fact, it is challenging to obtain a satisfactory reconstruction given a
single frequency data. Recent studies have focused on the multiple frequency inverse source problems
[10, 11, 15]. This motivates us to modify the ESM to process multiple frequency data to obtain a
better reconstruction of the acoustic source. Numerical examples show that the method also works for
frequency dependent sources, which makes it more attractive than some existing methods.

Recall the MISP and assume the far field pattern u∞(x̂, k) for x̂ ∈ S and k ∈ [k1, k2], 0 < k1 < k2

are given. In practice, one usually knows the far field pattern for a discrete set of frequencies, i.e.,
u∞(x̂, km), ki ∈ [k1, k2],m = 1, . . . ,M. Let gεz(d, km) be a regularized solution to∥∥∥∥∥ ∫

S

uBz
∞ (x̂, d, km)gεz (d, km)ds(d) − u∞(x̂, km)

∥∥∥∥∥
L2(S)

< ε. (4.1)
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Note that we write gεz(d, km) instead of gεz(d) to emphasize the dependence of gεz on km explicitly.
Based on the property of the regularized solution of the linear ill-posed equation, we define an

image function

Iz(ε) =

M∑
m=1

‖gεz(d, km)‖L2(S) (4.2)

at a point z ∈ S , where S is a region known as a priori and containing D. In general, S is much larger
than D. The following theorem shows the property of Iz.

Theorem 4.1. Assume that R is large enough. If z ∈ D such that D ⊂ BR
z , a disc with radius R and

centered at z, then Iz is bounded as ε → 0. If z is such that D ∩ BR
z = ∅ and there exists a sequence of

regularized solutions gεz(d, km) satisfying (4.1), then Iz → ∞ as ε → 0.

Proof. Let BR
z be such that z ∈ D and D ⊂ BR

z . In addition, let km be fixed and gεz(d, km) be a regularized
solution to (4.1). According to (a) of Lemma 3.1, there exists a regularized solution in the form of the
Herglotz wave function vgεz (x, km) :=

∫
S

eikx·dgεz (d, km)ds(d), x ∈ BR
z . Furthermore, vgεz (x, km) converges

as ε → 0. Hence ‖gεz (d, km)‖L2(S) is bounded as ε → 0. Since the sum in (4.2) is over finitely many
frequencies, we conclude that Iz is bounded as ε → 0.

Next let z be such that D∩BR
z = ∅. Again, for each fixed km, since gεz(d, km) satisfies (4.1), it follows

that ‖vgεz ‖H1(BR
z ) → ∞ as ε → 0 again due to (b) of Lemma 3.1. Hence ‖gεz (d, km)‖L2(S) → ∞ as ε → 0.

Consequently, Iz → ∞ as ε → 0.

The above theorem justifies that Iz can be viewed as an image function for the compact support D
of the source function. In particular, we expect Iz is relatively small for z ∈ D and relative large for
z < D.

We devote the rest of this section to the implementation of the multiple frequency ESM (MESM)
for the inverse source problem. The synthetic data of the direct source problems are computed using
the integral formula (2.5). We first generate a triangular mesh T for D with mesh size h. The far-field
pattern is approximated by

u∞(x̂, km) ≈
∑
T∈T

e−ikm x̂·yT f (yT , km)|T |, (4.3)

where T ∈ T is a triangle, yT is the center of T , and |T | is the area of T . For observation/measurement
directions, the interval [0, 2π] is uniformly divided into N intervals and let θn = 2nπ/N, n = 0, . . . ,N.
The discrete wave numbers are uniformly distributed on [k1, k2], namely,

km = k1 + (m − 1)
k2 − k1

M − 1
, m = 1, . . . ,M.

For all examples, we compute the far field data using (4.3)

u∞(x̂n, km), xn = (cos θn, sin θn), km ∈ [k1, k2], n = 1, . . . ,N,m = 1, . . . ,M.

Then we add 3% uniformly distributed random noise to the data for numerical simulations.
For each ki, we discretize (3.5) and end up with a linear ill-posed system, which is solved using

Tikhonov Regularization with the regularization parameter α = 10−2. We comment that the value does
not affect the performance of the method significantly.
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We denote the set of all sampling points by S as well. For a fixed wavenumber km, we let z ∈ S and,
by (3.3), compute

uBz
∞ (x̂n; d j, km), x̂n = (cos θn, sin θn), d j = (cos θ j, sin θ j)T , n, j = 1, . . . ,N.

Using the trapezoidal rule for (3.5), one obtains the following ill-posed linear system

Akm gkm
= ukm , (4.4)

where

Akm
n j =

π

20
uBz
∞ (x̂n; d j, km), n, j = 1, . . . ,N,

gkm
= (gz(d1, km), . . . , gz(dN , km))T ,

ukm = (u∞(d1, km), . . . , u∞(dN , km))T .

Then we apply the Tikhonov regularization to compute a regularized solution gαkm,z
of (4.4). The nor-

malized discrete imaging function corresponding to (4.2) is

Iz =

∑M
m=1 |gαkm,z

|

maxz |
∑M

m=1 |gαkm,z
|
, z ∈ S .

We summarize the algorithm of the MESM as follows. Assuming the sampling domain S is known,
the main program takes the noisy measurement data and outputs the image function Iz, z ∈ S . The
subroutine TS ES M essentially computes the regularized solution for (4.4) given the wavenumber
and radius of the disc. The subroutine Radius chooses a suitable radius Rm for the given data and
wavenumber km.

Iz =MESM
given u∞(x̂n, km) and S .
choose a regularization parameter α.
initialize the image function Iz.

i. for each z ∈ S ,

for m = 1, . . . ,M,

* Rm = Radius(u∞(x̂n, km)).

* Iz,m = TS ES M(u∞(x̂n, km),Rm, α).

* Iz = Iz + Iz,m.

ii. return Iz.

Subroutine Rm = Radius(u∞(x̂n, km))
1) choose a large enough radius R for BR

z .
2) Im

z,R = TS ES M(u∞(x̂n, km),R).
3) take the global minimum point z∗ ∈ S for ‖gαz ‖l2 as the location for D.
4) generate a decreasing sequence of R j such that R > R1 > . . . > RJ.
5) for j = 1, 2, · · · , J
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a generate S j with the distance between sampling points being roughly R j.
b Im

z,R = TS ES M(u∞(x̂n, km),R j).
c find the minimum point z∗j ∈ S j and set D j := BR j

z j . If z j < D j−1, stop.

6) return Rm = R j−1.

Subroutine Im
z,R = TS ES M(u∞(x̂n, km),R, α)

for each sampling point z ∈ S ,
1) compute Akm , gkm

, and ukm .
2) use the Tikhonov regularization to compute an approximate gαz,km

to (4.4).
3) Im

z,R = ‖gαz,km
‖l2 .
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Figure 1. Domains and meshes. Top left: D1. Top right: D2. Bottom left: D3. Bottom right:
D4.
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5. Numerical examples

We follow the discussion above to generate far field data. The algorithm is implemented using
Matlab. We choose four different domains for D: a rectangle, a circle, an L-shaped domain, and a kite.
The rectangle and the circle are defined as

D1 := {(x, y) ∈ R2| − 0.5 < x < 0.5,−0.3 < y < 0.3},
D2 := {(x, y) ∈ R2| x2 + y2 < 0.36}.

The L-shaped domain is given by

D3 := (−0.5, 0.5) × (−0.5, 0.5) \ (0, 0.5) × (0, 0.5).

The boundary of the kite is given by

∂D4 := {(x, y) ∈ R2|x = (cos(θ) + 0.65 cos(2θ) − 0.65)/2, y = 0.75 sin(θ), θ ∈ [0, 2π)}.

In Figure 1, the domains and the associated meshes are plotted.
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Figure 2. Contour plots of the image function Iz for D1 using different f ’s. Top left: f1. Top
right: f2. Bottom left: f3. Bottom right: f4.
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Four functions are used:

f1(x, y, k) = 1,
f2(x, y, k) = x2 + y2,

f3(x, y, k) = exp
(
ik

√
x2 + y2

)
,

f4(x, y, k) = k + ln(1 + x2 + y2).

Note that the last two functions depend on the wavenumber k, which are not covered by the theory in
Section 4. Note that some of the existing method do not consider the source functions depending on k
(see, for example, [10]). However, we shall see that the performance of the MESM is similar indicating
the effectiveness of the proposed method for wavenumber depending sources.
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Figure 3. Contour plots of the image function Iz for D2 using different f ’s. Top left: f1. Top
right: f2. Bottom left: f3. Bottom right: f4.

For all examples, we set k1 = 1, k2 = 6 and uniformly divide the interval [k1, k2] into M = 51
wavenumbers. We use N = 32 observation/measurement locations for the far field patterns. The
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regularization parameter is set to be α = 10−2. We notice that different regularization parameters do not
affect the performance of MESM significantly. Assume that the search region is S := [−2, 2]× [−2, 2].
Then one uniformly divides S into 40 × 40 squares and ends up with 41 × 41 sampling points z’s.

To compute the far field data, we generate triangular meshes for these domains with mesh size
h ≈ 0.01. Note that since the mesh size is rather small, the numerical error using (4.3) can be ignored.
Then 3% uniformly distributed noises are added to the far field data.The image functions are computed
following the procedure described in Section 4.

We first consider the domain D1. In Figure 2, we plot the image functions Iz in the sampling domain
for different source functions. The boundary of the exact support is the solid line. For different source
functions, the image functions behave similarly with slight differences. It is clearly that the values of
Iz is small around the source and becomes larger when z moves away from the source.

Next we consider the domain D2, a disc with radius 0.6. We plot the image functions Iz in Figure 3.
For all four source functions, the results are satisfactory.
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Figure 4. Contour plots of the image function Iz for D3 using different f ’s. Top left: f1. Top
right: f2. Bottom left: f3. Bottom right: f4.
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In Figure 4, the results for D3, an L-shped domain, are shown. The reconstructions again correctly
provide the location and size of the source. Note that D3 is a non convex domain. MESM cannot
provide the details of the boundary, in particular, conners of the domain.

In Figure 5, the contour plots for D4, a kite, are shown. Again D4 is a non convex domain. MESM
does not resolve the shape of the support well. Note that the source functions f3 and f4 are wave
number dependent. The results indicate that MESM is effective for frequency-dependent sources.
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Figure 5. Contour plots of the image function Iz for D4 using different f ’s. Top left: f1. Top
right: f2. Bottom left: f3. Bottom right: f4.

Note that all the above examples use far field pattern computed by (4.3) with 3% uniformly dis-
tributed random noises. Sampling type methods are robust with respect to noises in general. It is
also true for the proposed MESM, which is validated by the following example. Let the domain be
the L-shaped domain and the source be f1. In Figure 6, we show the contour plots using the far field
pattern with 5% and 10% uniformly distributed random noises, respectively. It can be seem that the
reconstructions are similar to the top-left picture in Figure 4.
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Figure 6. Contour plots of the image function Iz for D3 and f1. Left: 5% noises. Right: 10%
noises.

6. Conclusions

We consider the inverse source problem using multiple frequency data and propose a new version
of the extend sample method to reconstruct the compact support of the source. The behavior of the
image function is justified theoretically. Various numerical examples are presented to demonstrate
the performance of the new method. Compared with the results using ESM of single frequency data
in [24], MESM provides much better reconstructions than ESM. However, it is noted that MESM
cannot provide the details of the boundary the domain. Nonetheless, the method is very fast and easy
to implement.

There have been significant interests in the reconstruction of the actual source function f . The pro-
posed MESM can provide a good estimate of the compact support of f and thus can be integrated into
other methods, e.g., the optimization method and Bayesian inversion, to reconstruct more information
of the source. The current image function treats all frequency data in the same way. An interesting
question is that shall we assign different weights to different frequencies? Finally, it is worthwhile
to investigate how to decide a cutoff value for the image function if one requires a single contour re-
construction for the compact support. In fact, how to decide the cutoff value is pertinent to almost
all sampling type methods such as the linear sample method and the direct sampling method and thus
needs further investigations.
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