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Abstract: This paper presents a numerical scheme based on the Galerkin finite element method and 
cubic B-spline base function with quadratic weight function to approximate the numerical solution of 
the time-fractional Burger’s equation, where the fractional derivative is considered in the Caputo sense. 
The proposed method is applied to two examples by using the 𝐿  and 𝐿  error norms. The obtained 
results are compared with a previous existing method to test the accuracy of the proposed method. 
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1. Introduction  

Fractional calculus (FC) theory was proposed by N. H. Abel and J. Liouville, and a description of 
their work is presented in [1]. By using FC, integer derivatives, and integrals can be generalized to real 
or variable derivatives and integrals. FC is studied since fractional differential equations (FDEs) are 
better suited to modeling natural physics processes and dynamic systems than integer differential 
equations. Furthermore, FDEs that incorporate memory effects are better suited to describing natural 
processes that have memory and hereditary properties. In other words, because fractional derivatives 
have memory effects, FDEs are more accurate in describing physical phenomena with memory or 
hereditary characteristics. There was a trend to consider FC to be an esoteric theory with no application 
until the last few years. Now, more and more researchers are investigating how it can be applied to 
economics, control system and finance. As a result, many fractional order differential operators were 
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developed, such as Hadamard, Riemann-Liouville, Caputo, Riesz, Grünwald-Letnikov, and variable 
order differential operators. The researchers have devoted considerable effort to solving FDEs 
numerically so that they can be applied to a variety of problems [2–20]. Several numerical approaches 
have been proposed in the literature, including eigenvector expansion, the fractional differential 
transform technique [21], the homotopy analysis technique [22], the homotopy perturbation transform 
technique [23], the generalized block pulse operational matrix technique [24] and the predictor-
corrector technique [25]. In addition, the use of Legendre wavelets to integrate and differentiate 
fractional order matrices has been suggested as a numerical method [26,27].  

In this paper, we study the numerical solution of the time-fractional Burger’s equation (TFBE) [28] 
as follows:  

𝜕 𝑈 𝑥, 𝑡
𝜕𝑡

𝑈 𝑥, 𝑡
𝜕𝑈 𝑥, 𝑡

𝜕𝑥
𝑣

𝜕 𝑈 𝑥, 𝑡
𝜕𝑥

𝑓 𝑥, 𝑡 ,                                                 1  

which is subject to the following boundary conditions (BCs): 

 𝑈 𝑎, 𝑡 𝑙 𝑡 , 𝑈 𝑏, 𝑡 𝑙 𝑡 ,    𝑎 𝑥 𝑏,   𝑡 ∈ 0, 𝑡 ,                                            2  

and the following initial condition (IC):  

𝑈 𝑥, 0 𝑔 𝑥  and 𝑎 𝑥 b,                                                        3  

in which 0 𝛾 1 is a parameter representing the order of the fractional time, 𝑣 denotes a viscosity 
parameter and 𝑔 𝑥 , 𝑙 𝑡  and 𝑙 𝑡  are given functions of their argument. The TFBE is a kind of sub-
diffusion convection, which is widely adopted to describe many physical problems such as 
unidirectional propagation of weakly nonlinear acoustic waves, shock waves in flow systems, viscous 
media, compressible turbulence, electromagnetic waves and weak shock propagation [29–31]. In 
recent years, there has been some technique development in the study of Burger’s equation: an implicit 
difference scheme and algorithm implementation [32], pointwise error analysis of the third-order 
backward differentiation formula (BDF3) [33], pointwise error estimates of a compact difference 
scheme [34], efficient (BDF3) finite-difference scheme [35], semi-analytical methods [36], composite 
spectral methods [37], least-squares methods [38], geometric analysis methods [39], error and stability 
estimate techniques [40].  
Definition 1. Suppose that 𝑚 is the smallest integer exceeding 𝛾; the Caputo time fractional derivative 
operator of order 𝛾 0 can be defined as follows [41]: 

𝐶𝐷 , 𝑢 𝑥, 𝑡

⎩
⎪
⎨

⎪
⎧ 𝜕 𝑢 𝑥, 𝑡

𝜕𝑡
                                                                                      𝛾 𝑚 ∈ 𝑁

 
1

𝛤 𝑚 𝛾
𝑡 𝜔  

𝜕 𝑢 𝑥, 𝜔
𝜕𝜔

𝑑𝜔,        𝑚 1 𝛾 𝑚, 𝑚 ∈ 𝑁,
4  

where 𝑢 𝑥, 𝑡  is the unknown function that is 𝑚 1  times continuously differentiable and 𝛤 .  
denotes the usual gamma function. The finite-element method has been an important method for 
solving both ordinary and partial differential equation, therefore, in recent research, it has been applied 
to solve the TFBE. In what follows, we describe the solution process by using the finite-element 
scheme for solving the TFBE. 
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2. Cubic B-Spline Galerkin method (CBSGM) with a quadratic weight function: 

To discretize the TFBE (1), first let us define the cubic B-spline base function. We partition the 
interval 𝑎, 𝑏 , which represents the solution domain of (1) into 𝑀 uniformly spaced points 𝑥  such 
that 𝑎 𝑥 𝑥 ⋯ 𝑥 𝑥 𝑏  and ℎ 𝑥 𝑥 . Then, the cubic B-spline 
𝐶 𝑥 , 𝑚 1 1 𝑀 1 , at the knots 𝑥   which form basis on the solution interval 𝑎, 𝑏 , is 
defined as follows [42]:  

 𝐶 𝑥

⎩
⎪
⎨

⎪
⎧

𝑥 𝑥 ,                                                                                    if 𝑥 ∈ 𝑥 , 𝑥 ,
ℎ 3ℎ 𝑥 𝑥 3ℎ 𝑥 𝑥 3 𝑥 𝑥 ,   if  𝑥 ∈ 𝑥 , 𝑥 ,   

ℎ 3ℎ 𝑥 𝑥 3ℎ 𝑥 𝑥 3 𝑥 𝑥 ,   if 𝑥 ∈ 𝑥 , 𝑥 ,        5
𝑥 𝑥 ,                                                                                    if 𝑥 ∈ 𝑥 , 𝑥 ,
𝑜,                                                                                                       otherwise.              

 

where the set of cubic B-splines 𝐶 𝑥 , 𝐶 𝑥 , … , 𝐶 𝑥 , 𝐶 𝑥  is a basis for the functions 

defined over interval 𝑎, 𝑏 . Thus, the numerical solution 𝑈 𝑥, 𝑡  to the analytic solution 

𝑈 𝑥, 𝑡  can be illustrated as 

𝑈 𝑥, 𝑡 𝜎 𝑡 𝐶 𝑥 ,                                                                   6  

where 𝜎 𝑡  are unknown time-dependent parameters to be determined from the initial, boundary and 
weighted residual conditions. Since each cubic B-spline covers four consecutive elements, each 
element 𝑥 , 𝑥  is also covered by four cubic B-splines. So, the nodal values 𝑈  and its first and 
second derivatives 𝑈′ , 𝑈"  can be respectively computed in terms of the element parameter 
𝜎 𝑡  ,at the knot 𝑥  as follows: 

𝑈 𝜎 4𝜎 𝜎 , 

𝑈′ 𝜎 𝜎 , 

𝑈" 𝜎 2𝜎 𝜎 ,                                           7  

and by means of the local coordinate transformation [43] as follows: 

ℎ𝜂 𝑥 𝑥 ,     0 𝜂 1.                                                  8  

A cubic B-spline shape function in terms of 𝜂 over the element 𝑥 , 𝑥  is formulated as: 

𝐶 1 𝜂 , 

𝐶 1 3 1 𝜂 3 1 𝜂 3 1 𝜂 , 

𝐶 1 3𝜂 3𝜂 3𝜂 , 

𝐶 𝜂                                                                                                            9  
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and the variation of 𝑈 𝜂, 𝑡  over the typical element 𝑥 , 𝑥  is represented as 

𝑈 𝑥, 𝑡 𝜎 𝑡 𝐶 𝜂 ,                                                           10  

in which B-splines 𝐶 𝜂 , 𝐶 𝜂 , 𝐶 𝜂 , 𝐶 𝜂  and 𝜎 𝑡 , 𝜎 𝑡 , 𝜎  and 𝜎 𝑡  are 
element shape functions and element parameters, respectively.  

Based on the Galerkin’s method with weight function 𝑊 𝑥 0, we get the following weak 
formula of (1):  

𝑊
𝜕 𝑈
𝜕𝑡

𝑈
𝜕𝑈
𝜕𝑥

𝑣
𝜕 𝑈
𝜕𝑥

𝑑𝑥 𝑊 𝑓 𝑥, 𝑡 ;                                 11  

using transformation (8) and by apply partial integration we obtain: 

𝑊
𝜕 𝑈
𝜕𝑡

λ𝑊
𝜕𝑈
𝜕𝜂

𝛷
𝜕𝑊
𝜕𝜂

𝜕𝑈
𝜕𝜂

𝑑𝜂 𝛷𝑊
𝜕𝑈
𝜕𝜂

∣ 𝑊 Ƒ 𝜂, 𝑡 𝑑𝜂,                                    12  

where λ Û, 𝛷  and Û 𝑈 𝜂, 𝑡  which is considered to be a constant on an element to simplify 

the integral [43]; replace the weight function 𝑊 by quadratic B-spline 𝐵𝒎 𝒙 , m 1 1 𝑀, at the 
knots 𝑥 , which forms a basis on the solution interval 𝑎, 𝑏 , introduced as follows [44]: 

𝐵 𝑥

⎩
⎨

⎧
𝑥 𝑥 3 𝑥 𝑥 3 𝑥 𝑥 ,           if 𝑥 ∈ 𝑥 , 𝑥 ,    
𝑥 𝑥 3 𝑥 𝑥 ,                                      if 𝑥 ∈ 𝑥 , 𝑥 ,    

 𝑥 𝑥 ,                                                                     if 𝑥 ∈ 𝑥 , 𝑥 ,
0,                                                                                       otherwise.           

       (13) 

where 𝐵 𝑥 , 𝐵 𝑥 , … , 𝐵 𝑥  is the set of splines for the basis of functions introduced on 𝑎, 𝑏 . 
The numerical solution 𝑈 𝑥, 𝑡  to the analytic solution 𝑈 𝑥, 𝑡  is expanded by 

𝑈 𝑥, 𝑡 𝜗 𝑡 𝐵 𝑥 ,                                             14  

where 𝜗  are unknown time-dependent parameters, and by using local coordinate transformation (8), 
the quadratic B-spline shape functions for the typical element [𝑥 , 𝑥 ] are given as 

𝐵 1 𝜂         

𝐵 1 2𝜂 2𝜂  

𝐵 𝜂                                                                                              15  

The variation of the function 𝑈 𝜂, 𝑡  is approximated by  

𝑈 𝜂, 𝑡 𝜗 𝑡 𝐵 𝜂 ,                                                  16  
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where 𝜗 𝑡 , 𝜗 𝑡  and 𝜗 𝑡  act as element parameters and B-splines 𝐵 𝜂 , 𝐵 𝜂  and 
𝐵 𝜂  as element shape functions based on the above; (12) will be in the following form: 

𝐵 𝐶 𝑑𝜂 𝜎 λ𝐵 𝐶 𝛷𝐵 𝐶 𝑑𝜂 𝛷𝐵 𝐶 | 𝜎 

𝐵  Ƒ 𝜂, 𝑡 𝑑𝜂, 𝑖 𝑚 1, 𝑚, 𝑚 1,                                                                  17  

in which “Dot” represents the 𝜎th fractional derivative with respect to time. We can write (17) in 
matrix notation as follows:  

𝑋 𝜎 λ𝑌 𝛷 𝑍 𝑄 𝜎 𝐸 ,                                                          18  

in which 𝜎 𝜎 , 𝜎 , 𝜎 , 𝜎 are the element parameters. The element matrices 

𝑋 , 𝑌 , 𝑍 , 𝑄  and 𝐸  are rectangular 3 4 matrices introduced through the following integrals: 

𝑋 𝐵 𝐶 𝑑𝜂
1

60

10 71 38 1
19 221 221 19
1 38 71 10

, 

𝑌 𝐵 𝐶 𝑑𝜂
1

10

6 7 12 1
13 41 41 13
1 12 7 6

, 

𝑍 𝐵 𝐶 𝑑𝜂
1
2

  3 5 7 1
2 2 2 2
1 7 5 3

, 

𝑄 𝐵 𝐶 ∣  
    3

 1 0 1 0
1 1 1 1
0 1 0 1

 and 

𝐸 𝐵  Ƒ 𝜂, 𝑡 𝑑𝜂, 

where 𝑖  and 𝑗  take only the values 𝑚 1, 𝑚, 𝑚 1  and 𝑚 1, 𝑚, 𝑚 1, 𝑚 2  respectively, 

and a lumped value for λ is defined by λ 𝜎 5𝜎 5𝜎 𝜎 .     

By assembling all contributions from all elements, we get the following matrix equation: 

𝑋𝜎 λ𝑌 𝛷 𝑍 𝑄 𝜎 𝐸,                                                         19  

where 𝜎 𝜎 , 𝜎 , 𝜎 , … , 𝜎 , 𝜎  denotes a global element parameter. The matrices X, Z and 𝑌 
represent rectangular, septa-diagonal and every sub-diagonal matrices, which include the 
following forms:  
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𝑋 1, 57, 302, 302, 57, 1, 0 ,  

𝑍 1, 9, 10, 10, 9, 1, 0 , 

𝜆𝑌 𝜆 , 12𝜆 13𝜆 , 7𝜆 41𝜆 6𝜆 , 6𝜆 41𝜆 7𝜆 , 13𝜆

12𝜆 , 𝜆 , 0 ,   
in which, 

 𝜆 𝜎 5𝜎 5𝜎 𝜎 , 

𝜆 𝜎 5𝜎 5𝜎 𝜎 , 

𝜆 𝜎 5𝜎 5𝜎 𝜎 . 

Following [45], we can approximate the temporal Caputo derivative with the help of the 𝐿1 formula:  

𝑑 𝑓 𝑡
𝑑𝑡

∣  
∆𝑡

𝛤 2 𝛾
 𝑏 𝑓 𝑡 𝑓 𝑡 𝑂 ∆𝑡 ,   

where 𝑏 𝑘 1 𝑘  and ∆𝑡 , and 𝑡 𝑛 ∆𝑡 , 𝑛 0,1, … 𝑁, where 𝑁 represents a 

positive integer. Now, we recall the following lemma. 

Lemma 1: Suppose that 0 𝛾 1 𝑎𝑛𝑑 𝑏 𝑘 1 𝑘 , 𝑘 0,1, … ; 𝑡ℎ𝑒𝑛, 1 𝑏 𝑏

⋯ 𝑏 → 0, 𝑎𝑠 𝑘 → ∞ [46]. 

Then, we can we write the parameter 𝜎∙  as follows:  

𝜎∙ 𝑑 𝜎
𝑑𝑡

 
∆𝑡

𝛤 2 𝛾
 𝑏 𝜎 𝜎 4 𝜎 𝜎

𝜎 𝜎 𝑂 ∆𝑡 ,                            𝑏

𝑘 1 𝑘 , 

while the parameter 𝜎 by the Crank-Nicolson scheme, is as follows: 

𝜎 𝜎 𝜎 . 

Substitution both parameters above into 18 , we obtain the 𝑀 2 𝑀 3  matrix system: 
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𝑋
∆𝑡 𝛤 2 𝛾 𝜆𝑌 𝛷 𝑍 𝑄

2
𝜎  

𝑋
∆𝑡 𝛤 2 𝛾 𝜆𝑌 𝛷 𝑍 𝑄

2
𝜎  

𝑋 𝑏 𝜎 𝜎 4 𝜎 𝜎 𝜎 𝜎

∆𝑡 𝛤 2 𝛾 𝐸 ,                                                                         20  

where 𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 𝜎 ; to make the matrix equation be 
square, we need to find an additional constraint of BC (2) and their second derivatives and we obtain 
discard 𝜎  from system (20) as follows: 

𝜎 𝑡 4𝜎 𝑡 𝜎 𝑡 𝑈 𝑥 , 𝑡 ; 

the variables 𝜎  and 𝜎  can be ignored from system (20) and then the system can be converted to 
an 𝑀 1 𝑀 1  matrix system. The initial vector of parameter 𝜎 𝜎 , 𝜎 , … , 𝜎  should be 
obtained to iterate system (20); the approximation of (6) has been reformulated on the interval 𝑎, 𝑏  
when time 𝑡 0 as follows: 

𝑈 𝑥, 0 𝐶 𝜎 , 

where 𝑈 𝑥, 0  fulfills the following equation at node 𝑥 : 

𝑈 𝑥 , 0 𝑈 𝑥 , 0 , 𝑚 0,1, … , 𝑀 1 

𝑈 𝑥 , 0 𝑈 𝑥 , 0 0, 

𝑈 𝑥 , 0 𝑈 𝑥 , 0 0. 

Therefore, we can obtain the following system:  

⎣
⎢
⎢
⎢
⎢
⎡ 𝜎

𝜎
⋮

𝜎
𝜎 

6 0 0 0
1 4 1 0

1 4 4
⋱ ⋱

⋱ 1 4 1
0 0 6 ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡

𝜎
𝜎
⋮

𝜎
𝜎 ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑈 𝑥 , 0

ℎ
6

𝑔" 𝑎

𝑈 𝑥 , 0
⋮

𝑈 𝑥 , 0

𝑈 𝑥 , 0
ℎ
6

𝑔" 𝑏 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

and we solve this identity matrix by applying the Jain algorithm [47]. 
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3. Stability analysis  

This section adopts the von Neumann stability analysis to investigate the stability of 
approximation obtained by scheme (20). First, we introduce the recurrence relationship between 
successive time levels relating unknown element parameters 𝜎 𝑡 , as follows: 

𝑞 𝜎 𝑞 𝜎 𝑞 𝜎 𝑞 𝜎 𝑞 𝜎 𝑞 𝜎
𝑞 𝜎 𝑞 𝜎 𝑞 𝜎 𝑞 𝜎 𝑞 𝜎 𝑞 𝜎

20 𝑏 𝜎 𝜎 4 𝜎 𝜎 𝜎 𝜎

57 𝜎 𝜎 4 𝜎 𝜎 𝜎 𝜎

302 𝜎 𝜎 4 𝜎 𝜎 𝜎 𝜎

302 𝜎 𝜎 4 𝜎 𝜎 𝜎 𝜎

57 𝜎 𝜎 4 𝜎 𝜎 𝜎 𝜎

𝜎 𝜎 4 𝜎 𝜎

𝜎 𝜎                                                                                                           21  

where 

𝑞 20 300𝛷𝛼 60𝜆𝛼,   𝑞 1140 2700𝛷𝛼 1500𝜆𝛼,   𝑞 6040 3000𝛷𝛼 2400𝜆𝛼 

𝑞 6040 3000𝛷𝛼 2400𝜆𝛼,   𝑞 1140 2700𝛷𝛼 1500𝜆𝛼,   𝑞 20 300𝛷𝛼 60𝜆𝛼 

and 𝛼 ∆𝑡 𝛤 2 𝛾 .  
The growth factor of the typical Fourier mode is defined as 

𝜎 𝜉 𝑒                                                           22  

where, 𝑖 √ 1,  𝛽 is a mode number and ℎ is the element size. Substitution of (22) into (21) yields 

 𝜉 𝑞 𝑒 𝑞 𝑒 𝑞 𝑞 𝑒 𝑞 𝑒 𝑞 𝑒  

𝜉 𝑞 𝑒 𝑞 𝑒 𝑞 𝑞 𝑒 𝑞 𝑒 𝑞 𝑒  

20 𝑏 𝜎 𝜎 4 𝜎 𝜎 𝜎 𝜎 𝑒 302

302𝑒 57𝑒 𝑒  ;                                                                      23  

let 𝜉 Ϋ𝜉  and assume that Ϋ ≡ Ϋ 𝜃  is independent of time, therefore, we can write Ϋ as follows: 



4256 

Electronic Research Archive  Volume 31, Issue 7, 4248–4265. 

Ϋ
𝐴 𝑖𝐵
𝐴 𝑖𝐵

 , 

where 

𝐴 6040 3000𝛷𝛼 cos
𝜃
2

ℎ 1140 2700𝛷𝛼 cos
3𝜃
2

ℎ

20 300𝛷𝛼 cos
5𝜃
2

ℎ, 

𝐵 2400𝜆𝛼 sin
𝜃
2

ℎ 1500𝜆𝛼 sin
3𝜃
2

ℎ 60𝜆𝛼 sin
𝜃
2

ℎ, 

Obviously note that |Ϋ| 1 . Therefore, according to the Fourier condition, the scheme (20) is 
unconditionally stable. 

4. Numerical results 

This section introduces two numerical examples, which highlight numerical results for the TFBE 
with different IC and BCs given by the CBSGM with quadratic weight function. In this section, we 
use the 𝐿  and 𝐿  to calculate the accuracy of the CBSGM with a quadratic weight function, which 
has been employed in this study; we will also show how the analytical results and the numerical results 
are close to each other. To do this, first we will find the exact solutions to the problem (1) by applying 
the following problems; then, we compare the results with the numerical solution obtained from the 
given method. To this aim, the 𝑳  and 𝑳𝟐 error norms are respectively defined as [48] 

𝐿 ║𝑈 𝑈 ║ ≅ 𝑚𝑎𝑥 𝑈 𝑈 , 

𝐿 ║𝑈 𝑈 ║ ≅ ℎ 𝑈 𝑈  

where 𝑈 and 𝑈  represent the exact solution and numerical solution, respectively.  
Example 1: Let us consider the TFBE (1) with the BCs  

𝑈 𝑂, 𝑡 𝑙1 𝑡 𝑡 ,       𝑈 1, 𝑡 𝑙2 𝑡 𝑡 ,               𝑡 0, 

and IC  

𝑈 𝑥, 0 𝑔 𝑥 0,                                      0 𝑥 1, 

such that the forcing term 𝑓 𝑥, 𝑡  is achieved as [45] 

𝑓 𝑥, 𝑡
2𝑡 𝑒
𝛤 3 𝛾

𝑡 𝑒 𝑣𝑡 𝑒 , 

where the analytic solution is obtained as   

𝑈 𝑥, 𝑡 𝑡 𝑒 . 



4257 

Electronic Research Archive  Volume 31, Issue 7, 4248–4265. 

Numerical results are reported in Tables 1–3 and Figure 1. Table 1 lists the numerical solutions 
and the 𝐿  and 𝐿  error norms with 𝛾 0.5, ∆𝑡 0.0025,  𝑡 0.05 and 𝑣 1  for various 
numbers of partitions 𝑀. As seen in Table 1, we notice that when the number of partitions M are 
increased, the 𝐿  and 𝐿  error norms will decrease considerably. Table 2 displays the numerical 
solutions with 𝛾 0.5, 𝑀 40, 𝑡 1,  𝑡 0.05 and 𝑣 1 for various values of ∆𝑡. In view of 
Table 2, we can see that when ∆𝑡 decreases, the 𝐿  and 𝐿  error norms decrease, as was expected. 
Table 3 shows the numerical solutions with ∆𝑡 0.00025, 𝑀 40, 𝑡 1,  𝑡 0.05, 𝑣 1 for 
various values of 𝛾. As observed in Table 3, the 𝐿  and 𝐿  error norms decrease when γ increases. A 
comparison between the results of our proposed strategy and two other methods is demonstrated in 
detail, the researchers of which relied on their work on a weight function corresponding to the spline 
function in terms of degree; see [44,45]. Figure 1 represents the surfaces of the exact and numerical 
solutions of the TFBE in Example (1). 

Table 1. Numerical solutions with 𝛾 0.5, ∆𝑡 0.0025,  𝑡 0.05, 𝑣 1 for various 
numbers of partitions 𝑀. 

x M = 10 M = 20 M = 40 M = 80 Exact 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 1.104360 1.105211 1.105166 1.105122 1.105101 

0.2 1.222151 1.222040 1.221593 1.221555 1.221511 

0.3 1.351010 1.350426 1.350012 1.349831 1.349789 

0.4 1.493377 1.492288 1.491990 1.491910 1.491844 

0.5 1.650589 1.650001 1.649822 1.648889 1.648731 

0.6 1.824211 1.823336 1.822449 1.822214 1.822110 

0.7 2.015587 2.014111 2.013822 2.013776 2.013692 

0.8 2.227577 2.226110 2.225699 2.225611 2.225562 

0.9 2.461410 2.461101 2.460893 2.459550 2.459491 

1.0 2.718202 2.718202 2.718202 2.718202 2.718202 

𝑳𝟐 𝟏𝟎𝟑 1.631895 0.440555 0.160761 0.062504  

𝑳𝟐 𝟏𝟎𝟑 [44] 1.764966 0.465690 0.167743 0.095754  

𝑳𝟐 𝟏𝟎𝟑 [45] 1.632995 0.447720 0.161833 0.082624  

𝑳 𝟏𝟎𝟑 2.291578 0.64933 0.206677 0.032882  

𝑳 𝟏𝟎𝟑 [49] 3.101238 0.812842 0.209495 0.069208  

𝑳 𝟏𝟎𝟑 [50] 2.296683 0.625018 0.207352 0.033125  
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Table 2. Numerical solutions with 𝛾 0.5, 𝑀 40, 𝑡 1,  𝑡 0.05, 𝑣 1  for 
various values of ∆𝑡. 

x ∆t = 0.005 ∆t = 0.001 ∆t = 0.0005 ∆t = 0.00025 Exact 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 1.105216 1.105211 1.105199 1.105186 1.105150 

0.2 1.221701 1.221601 1.221511 1.221445 1.221389 

0.3 1.350321 1.350188 1.350141 1.350110 1.349998 

0.4 1.492461 1.492211 1.492101 1.491879 1.491804 

0.5 1.649485 1.649112 1.648961 1.648822 1.648690 

0.6 1.822941 1.822675 1.822431 1.822310 1.822144 

0.7 2.014601 2.014201 2.014055 2.013979 2.013788 

0.8 2.226288 2.226001 2.225812 2.225699 2.225528 

0.9 2.260100 2.459980 2.459862 2.459785 2.459655 

1.0 2.718202 2.718202 2.718202 2.718202 2.718202 

𝑳𝟐 𝟏𝟎𝟑 0.659999  0.374901  0.232591  0.092489   

𝑳𝟐 𝟏𝟎𝟑 [44]  0.176195 0.068869   

𝑳𝟐 𝟏𝟎𝟑 [45]  0.375012 0.232768 0.092624  

𝑳 𝟏𝟎𝟑 0.936512  0.529997  0.326112  0.132945   

𝑳 𝟏𝟎𝟑 [44]  0.665419 0.411883   

𝑳 𝟏𝟎𝟑 [45]  0.530231 0.328303 0.133125  
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Figure 1. The surfaces of the exact and numerical solutions of the TFBE in Example (1). 
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Table 3. Numerical solutions with ∆𝑡 0.00025, 𝑀 40, 𝑡 1,  𝑡 0.05, 𝑣 1 

for various values of γ. 

x 𝛾 0.10 𝛾 0.25 𝛾 0.75 𝛾 0.90 Exact 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 1.105068 1.104981 1.104890 1.104899 1.104882 

0.2 1.221701 1.221601 1.221511 1.221445 1.221389 

0.3 1.350321 1.350188 1.350141 1.350110 1.349998 

0.4 1.492461 1.492211 1.492101 1.491879 1.491804 

0.5 1.649485 1.649112 1.648961 1.648822 1.648690 

0.6 1.822941 1.822675 1.822431 1.822310 1.822144 

0.7 2.014601 2.014201 2.014055 2.013979 2.013788 

0.8 2.226288 2.226001 2.225812 2.225699 2.225528 

0.9 2.260100 2.459980 2.459862 2.459785 2.459655 

1.0 2.718202 2.718202 2.718202 2.718202 2.718202 

𝑳𝟐 𝟏𝟎𝟑 0.659999  0.374901  0.232591  0.092489   

𝑳𝟐 𝟏𝟎𝟑 [44] 0.096733 0.090053 0.035448 0.044398  

𝑳𝟐 𝟏𝟎𝟑 [45] 0.167077 0.165443 0.159924 0.166085  

𝑳 𝟏𝟎𝟑 0.936512 0.529997  0.328112  0.132945   

𝑳 𝟏𝟎𝟑 [44] 0.272943 0.258623 0.124569 0.066682  

𝑳 𝟏𝟎𝟑 [45] 0.235837 0.232645 0.224532 0.232565  

Example 2: Finally, we consider the TFBE (1) with the BCs 

𝑈 0, 𝑡 0,       𝑈 1, 𝑡 0,               𝑡 0, 

and IC  

𝑈 𝑥, 0 0,                                      0 𝑥 1, 

where the source term 𝑓 𝑥, 𝑡  can be obtained as [44]  

𝑓 𝑥, 𝑡 2𝜋𝑡 sin 2𝜋𝑥 cos 2𝜋𝑥 4𝑣𝑡 𝜋 sin 2𝜋𝑥 .  

The exact solution is  

𝑈 𝑥, 𝑡 𝑡 sin 2𝜋𝑥 . 
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Table 4. Numerical solutions with 𝛾 0.5, ∆𝑡 0.0025,  𝑡 0.05, 𝑣 1 for various 
numbers of partitions 𝑀.  

x M = 10 M = 20 M = 40 M = 80 Exact 

0.0 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 

0.1 0.951196 0.950876 0.951005 0.951077 0.951070 

0.2 0.808211 0.808681 0.808911 0.808988 0.808978 

0.3 0.587211 0.587513 0.587699 0.587761 0.587754 

0.4 0.308662 0.308901 0.308987 0.309011 0.309006 

0.5 0.000000 0.000000 0.000000 0.000000 0.000000 

0.6 -0.308662 -0.308843 -.308931 -0.309011 -0.309006 

0.7 -0.587194 -0.587501 -0.587694 -0.587737 -0.587732 

0.8 -0.808205 -0.808644 -0.808823 -0.808972 -0.808970 

0.9 -0.951211 -0.951661 -0.951811 -0.951965 -0.951960 

1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 

𝑳𝟐 𝟏𝟎𝟑 0.435298  0.183971  0.041943  0.001960   

𝑳𝟐 𝟏𝟎𝟑 [44]   1.224329 0.177703  

𝑳𝟐 𝟏𝟎𝟑 [45]   2.899412 0.577143  

𝑳 𝟏𝟎𝟑 0.731071  0.273289  0.063201  0.004168   

𝑳 𝟏𝟎𝟑 [44]   1.730469 0.253053  

𝑳 𝟏𝟎𝟑 [45]   4.063808 0.813220  
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Figure 2. The surfaces of the exact and numerical solutions of the TFBE in Example (2). 
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Table 5: Numerical solutions with 𝛾 0.5, 𝑀 80, 𝑡 1,  𝑡 0.05, 𝑣 1 for 
various values of ∆𝑡.  

x ∆𝑡 = 0.005 ∆𝑡 = 0.001 ∆𝑡 = 0.0005 ∆𝑡 = 0.00025 Exact 

0.0 1000000 1000000 1000000 1000000 1000000 

0.1 0.951196 0.950876 0.951005 0.951077 0.951070 

0.2 0.808211 0.808681 0.808911 0.808988 0.808978 

0.3 0.587211 0.587513 0.587699 0.587761 0.587754 

0.4 0.308662 0.308901 0.308987 0.309011 0.309006 

0.5 0.000000 0.000000 0.000000 0.000000 0.000000 

0.6 -0.308662 -0.308843 -.308931 -0.309011 -0.309006 

0.7 -0.587194 -0.587501 -0.587694 -0.587737 -0.587732 

0.8 -0.808205 -0.808644 -0.808823 -0.808972 -0.808970 

0.9 -0.951211 -0.951661 -0.951811 -0.951965 -0.951960 

1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 

𝑳𝟐 𝟏𝟎𝟑 0.124034  0.054081  0.014255  0.001960   

𝑳𝟐 𝟏𝟎𝟑 [44]  0.532436 0.188710   

𝑳𝟐 𝟏𝟎𝟑 [45]  0.359489 0.017828   

𝑳 𝟏𝟎𝟑 0.175611  0.077465  0.028523  0.004168   

𝑳 𝟏𝟎𝟑 [44]  0.753171 0.267546   

𝑳 𝟏𝟎𝟑 [45]  0.512105 0.0321162   

Numerical results are represented in Tables 4 and 5 and Figure 2. Tables 4 and 5 report the 
numerical solutions for various numbers of partitions 𝑀 and values of ∆𝑡. As seen in Tables 4 and 5, 
when the number of partitions M increased, the error norms 𝐿  and 𝐿  will decrease considerably, 
while, in Table 5, we can see that when ∆t decrease, the error norms 𝐿  and 𝐿  decrease. Figure 2 
demonstrates the surfaces of the exact and numerical solutions of the TFBE in Example (2). 

5. Conclusions 

This paper presented a numerical approach based on the CBSGM with a quadratic weight function 
for the TFBE including the time Caputo derivative. Numerical results have shown that the proposed 
method is an appropriate and efficient scheme for solving such problems. 
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