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Abstract: Censoring is a common occurrence in reliability engineering tests. This article considers
estimation of the model parameters and the reliability characteristics of the gamma-mixed Rayleigh
distribution based on a novel unified progressive hybrid censoring scheme (UPrgHyCS), where
experimenters are allowed more flexibility in designing the test and higher efficiency. The maximum
likelihood estimates of the model parameters and reliability are provided using the stochastic
expectation—maximization algorithm based on the UPrgHyCS. Further, the Bayesian inference
associated with any parametric function of the model parameters is considered using the Markov chain
Monte Carlo method with the Metropolis-Hastings (M-H) algorithm. Asymptotic confidence and
credible intervals of the proposed quantities are also created. The maximum a posteriori estimates of
the model parameters are acquired. Due to the importance of determining the optimal censoring
scheme for reliability problems, different optimality criteria are proposed and derived to find it. This
method can help to design experiments and get more information about unknown parameters for a
given sample size. Finally, comprehensive simulation experiments are provided to investigate the
performances of the considered estimates, and a real dataset is analyzed to elucidate the practical
application and the optimality criterion work in real life scenarios. The Bayes estimates using the M-
H technique show the best performance in terms of error values.



4730

Keywords: Bayesian estimation; gamma-mixed Rayleigh distribution; MAPE; stochastic expectation-
maximization algorithm; optimum sampling; unified progressive hybrid censoring

1. Introduction

The developments and needs in engineering, manufacturing and technology inspire more
improved censoring schemes. The two fundamental censoring schemes are Type-I and Type-II schemes.
Type-I censoring refers to the removal of units that have not failed after a prefixed time 7. Type-II
censoring is to discard the remaining units when the number of failed units reaches a prefixed number
m. Furthermore, if Type-1 and Type-II censoring schemes are combined together, it is a hybrid
censoring scheme [1]. The main limitation of this distribution and its generalizations is that a small
effective sample size may be acquired [2]. Therefore, Balakrishnan et al. [3] proposed Type-I and Type-
IT unified hybrid (UH) censoring schemes. Extensive studies have been conducted on Type-I, Type-II,
hybrid and UH censoring schemes. For instance, Kundu and Howlader [4] focused on the inverse
Weibull distribution and learned its Bayesian estimation and prediction problem under the Type-II
censoring scheme. Panahi [5] studied the maximum likelihood and Bayesian statistical inference
problems of a UH censored model for the Burr Type III distribution. Ghazal and Hasaballah [6]
investigated the Bayesian prediction from an exponentiated Rayleigh distribution. Lone and Panahi [7]
learned a constant-stress model using the Gompertz distribution on UH censored data. Unfortunately,
none of these censoring schemes allow for the removal of the units during a life-testing experiment.
The advent of progressive censoring schemes has greatly improved the occurrence of the situations
above, which means that the random removal of survival units with pre-fixed numbers happens on the
basis of Type-I or Type-II censoring at each failure. The progressive censoring can speed up the test
process and makes the experiments more flexible and efficient in a certain sense [8§-9]. So, Gorny and
Cramer [10] introduced the unified progressive hybrid censoring scheme (UPrgHyCS). The life-testing
experiment based on this censoring strategy can reduce both the total time spent on tests and the related
costs due to unit failure. Furthermore, the effectiveness of statistical estimation is improved as a result
of more failed observations.

The UPrgHyCS arises in reliability studies as follows [11]: Suppose that an independent and
identically random sample of » units are placed for an experiment with two integers k and m; (k<m),

m

which are predetermined, and the censoring schemes (R=(R;,R,,..., Rm);ZRi =n-m) are also fixed in
i=1

advance. Let T, and T, (T;<T,), be the two time points. This experiment will be stopped at

T = max{min {Xicma T2 Jomin { X ey ,Tl}} . In brief, there are four cases in the UPrgHyCS which are shown

in Figure 1. Moreover, in life research and reliability engineering applications, it is of great significance
to find the appropriate distribution. The gamma-mixed Rayleigh (GMR) distribution is a continuous
distribution which plays a main role in a wide range of applications, involving life-testing, survival
analysis and reliability. It is one of the life models suitable for products with non-monotonic loss
efficiency. That is why this motivates us to consider the GMR distribution in this estimation problem
setup. To our knowledge, no one has studied the GMR distribution in the estimation of the model
parameters and reliability characteristics (RCH) under the UPrgHyCS, and particularly while
determining the optimal censoring scheme. Determining the optimal censoring plan is one of the most
important issues in estimation because it leads to efficient estimates for parameters. That is why this
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motivates us to consider different estimation methods for the model parameters and RCH of the GMR
distribution, as well as to determine the optimal censoring scheme.
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Figure 1. Different cases of the UPrgHyCS.

The probability density function and cumulative distribution function (cdf) of this distribution are
shown in (1) and (2), respectively:

af’x .
gy >0 >0

f(xa p)=
6]

and
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: .
F(xa,p)=1- — x>0,a, >0,
(X2+ﬁ2) 12 (2)

Here, a and [ are known as the shape and scale parameters respectively. The hazard function

and reliability function of the GMR distribution are given, respectively, by H (t) = tzx—aﬂz; t>0,a, >0,
+

and R(t):(tsz; t>0,a,8>0.

The hazards have the hump-shaped forms (see Figure 2), which is quite suitable for data-sets with
a non monotonic failure rate. The hazard of the GMR distribution increases for t< / and decreases

for t>p forany value of «.There are many researchers who have considered the issue of parameter
estimation of the Rayleigh distribution and its generalizations [12—14].
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Figure 2. The hazard function of the GMR distribution.

Our objectives in this study to close this gap are as follows. First, the stochastic expectation—
maximization algorithm (SEMA) is applied to attain the maximum likelihood estimates and the
approximate confidence intervals (ACls) for any function of the GMR distribution. This algorithm has
good ergodic properties from which estimates can be attained. The main advantage of the SEMA is
that it reduces the calculation time and complexity. The second objective is to discuss the Bayes
estimates (BEs) of the unknown GMR parameters along with highest posterior density intervals
(HPDI), by employing the Monte Carlo Markov chain sampling technique [15-21]. The optimal
censoring scheme using different criteria has been studied. The maximum a posteriori estimates
(MAPESs) are evaluated for the model parameters. Moreover, a comprehensive simulation study and
real data analysis are presented to explain the methods of inference derived in this paper. The rest of
the paper is organized as follows. In Section 2, we demonstrate use of the SEMA to obtain the MLEs
of the model parameters and RCH and we provide the Fisher information matrix (see [22]) and ACls
under the UPrgHyCS. Bayesian analysis is explored in Section 3, where point estimates of the
parameters along with the HPDI, are developed by using the MCMC sampling technique. The MAPEs
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for parameters are investigated in Section 4. Section 5 presents an extensive simulation study. In Section
6, different criteria for obtaining the optimal scheme are presented. One real dataset is analyzed for
illustration in Section 7. Conclusions are given in Section 8.

2. Maximum likelihood estimation

Let Xymno Xgmn be the UPrgHyCS for the GMR distribution. According to the UPrgHyCS,

the likelihood function is represented as

(1-0-3R)
] T )

Q o . 3
L(“vﬁNﬂ&)ocH[( " Ximn X B )Ri}(( p

L O + BT+ 5R) (T2 + %)

where (Q,T ) is equal to (m,x,), (d;,T)), (k,x)and (d,,T,) for Cases I, II, IIl and IV respectively.

Therefore, the log-likelihood function of (3) can be formulated as

Q Q
InL(a, B|data) =1 (e, B|data) =QIna+QaIn B+ D InX —Z(%(Ri +1) + ) In(xZ i + 52)
i=1 i=1

Q Q Q
~Z(-Q-YR)IN(T?+ ) +ain )R +(n-Q- D R)).
2 = i1 i1 4)

Now, the MLEs can be acquired by differentiating the log-likelihood function with respect to the
model parameters. These equations are shown as

ol(a, pldata) @

oa =;

Q Q
+QINB=D (R +2)/2)In(y + B2~ ((N=Q = D Ri)/2)In(T? + p?)

i=1 i=1

Q Q
+HInFQ R +(01-Q- 3 R))=0,
i=1 i=1 (5)

and

Q Q
a(DQ R+(-Q-YR))
i=1 i=1 =0
B

ol (a, p|data)
op

_Qz J @ 2@ o Ny 28
- ;(Z(Ri+1)+1) ,(1-Q ;R.)Terﬂer

Xiz:m:n + ﬁz
(6)

For the sake of solving the nonlinear problem, we can use the Newton-Raphson algorithm.
Nevertheless, it may not converge with small effective sample sizes. So, we apply the SEMA to acquire
the MLEs, which is described below. Moreover, using the invariance property of the MLE, the MLE
of the RCH can be written as
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5 g
R :f, O
t) @1 )" t> | -

Using the following theorem, we first show that the MLEs of « and g exist and are unique.

Theorem 2.1. The MLEs of the unknown parameters « and g for (a,f) e (0,0)x(0,0) exist

and are unique.

Proof: We will show that for («, ) €(0,) x(0,), the maximum of |(a,f|data) exists and is

unique. Note the following

~ o°l(a, Bldata) @
o’ &P (8)

2

aa

_62I(a,ﬂ|data)_ Qa Q a Z(Xiz:m:n_ﬂz) Q T2_ﬁ2
LY __F_E(E(Ri+l)+1)(xi2;m;n+ﬁ2)2_a(n_Q_;Ri)(T2+ﬂ2)2

Q Q
a(Q Ri+(-Q-YR))
=1 i=1 .

Z ©)

Here, if X, >p and T>48, 1,, <0 and |z <0. Therefore, for a fixed a(p), (e, f]data)

is strictly a concave function of f(«). Moreover, for a fixed «,

lim (e, B|data) =—o and lim I(a, B|data) = -,
L—0 poo

and for a fixed 2,

liml(a, B|data)=—o and lim |(«, B |data) =—o.
a—0 a—®

Therefore, for a fixed A(a), |(«, B|data)is unimodal with respect to «(p). Further,
lim (e fldata) =, lim N(a,f|data)=—c, lim I(a,B|data) =~ and

a—0,—0

lim I(a,p|data)=—o.

a—o, f—>0

So, l(a,p|data) has a maximum value for some
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(a,p)e; 3= {(a,ﬁ); (a, ) €(0,00) x(0,),l(er, # | data) = (e, Sy |data)},

Moreover, (a, S |data) > I(«, B|data) > I(«, B|data); (e, S) € (0,0) x(0,) . Therefore, the MLEs of

a and p existand are unique.

2.1. SEMA

The expectation—maximization algorithm (EMA) is a considerable computational method based
on incomplete data which is widely used to acquire the model parameters [23-25]. The complete
sample W =(W;,W,,..,W,) includes the observed data X =(Xynn, Xomn- Xomn) and censored data

Z=(Zy,,2q) , where Zy=(Zy,Zg )i k=1{12,.,Q} is a 1xRc vector and Z'=(ZT)

i=1

Le (W;a, ) cnina +naln g - Z(—+1)In(x,mn+ﬁ )— ZZ(—+1)In(zU + %) - Z(—+1)|n(zTJ + B2),

i=1 j=1

(10)

. Q
where R =n-Q- ZRi . Therefore, we have
i=1
R
—(W“ﬁ)_ﬂmm/s Z((R +1)/2)IN0,. + A2) - Zzln(z'l+ﬂ) zln(zﬂﬂ)
da i=1 i=1l j=1 j=1 (11)

and

R.

L 1 &
- —ZZZ A (12)

2
mn+:B i=1 j=1 Zii+ﬂ j=1 Ti+ﬁ

. Q
‘Mgl—;ﬁ ”;‘ Z( (R, +1)+1)I 28 —(—+1)2/>’Z

To solve the above equations under the conditions of the expectation step of the EMA, we should
calculate the following conditional expectations (CEs): E (In(z”? + ﬂ2)|zij > X; ) =A(x;a.B)

E (In(Zsz + %) |ZTJ- > T) =B(T;a,p). Itis observed that the above CEs are complex. Thus, we use the SEMA
to approximate them, as it does not require the CE of the missing data [26,27]. We generate the missing

samples: Z;,i=1..Q,j=1..,R and Z'=Z] j=1..R", whose conditional functions are given by,

ij
F(zj)—F(x) . d | _x _F(Z?)—F(T)_ .
W, z;>x and  £(z;|z; >T)_—1—F(T) ;Zj>
parameters can be evaluated by applying an iterative method, which will be stopped after attaining
certain accuracy.

¢ (7|7 > %) = T . The estimates of the model
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2.2. The ACIs based on the MLE

In this subsection, we will create the 100(1-y)%, 0<y <1 ACIs for the model parameters based

on the UPrgHyCS. The Fisher matrix is

|(O!,ﬁ) -E |:_:aa _Iaﬂi|'

" Pa _Iﬂﬂ

where
0°l(a, B|data Q
aa:%z_?, (13)
Q Q
R+(n-Q-SR
o _M_g_i(R +1 —E(H—Q—iR-) 25 +(§ +(1-Q ; )
aff — pa T aﬂaa _ﬂ +ﬂ 2 - IT2+IBZ ﬂ )
|mn i— (14)
and
&°l(a, B|data) 2 _op? Q r2_pp
ﬂﬂ:T__ﬂ__Z( (R; +1)+1)m—%(n—Q—;Ri)‘(Tz+ﬁ2)2
Q Q (15)
a() R+(-Q-YR))
=t T

ﬂZ

The MLE of 6= («, /) has the asymptotic distribution 8~ N(0,17%(8)). 17(8) is the inverse

information matrix of | (é) , written as

-1 .
il(a,m:f-l(d,ﬂ”):{:'““ _'“”} } {V"’"(“Z °°V(“1ﬂ)}. (16)

oo s |; 5 cov(a, f)  var(p)

Then, the two-sided 100(1—-y)%, 0<y <1, ACIsfor « and f are as follows

(-2, pvar(@),6+2,,\var(@) |, (17)

and

[ﬁ—Zy,z\/var(ﬁ),ﬁ'+27,zvvar(ﬁ')}. (18)
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Moreover, the ACI for the RCH is

[R—Zym/var(ﬁ),R+Zy,2«/var(F§)] (19)

Also, using the delta method, var(R) can be approximated by:

var(R)=[ 1@ A% | & =(—6R(t) —aR(t)].

oa ' op

3. Bayesian estimation

The Bayesian estimation method is based on the prior distribution (PD) provided by the
parameters. The PD plays a decisive role in the Bayesian approach and must be appropriately
determined. A common approach to gain a PD is to use the conjugate priors. The gamma distribution
is versatile for adjusting different shapes of the density function. Therefore, we have chosen the
independent gamma PDs for o and g with the hyper-parameters (a;,b;), a,,b, >0 and

(a,,b,), a,,b, >0 respectively. The joint prior of o and S can be written as
r(a,f)c g e heplle b 550 B>0. (20)

Here, the squared error loss function (SELF) is considered. According to the UPrgHyCS, and by using
the SELF, the posterior distribution of ¢ and £ can be given by

Q
Q SRy, 5 (anszi)
ﬂ(a,ﬁ|data) oc aQ+a1—1ﬂQa+az—le—abrﬂbzH[ i:m:n ]){ J = (21)

i=1 (XiZ:m:n + ﬂz)(alz)(l+Ri)+l (T 2y ,32)0‘/2

Thus, the BE of any function with the model parameters say g(«, ), under the SELF is represented as

I j 9(a, B)7(a, B|data)dad B
gBayeSSE oc 20 % w . (22)
[ [ #(@ pldatayiad s
00

The Metropolis-Hastings (M-H) algorithm [28,29] is proposed to evaluate the BEs of parameters;
additionally, the corresponding intervals due to the multiple integrals in (22) are not computed
analytically and there are difficulties in the numerical computations of these integrals. It is worth
mentioning that the M-H algorithm has the ability to simulate complicated posteriors and is free from
the reliance on conjugate priors. This algorithm is an efficient method to calculate the BEs, as it can
be easily conducted and help to reduce the operation complexity of high dimensional distribution. To
apply the M-H algorithm, the posterior density functions of « and s can be re-expressed as

Electronic Research Archive Volume 31, Issue 8, 4729-4752.
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Q
Q aR, a (anszi)
+a -1, —a ﬂ Xi:min B i=1
72'1(0{|ﬂ, data) :aQ le bl];][[ (Xiz;m:n +ﬂ2)(a/2)(l+R.)+1JX((T2 + ﬂ2)a/2 J > (23)
and
( i )
Q aR; a Q-2 R
_ pQa+a;—1,-fb, B Ximn ) i1
ﬂz(ﬂ|a,data) =p € I;I[(Xiz:m:n +ﬂz)(a/2)(1+R,)+1]X[(T2 +ﬂ2)a/2] (24)

The following steps can be employed to calculate consistent estimates of the model parameters and RCH.

Step 1: Set z=1 and start with (&, ,4,) and M =MCMC iteration with NB = burn in.
Step 2: Generate «® and p® with the proposal distributions N(a®™® Vvariance(ar)) and
N (8% variance(B)) respectively.

(e | data) _ * <5
Step 3: Calculate Sa=min{l, ' ‘ then, o =] ¢ 15Ya anqg

m(a*P|p, data) a® >3,

*| () * ~
7y (f |, data) . <3
3, =min|1, 2 ‘ : then, g0 = p . 2228 \where ¢ ~Uniform(0,1) and ¢, ~Uniform(0,1) .
P (ﬂ(z—l) ‘a(z),data) ﬂ(l- ) >3y

Step 4: Set z=1+1.
Step 5: Redo Steps 1-4 M times.

Step 6: Discard the burn-in period (NB); then, the BEs of « and g and the RCH under the SELF

M M
1 ~ 1
are &Metropolis—GibbS VN E a®? 1 ﬂMetropolis—Gibbs e M _NR 2 ﬂ(z) and
* M-NB, $F, * M-NB, <,
M (Z)a(z)
3 1 y @ B
RMetropoIis—Gibbs = R(Z) ) where R = (2) /5 ! t>0.
2 2 12
£ M —NB ] (t + (ﬂ(z)) )a

Step 7: Order o, B® and R®, i=1,..,M ; then, the HPDI of any function (¢) has the following
form

[i(M 212)1S(M (1= /2)) ] . (25)

4. MAPE

We know that the performance of the MAPE is better than that of the MLE based on small samples
for heavy tailed or skewed distributions. Therefore, the MAPEs for the unknown parameters of the
GMR distribution under the UPrgHyCS are investigated [30]. The MAPE can be obtained as

Map = arg (rg%(;r(a, p|data)) = arg g%(ln 7 (datala, B)+In7(a, B)). (26)

where ﬂ(data|a, p) is the joint distribution. Using (21) and (26), the following is the maximum a

posteriori estimator:
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Q
Opap = arg mgx(;z(®|data)) o arg mgx( (Q+a, -1 Ina+(Qa+a,-1)InB—ab, - b, +ZOIRi In g

i=1

Q Q
=Y (@I 2+ R) +D N + B°) +(1-Q = D R)| @I = (@) 2)(1+ R;) + D In(T* +ﬁ2)]J

i=1 i=1

27)

apap and ﬁMAp , can be obtained by deriving the normal equations for the partial differentiation
functions (27) and setting it to zero, as follows

Q+a -1 2 2
=24 QInB+b+ ) RINB= Y (R +1)/2) (6 + %)
@ i=1 i1
Q Q Q 28)
~(("-Q-D R)/2)In(T?+ %) +In f(Y R +(n-Q- > R)) =0,
i=1 i=1 i=1
and
Qa+a,-1 _i(ﬁ(R +1)+1)L—g(n—Q—iR-)i
B ’ T 2 i Xemn +B° 2 i-1 T
(29)

Q Q
a(Q Ri+(-Q->R))
+ i=1 i=1 =0.
B

To evaluate yap and ,BMAP , we can apply the useful package, namely, the “nlegslv”

package in R software.
5. Simulation study

This section is devoted to the comparative study of the proposed estimates under different cases

of the UPrgHyCS. The simulation was carried out using R software. We considered different values
for n, m, kand T;;i=12 to generate 10* UPrgHyCSs from the GMR(a=2.5,5=1.25). Two different

T,i=12ie, T,=12T,=24 and T,=15T,=28 and various combinations of (n,m), ie.,
(30,15),(30,20),(50,25),(50,30), are proposed. Also, for a given (n,m), different censoring schemes
have been adopted:
CSI: R,=0and R,=n-m; z=1..,m-1.
CSII: Ri=n-m and R,=0;z=2,...,m.
R =1 R R .=R,=0;, n<2m,z=1..,n—-m

CSIII A n—m+l=
R,=1 R,=n-2m+1, n>2m, z=1..,n—m.

n-m+2 — *

There are two kinds of Bayes estimation techniques that were simulated, i.e., use of the
informative prior (INP) and non-informative prior (NOINP), respectively, where all

Electronic Research Archive Volume 31, Issue 8, 4729-4752.
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hyperparameters in the NOINP were chosen to be 0.0001 instead of 0, which is more appropriate
since the hyperparameters are greater than 0, and the hyperparameters in the INP are selected
according to this manner: the means of the PDs are equal to the original parameters
(a, =5Db =2a,=1.25b, =1). Using the M-H algorithm, 10000 MCMC samples were generated and
then the first 1000 values (NB = 1000) were discarded. The trace plots for the MCMC chain of «
and f forn=30,m=15,k=10, T1 = 1.2 and T>= 2.4 are shown in Figure 3. Different estimates
were calculated and are displayed in the Tables 1-8. The mean squared errors (MSEs) of the point
estimators (SEMA and Bayesian estimation under an INP) are presented in Tables 1 and 2, and the
average length and coverage probability (CP) for the interval estimators are shown in Tables 3 and 4.
The MSEs of the estimators and the average confidence lengths (ACLs) with their CPs for the
ACl/credible intervals of R(x) are also presented in Table 5. Also, to compare the BEs under the INP
and NOINP, the heat-map plots for the MSEs of the Bayesian estimators are presented in Figures 4 and
5. The heat-map provides better visualization of the validity of different estimation methods.

The following results have been observed:

I. For fixed n and m, the MSEs of all attained estimates decrease when the values of 71, 72 and &
increase. Larger k, 71 and T2 provide more effective samples which indicates more information
about the parameters.

Il. For a fixed n, the MSEs of the obtained estimates decrease with an increase in the values of m,
k and pre-fixed time points 71 and 7>.

I11. Due to the fact that BEs include more information about the parameters compared to other
estimates, the MCMC estimates are better than the frequentist estimates.

IV. Simulation results show that the increase in 7; for other fixed values, decrease the biases and
MSE values in all cases since it provides more testing-time to let more failure occur.

V. The BEs under the INP perform better than the NOINP.

VI. The MAPEs have a better performance than the MLEs in terms of average MSEs.

VII. The results from the interval estimation suggest that with the increase of &, 71 and 72, the
average interval lengths reduce, along with the average CPs approaching the nominal
confidence level, by keeping n and m fixed.

VII1.The average lengths of the confidence intervals decrease with larger sample sizes. Also, the
HPDIs perform better than the ACIs regarding the average lengths.

In summary, the performances of both BEs are more favorable than those obtained under the
frequentist approach and MPAEs. Moreover, based on the CPs, ACls are better than credible interval
estimates.

o
< _|
| =
@ o~
So | 5
=< o -
I =
o‘ | -
o™~ 1T T T 1 T T T 1
0 4000 8000 0 4000 8000
Iteration Iteration

Figure 3. Trace plots for @ and g (M =10000, NB = 1000).
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Table 1. The MSEs of « under different censoring schemes (C.S.) (T : (T1,T2) = (1.2,2.4)
and T™: (T1,T2) = (1.5,2.8)).

T* T
v k €S MLE M-H MAP MLE M-H M-H

30 15 5 I 0.24522 0.11398 0.13427 0.22543 0.10326 0.11875
30 15 5 II 0.11456 0.09432 0.10558 0.10109 0.07994 0.09654
30 15 5 11 0.18654 0.10986 0.13654 0.17003 0.10329 0.12305
30 15 10 1 0.22453 0.10942 0.12654 0.21743 0.09942 0.11198
30 15 10 1II 0.10954 0.09122 0.10200 0.09327 0.07122 0.09254
30 15 10 I 0.18013 0.09985 0.12998 0.16532 0.09285 0.11548
30 20 10 1 0.22206 0.10435 0.12254 0.19858 0.09832 0.10548
30 20 10 1II 0.10684 0.08828 0.09547 0.09004 0.06843 0.08543
30 20 10 I 0.17542 0.09784 0.12326 0.15643 0.09004 0.11034
30 20 15 1 0.19975 0.09335 0.11647 0.17674 0.08522 0.10365
30 20 15 1II 0.10154 0.08207 0.09126 0.08756 0.06097 0.08312
30 20 15 II 0.15897 0.08426 0.10988 0.15111 0.08038 0.10587
50 30 15 1 0.19576 0.08894 0.10885 0.17214 0.07859 0.09942
50 30 15 1II 0.10111 0.07857 0.08335 0.08342 0.05436 0.07690
50 30 15 I 0.15784 0.08066 0.10670 0.14587 0.07885 0.10216
50 30 20 I 0.16754 0.08095 0.09758 0.14732 0.04999 0.09112
50 30 20 II 0.08963 0.07214 0.08055 0.06353 0.03761 0.06546

50 30 20 I 0.13479 0.08037 0.09843 0.11955 0.06203 0.09492
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Figure 4. The heat-map results the MSEs of the BEs of «under the INP and NOINP.
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Table 2. The MSEs of S under different censoring schemes (T: (T1,T2) = (1.2,2.4) and

T (T1,T2) = (1.5,2.8)).

- p—
! " ‘ S e M-H MAP MLE M-H MAP
30 15 5 I 012932 010432 010783  0.11324  0.09470  0.09633
3015 5 M 009843 008258 008959 009209  0.07742 0.07884
3015 5 M 0.11442 009765 099842  0.11014  0.09365  0.09621
3015 10 T 011705  0.09911 010076  0.10321  0.09416  0.09498
30 15 10 T 009121 007984 008169 008674  0.07121  0.07543
3015 10 T 011032 008842 009327  0.10300  0.08205  0.08986
30 20 10 T 011409 009445 009782  0.09754  0.09008  0.09095
30 20 10 T 008432 007324 007893  0.08214  0.06885  0.06894
30 20 10 T 010999 008224 008674 009743  0.08054  0.08292
30 20 15 1 009953  0.09005 0.09366 009354  0.08685  0.08890
30 20 15 1 008123 007210 007632 007489  0.06236  0.06668
30 20 15 T 009674  0.08016 0.08417 009266  0.07985  0.08065
50 30 15 1 007854 007205 007341 007430  0.06957  0.07001
50 30 15 1 007094 006749 006867 006546  0.06028  0.06369
50 30 15 T 007645 007111 007389 007116  0.06934  0.06721
50 30 20 1 005894 005243 005757  0.05354  0.04778  0.04799
50 30 20 I 004776 0.04255 0.04509  0.04032  0.03858  0.03995
50 30 20 I 005214  0.04893 0.04928  0.05318  0.04643  0.04690
value value value
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Figure 5: The heat-map results the MSEs of the BEs of /£ under the INP and NOINP.
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Table 3. Average lengths and CPs of 95% intervals for « under different censoring schemes.

~ ~ ~ ~ - — — —
nom kG0 cPACI HPD  CPHPD ACIs  CPACI HPD  CP-HPD
30 15 5 1 096843 09532  0.67328 09719 094765 09588  0.66223  0.9632
30 15 5 I 095321 09536 065473 09612 094066 09532  0.65126 0.9611
30 15 5 I 096463 09531 067120 09634 094327 09565  0.67157 0.9637
30 15 10 1 096324 09495 066437 09632 094256 09435  0.65346 0.9721
30 15 10 I 009506 09511 065132 09715 093687 09588  0.63675 0.9598
30 15 10 I 095879 09478 066453 09643 093998 09485  0.64895 0.9600
30 20 10 T 095876 09573 065357 09632 093870 09600  0.65357 0.9665
30 20 10 I 094685 09524 064219 09487 093265 09517  0.64219  0.9498
30 20 10 I 095642 09537 065325 09634 093756 09565  0.65325 0.9701
30 20 15 1 095327 09533  0.64329 09465 093161 09428  0.63425 0.9675
30 20 15 I 093996 09539  0.63646 09599 092457 09515  0.62886 0.9589
30 20 15 I 095400 09478  0.64177 09621 092995 09600  0.63423  0.9623
SO 30 15 1 094124 09600 063785 09654 092876 09423  0.61598  0.9609
S0 30 15 I 093675 09564 063115 09622 091980 09488  0.61110  0.9567
50 30 15 I 093896 09576 063684 09653 092693 09436  0.61378 0.9411
S0 30 20 1 092453 09488 060884 09642 089954 09600  0.58989  0.9633
50 30 20 T 091549 09525 059805 09578  0.89305 0.9490  0.56999 0.9589
S0 30 20 I 092159 09596 060785 09633 089894 09449  0.58757 0.9610

Table 4. Average lengths and CPs of 95% intervals for g under different censoring schemes.

T* T T* T T T T T
o koGS ACls CP-ACI  HPD CP-HPD  ACIs CP-ACI ~ HPD CP-HPD
30 15 5 1 0.62355 0.9616 0.58435 0.9700 0.61886  0.9588 0.57214  0.9675
30 15 5 I 0.59675  0.9563 0.57312  0.9615 0.59004  0.9587 0.56543  0.9421
30 15 5 II 0.61994  0.9475 0.58223  0.9655 0.61332  0.9600 0.56896  0.9622
30 15 10 1 0.61785  0.9477 0.58009  0.9421 0.60773  0.9456 0.58009  0.9700
30 15 10 1I 0.59324  0.9537 0.56874  0.9446 0.57324  0.9565 0.56874  0.9597
30 15 10 I 0.61566  0.9600 0.57897  0.9632 0.60508  0.9600 0.57897  0.9413
30 20 10 1 0.61110  0.9600 0.57099  0.9621 0.58329  0.9566 0.56685 0.9426
30 20 10 1II 0.58873  0.9522 0.56231  0.9453 0.56874  0.9469 0.55319 0.9411
30 20 10 1II 0.60987  0.9589 0.56998  0.9600 0.58895  0.9429 0.56208  0.9589
30 20 15 1 0.60753  0.9548 056638 0.9459 0.58005  0.9539 0.56022  0.9586
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n m k C.S.
ACIs CP-ACI ~ HPD CP-HPD  ACIs CP-ACI ~ HPD CP-HPD
30 20 15 O 0.57999  0.9533  0.56008  0.9600 0.56206  0.9469 0.55812  0.9421
30 20 15 I  0.60442  0.9400 0.56539 0.9631 0.57649 09611 0.55998 0.9615
50 30 15 1 0.60044 09435 0.56154 0.9424 0.56995  0.9600 0.56154  0.9600
50 30 15 1II 0.57325 09543  0.54997 0.9576 0.55369 09535 0.54997  0.9566
50 30 15 OI  0.59745 0.9554 0.55686  0.9400 0.56560  0.9579 0.55686  0.9408
50 30 20 I 0.58432 09565 0.55648  0.9587 0.55210  0.9543  0.55648  0.9460
50 30 20 O 0.56894 09511  0.54026  0.9465 0.54767 09515 0.54026  0.9455
50 30 20 III  0.58207 0.9488  0.55622  0.9600 0.54989 09485 0.55622  0.9580
Table 5. The MSEs, average lengths and CPs of R(x)under different censoring schemes.
T* T* T* T* T** T** T** T**
n m k CS. AClIs HPD AClIs HPD
MLE M-H MLE M-H
(CP) (CP) (CP) (CP)
0.34873  0.21873 0.34643 0.21532
30 15 5 1 0.07985 0.06432 0.07143  0.06068
(0.958)  (0.965) (0.960)  (0.972)
0.34531 0.21307 0.34144 0.20966
30 15 5 10 0.07324 0.05798 0.06897 0.05712
(0.945)  (0.970) (0.946)  (0.936)
0.34855 0.21822 0.34623 0.21514
30 15 5 1I  0.07744 0.06219 0.07007  0.06025
(0.964)  (0.932) (0.941)  (0.934)
0.34507 0.21477 0.34205 0.21213
30 15 10 I 0.07173  0.05998 0.06895  0.05785
(0.963)  (0.974) (0.940)  (0.931)
0.33867 0.21009 0.33532 0.20768
30 15 10 1T 0.06537 0.05605 0.06650  0.05545
(0.940)  (0.964) (0.940)  (0.960)
0.34216  0.21481 0.34100 0.21203
30 15 10 III  0.07009 0.05746 0.06822  0.05717
(0.938)  (0.972) (0.961)  (0.935)
0.34094  0.20886 0.33658 0.20628
30 20 10 I 0.06996 0.05788 0.06485 0.05720
(0.962)  (0.935) (0.941)  (0.972)
0.33256  0.20154 0.33026 0.20010
30 20 10 II 0.06312 0.05346 0.06131 0.05291
(0.961)  (0.964) (0.943)  (0.962)
0.33965 0.20653 0.33537 0.20537
30 20 10 III  0.06704 0.05673 0.06467  0.05655
(0.940)  (0.971) (0.942)  (0.973)
0.33658  0.19748 0.33302 0.19456
30 20 15 I 0.06494 0.05290 0.06212  0.05234
(0.940)  (0.933) (0.938)  (0.975)
0.32760  0.19394 0.32445 0.19133
30 20 15 11 0.06010 0.05111 0.05899  0.05009
(0.958)  (0.940) (0.942)  (0.940)
0.32999  0.19659 0.32876 0.19441
30 20 15 III  0.06486 0.05266 0.06178  0.05210
(0.939)  (0.972) (0.960)  (0.973)
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n m k CS. ACIs HPD ACIs HPD
MLE  M-H MLE — M-H

(CP) (CP) (CP) (CP)

0.31887 0.18765 0.31366  0.18332
50 30 15 I 0.06231 0.04574 0.06180  0.04498

(0.962)  (0.964) (0.938)  (0.974)

0.31539  0.18222 0.31199  0.17985
50 30 15 I 0.05769 0.04390 0.05713  0.04323

(0.942)  (0.940) (0.939)  (0.935)

0.31889  0.18753 0.31358  0.18141
50 30 15 IO 0.06318 0.04577 0.06156  0.04476

(0.959)  (0.938) (0.942)  (0.960)

0.31266  0.18227 0.30807  0.17843
50 30 20 I 0.05873 0.03879 0.05800  0.03799

(0.943)  (0.960) (0.939)  (0.961)

0.30687  0.17639 0.30256  0.17467
50 30 20 I 0.05266 0.03452 0.05189  0.03358

(0.957)  (0.959) (0.958)  (0.939)

0.30890 0.18185 0.30775  0.17699
50 30 20 IO  0.05831 0.03709 0.05790  0.03689

(0.957)  (0.960) (0.960)  (0.939)

6. Optimum progressive censoring

Determination of the optimum progressive censoring scheme plan is a critical purpose for a
reliability researcher. To determine the optimum progressive censoring scheme plan, some criteria for

specified values of n, m, k, T, T, and R;, i=1..,m have been adopted as follows
e Criterion 1: det(l(g)); The objective is to minimize det(1™*(q)) .
e Criterion 2: trace(1 *(9)); The objective is to minimize trace(1*(9)).

e Criterion 3: Variance(log(\7p )); The objectiveis to minimizeVariance(Iog(\?p ), 0< p<1.

1 1
e Criterion4: 3= IVariance(Iog(ép )W(p)dp; The objective is to minimize 3, w(p) > O,Iw(p)dp =1.
0 0
Also, the logarithmic for ¢, of the GMR distribution can be represented as follows

o 1 2la 2 12
ogtey) =| (#°a-py 2 =g |+ 0<pet (30)
Using (30) and the delta method, the approximation of Variance(log(s,)) can be shown as

] R ~\ 1-1/4 A
Varlance(log(gp))=(V|09(§p)) | (9)(V|09(€p)), 3D
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where, (Vlog(g"p))T {%Iog(ép),%log(;p)} ~ isthe gradientof log(¢,) withrespectto & and s
(a=a,p=p)

Note that the optimized censoring scheme corresponds to the lowest values of the proposed criteria.
7. Real data analysis

For the application of the UPrgHyCS in practice, we use real data analysis to validate the
estimation methods acquired in this paper. The real life data contain the time between failures for 30
items of repairable mechanical equipment [31]. The fitted result of the dataset is compared by utilizing
the Kolmogorov-Smirnov (K-S) distance, as well as the p-value. The K-S distance is 0.0862 with a p-
value of 0.9788. We also presented the probability-probability (P-P) and empirical cdf plots for the
fitted GMR distribution in Figures 6 and 7 respectively. It can be seen that the presentations follow
from the numerical results. We also compared the GMR distribution with other well-known
distributions by using the different model selection (MS) criteria such as the log-likelihood criterion,
Akaike information criterion (AIC), Bayesian information criterion (BIC), K-S statistic, Cramer-von
Mises (CVM) statistic and Anderson-Darling (AnDa) statistic. The results have been presented in Table
6. The computations of these criteria were carried out using R software by implementing the
“fitdistrplus” package. From Table 6, it can be seen that the GMR is the best model, as compared to
other fitted models in the literature, for fitting real-life data; this is because it has the lowest statistic
values. Also, to show the existence and uniqueness of the MLEs, the contour plot of the joint
| (a, B |data) using the complete dataset is plotted in Figure 8. It confirms these properties of the MLEs.

We consider the following UPrgHyCSs, which are given as follows
e Schemel: n=30,m=22k=18T,=19,T,=25R=(807),

e Scheme II:n=30,m=22k=21T,=179,T, =1.95R = (8,0%),

o SchemeIIl: n=30,m=22k=20T,=18T,=25R=(80%).

Table 6: Different MS criteria for the fitted distributions.

Distribution Log-likelihood  AIC BIC K-S CVM AnDa

GMR -39.84937 83.69873  86.50113  0.086269 0.019857 0.146416
Inverse Weibull -46.37561 96.75122  99.55361  0.133855 0.183039 1.229709
Inverse Gamma -45.50735 95.01469  97.81709  0.157632 0.173521 1.066590
Log-Normal -40.73513 85.47025  88.27265  0.098692 0.036932 0.257797
Inverted Exp-Rayleigh  -52.88474 109.7695  112.5719  0.259787 0.620545 3.236685
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According to the censoring schemes described above, the MLEs based on the SEMA, Bayesian

point estimation, maximum a posteriori estimation, ACIs and HPDIs were acquired. Borrowing the
idea from [32], the hyperparameters under the NOINP were taken as a, =b =0.0001, i =1,2. Table 7

displays the point and interval estimates of the parameters. It is clear that the BEs perform marginally
better than the MLEs. Also, the Bayesian approach features the shortest credible interval while the
length of the ACI is the longest.

To express the concept of optimal censoring, the different criteria are evaluated based on the
following three generated samples:

(1):R=(0""8), (2):R=(8,0%), (3):R=(0"8,0")).

Based on two values of p;(p =0.4,0.7) , the results were obtained as reported in Table 8. It is clear
that R=(8,0™) is optimal scheme under criteria 1, 3 and 4, while R=(0",8,0"°)is optimal based

on criterion 2. We notice that these outcomes support our results in the simulation section.

Table 7: Different estimates for «and 8 based on different censoring schemes.

Schemes MLEs BEs ACI HPD

CSI o 4.54394 4.19734 (4.2455,5.7984) (4.3874,5.3258)
CSI B 2.43283 2.20064 (1.9784,3.1109) (2.0406,3.0244)
CS1I 4 3.85462 3.82115 (3.4318,4.1732) (3.5433,4.1263)
CSII B 1.99794 1.89873 (1.1178,2.7943) (1.3642,2.5648)
CSIII o 4.75328 4.26964 (4.1658,5.2154) (4.3275,5.2295)
CSIII B 2.31763 2.19835 (1.9226,2.9974) (1.9998,2.6893)

Table 8: Optimum censoring schemes for the proposed samples.

Schemes Criterion 1 Criterion 2 p Criterion 3 Criterion 4
p=04 0.0585438 0.0732473

) 0.000672
0.189035 p=07 0.0511043 0.0634898
p=04 0.0328412 0.0532815

?2) 0.000264
0.150968 p=07 0.0299632 0.0477685
p=04 0.0489853 0.0599854

A3 0.000348
0.1495437 p=07 0.0402164 0.0564893

6. Conclusions

It is of great significance to find the appropriate lifetime distribution and optimal censoring
scheme. This is also the basis of life-testing research and reliability research. In this article, the
estimation and optimal censoring problems of the parameters and RCH of the GMR distribution are
studied based on the UPrgHyCS. The SEMA is provided to calculate the MLEs of the model
parameters and RCH, as well as the ACIs. We provided conditions under which the MLEs exist and
are unique. Moreover, the Bayesian approach has been investigated with the gamma priors; since the
Bayesian estimation cannot be acquired in closed form, the MCMC method was utilized to provide the
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BEs and the HPDIs. Also, we have obtained the MAPEs for the unknown parameters. An elaborate
simulation study was performed for the comparison of the considered estimators. Simulation results
indicate that the Bayes estimator outperforms the MLE in terms of their accuracies as reported in
Tables 1-5. Also, the classical and Bayes estimations based on the NOINP show similar performances.
Different information measures are utilized to achieve the optimal censoring scheme. To elucidate the
practical application of the proposed methods to real-life phenomenon, and to determine the optimal
censoring plan, a real dataset was analyzed. According to the research, the GMR distribution is a
suitable model for the proposed data, and the left censoring scheme is optimal in most cases. Future
work will explore estimation for stress-strength reliability models and accelerated life-testing models
under an UPrgHyCS.
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Supplementary
Nomenclature Acronyms
Approximate Confidence Intervals ACIs
Bayes Estimates BEs
Censoring Scheme CS
Coverage Probability CP
Gamma-Mixed Rayleigh GMR
Highest Posterior Density Interval HPDI
Informative Prior INP
Metropolis-Hastings M-H
Mean Square Error MSE
Maximum Likelihood ML
Maximum a Posteriori Estimate MAPE
Monte Carlo Markov Chain MCMC
Non-Informative Prior NOINP
Optimal Censoring Plan OCP
Prior Distribution PD
Progressive Censoring Prg
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Nomenclature Acronyms
Reliability Characteristic RCH
Stochastic Expectation-Maximization Algorithm SEMA
Squared Error Loss Function SELF
Unified Hybrid UH
Unified Progressive Hybrid Censoring Scheme UPrgHyCS
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