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Abstract: Censoring is a common occurrence in reliability engineering tests. This article considers 

estimation of the model parameters and the reliability characteristics of the gamma-mixed Rayleigh 

distribution based on a novel unified progressive hybrid censoring scheme (UPrgHyCS), where 

experimenters are allowed more flexibility in designing the test and higher efficiency. The maximum 

likelihood estimates of the model parameters and reliability are provided using the stochastic 

expectation–maximization algorithm based on the UPrgHyCS. Further, the Bayesian inference 

associated with any parametric function of the model parameters is considered using the Markov chain 

Monte Carlo method with the Metropolis-Hastings (M-H) algorithm. Asymptotic confidence and 

credible intervals of the proposed quantities are also created. The maximum a posteriori estimates of 

the model parameters are acquired. Due to the importance of determining the optimal censoring 

scheme for reliability problems, different optimality criteria are proposed and derived to find it. This 

method can help to design experiments and get more information about unknown parameters for a 

given sample size. Finally, comprehensive simulation experiments are provided to investigate the 

performances of the considered estimates, and a real dataset is analyzed to elucidate the practical 

application and the optimality criterion work in real life scenarios. The Bayes estimates using the M-

H technique show the best performance in terms of error values. 
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1. Introduction 

The developments and needs in engineering, manufacturing and technology inspire more 

improved censoring schemes. The two fundamental censoring schemes are Type-I and Type-II schemes. 

Type-I censoring refers to the removal of units that have not failed after a prefixed time T. Type-II 

censoring is to discard the remaining units when the number of failed units reaches a prefixed number 

m. Furthermore, if Type-I and Type-II censoring schemes are combined together, it is a hybrid 

censoring scheme [1]. The main limitation of this distribution and its generalizations is that a small 

effective sample size may be acquired [2]. Therefore, Balakrishnan et al. [3] proposed Type-I and Type-

II unified hybrid (UH) censoring schemes. Extensive studies have been conducted on Type-I, Type-II, 

hybrid and UH censoring schemes. For instance, Kundu and Howlader [4] focused on the inverse 

Weibull distribution and learned its Bayesian estimation and prediction problem under the Type-II 

censoring scheme. Panahi [5] studied the maximum likelihood and Bayesian statistical inference 

problems of a UH censored model for the Burr Type III distribution. Ghazal and Hasaballah [6] 

investigated the Bayesian prediction from an exponentiated Rayleigh distribution. Lone and Panahi [7] 

learned a constant-stress model using the Gompertz distribution on UH censored data. Unfortunately, 

none of these censoring schemes allow for the removal of the units during a life-testing experiment. 

The advent of progressive censoring schemes has greatly improved the occurrence of the situations 

above, which means that the random removal of survival units with pre-fixed numbers happens on the 

basis of Type-I or Type-II censoring at each failure. The progressive censoring can speed up the test 

process and makes the experiments more flexible and efficient in a certain sense [8–9]. So, Gorny and 

Cramer [10] introduced the unified progressive hybrid censoring scheme (UPrgHyCS). The life-testing 

experiment based on this censoring strategy can reduce both the total time spent on tests and the related 

costs due to unit failure. Furthermore, the effectiveness of statistical estimation is improved as a result 

of more failed observations. 

The UPrgHyCS arises in reliability studies as follows [11]: Suppose that an independent and 

identically random sample of n units are placed for an experiment with two integers k  and ;  ( )m k m , 

which are predetermined, and the censoring schemes ( 1 2

1

( , ,..., );

m

m i

i

R R R R R n m

=

= = − ) are also fixed in 

advance. Let 1T   and 2 1 2 ( ),T T T   be the two time points. This experiment will be stopped at 

    max min min*
k:m:n 2 m:m:n 1T = X ,T , X ,T . In brief, there are four cases in the UPrgHyCS which are shown 

in Figure 1. Moreover, in life research and reliability engineering applications, it is of great significance 

to find the appropriate distribution. The gamma-mixed Rayleigh (GMR) distribution is a continuous 

distribution which plays a main role in a wide range of applications, involving life-testing, survival 

analysis and reliability. It is one of the life models suitable for products with non-monotonic loss 

efficiency. That is why this motivates us to consider the GMR distribution in this estimation problem 

setup. To our knowledge, no one has studied the GMR distribution in the estimation of the model 

parameters and reliability characteristics (RCH) under the UPrgHyCS, and particularly while 

determining the optimal censoring scheme. Determining the optimal censoring plan is one of the most 

important issues in estimation because it leads to efficient estimates for parameters. That is why this 
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motivates us to consider different estimation methods for the model parameters and RCH of the GMR 

distribution, as well as to determine the optimal censoring scheme. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Different cases of the UPrgHyCS. 

The probability density function and cumulative distribution function (cdf) of this distribution are 

shown in (1) and (2), respectively: 
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2 2 /2

( ; , ) 1 ;   0, , 0,
( )

F x x
x






   


= −  

+
 (2) 

Here,   and   are known as the shape and scale parameters respectively. The hazard function 

and reliability function of the GMR distribution are given, respectively, by
2 2

( ) ;   0, , 0,H
x

t t
t


 


=  

+
 

and 
2 2 /2

( ) ;   0, , 0
( )

R t t
t






 


=  

+
. 

The hazards have the hump-shaped forms (see Figure 2), which is quite suitable for data-sets with 

a non monotonic failure rate. The hazard of the GMR distribution increases for t   and decreases 

for t   for any value of  . There are many researchers who have considered the issue of parameter 

estimation of the Rayleigh distribution and its generalizations [12–14]. 

Figure 2. The hazard function of the GMR distribution. 

Our objectives in this study to close this gap are as follows. First, the stochastic expectation–

maximization algorithm (SEMA) is applied to attain the maximum likelihood estimates and the 

approximate confidence intervals (ACIs) for any function of the GMR distribution. This algorithm has 

good ergodic properties from which estimates can be attained. The main advantage of the SEMA is 

that it reduces the calculation time and complexity. The second objective is to discuss the Bayes 

estimates (BEs) of the unknown GMR parameters along with highest posterior density intervals 

(HPDI), by employing the Monte Carlo Markov chain sampling technique [15–21]. The optimal 

censoring scheme using different criteria has been studied. The maximum a posteriori estimates 

(MAPEs) are evaluated for the model parameters. Moreover, a comprehensive simulation study and 

real data analysis are presented to explain the methods of inference derived in this paper. The rest of 

the paper is organized as follows. In Section 2, we demonstrate use of the SEMA to obtain the MLEs 

of the model parameters and RCH and we provide the Fisher information matrix (see [22]) and ACIs 

under the UPrgHyCS. Bayesian analysis is explored in Section 3, where point estimates of the 

parameters along with the HPDI, are developed by using the MCMC sampling technique. The MAPEs 
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for parameters are investigated in Section 4. Section 5 presents an extensive simulation study. In Section 

6, different criteria for obtaining the optimal scheme are presented. One real dataset is analyzed for 

illustration in Section 7. Conclusions are given in Section 8. 

2. Maximum likelihood estimation 

Let 1: : : :,...,m n Q m nX X  be the UPrgHyCS for the GMR distribution. According to the UPrgHyCS, 

the likelihood function is represented as 

 ( )
1

)

: :

2 2 ( /2) 1 2 2 /2 2 2

(

1
/2

: : : :

, ( )( )
( ) ( ) )

|
(

i

Q

i

iRi m n

i m n i m n

n Q RQ

i

x

x x
L data

T

  

  

  
 

  

=

− −

=
+

 
 
 + + +

 
   

 



 , (3) 

where ( ,Q T  ) is equal to 1 1( , ),  ( , ),  ( , )m km x d T k x  and 2 2( , )d T  for Cases I, II, III and IV respectively. 

Therefore, the log-likelihood function of (3) can be formulated as 

 

( ) ( ) 2 2
: : : :
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1 1

2 2
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l
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Q QQ

i i i

ii i
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

= =
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 
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 (4) 

Now, the MLEs can be acquired by differentiating the log-likelihood function with respect to the 

model parameters. These equations are shown as 
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and 
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 (6) 

For the sake of solving the nonlinear problem, we can use the Newton-Raphson algorithm. 

Nevertheless, it may not converge with small effective sample sizes. So, we apply the SEMA to acquire 

the MLEs, which is described below. Moreover, using the invariance property of the MLE, the MLE 

of the RCH can be written as 
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Using the following theorem, we first show that the MLEs of   and   exist and are unique. 

Theorem 2.1. The MLEs of the unknown parameters   and   for ( , ) (0, ) (0, )       exist 

and are unique. 

Proof: We will show that for ( , ) (0, ) (0, )       , the maximum of ( | ),l data    exists and is 

unique. Note the following 
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Here, if : :i m nx    and T   , 0l    and 0l   . Therefore, for a fixed ( )   , ( | ),l data   

is strictly a concave function of ( )  . Moreover, for a fixed  , 
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Therefore, for a fixed ( )  , ( | ),l data  is unimodal with respect to ( )  . Further, 
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So, ( | ),l data   has a maximum value for some 
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 0 0, , ( , ) (0, ) (0 )( ) ),;  = ( ); ( | (, , , |) l data l data               . 

Moreover, ,( | ) (, , ( , ) (0, ) (0 )| ) ( | );  ,k k k k kl data l data l data             . Therefore, the MLEs of 

  and   exist and are unique. 

2.1. SEMA 

The expectation–maximization algorithm (EMA) is a considerable computational method based 

on incomplete data which is widely used to acquire the model parameters [23–25]. The complete 

sample 1 2( , ,..., )nW W W W=   includes the observed data 1: : 2: : : :( , ,..., )m n m n Q m nX X X X=   and censored data 

1( ,..., )QZ Z Z=  , where  1( ,..., );  1,2,...,
kk k kRZ Z Z k Q= =   is a 1 kR   vector and *( )jZ Z =  

1

* 1,...,

Q

i

n Q Rj R

=

− −= =  . The log-likelihood function based on ( , )W X Z=  can be shown as 
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and 
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To solve the above equations under the conditions of the expectation step of the EMA, we should 

calculate the following conditional expectations (CEs): ( ) ( )2 2ln( ) ; ,ij ij i iE Z Z x A x  +  =  , 

( ) ( )2 2ln( ) ; ,Tj TjE Z Z T B T  +  = . It is observed that the above CEs are complex. Thus, we use the SEMA 

to approximate them, as it does not require the CE of the missing data [26,27]. We generate the missing 

samples: ,  1,..., , 1,...,ij iZ i Q j R= =   and * *, 1,...,jZ Z j R = =  , whose conditional functions are given by,

( ) ( )
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−
 . The estimates of the model 

parameters can be evaluated by applying an iterative method, which will be stopped after attaining 

certain accuracy. 
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2.2. The ACIs based on the MLE 

In this subsection, we will create the 100(1 )%,  0 1 −    ACIs for the model parameters based 

on the UPrgHyCS. The Fisher matrix is 
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l l
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The MLE of ( , )  =  has the asymptotic distribution 1ˆ (0, ( ))N I − . 1 ˆ( )I −  is the inverse 

information matrix of ˆ( )I  , written as 
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Then, the two-sided 100(1 )%,  0 1 −   , ACIs for   and   are as follows 

 /2 /2
ˆ ˆ ˆ ˆ( ) , ( )Z ar Z ar       − +

  , (17) 

and 

 /2 /2
ˆ ˆ ˆ ˆ( ) , ( )Z ar Z ar       − +

  
. (18) 



4737 

Electronic Research Archive  Volume 31, Issue 8, 4729–4752. 

Moreover, the ACI for the RCH is 

 /2 /2
ˆ ˆ( ) , var( )R Z ar R R Z R  − +

  
. (19) 

Also, using the delta method, ˆvar( )R  can be approximated by:

1 ( ) ( )ˆˆ ˆ( ) ( , ) ;    ,T T
R R R

R t R t
ar R I     

 

−   
 = =      

. 

3. Bayesian estimation 

The Bayesian estimation method is based on the prior distribution (PD) provided by the 

parameters. The PD plays a decisive role in the Bayesian approach and must be appropriately 

determined. A common approach to gain a PD is to use the conjugate priors. The gamma distribution 

is versatile for adjusting different shapes of the density function. Therefore, we have chosen the 

independent gamma PDs for    and    with the hyper-parameters 1 1 1 1( , ),  , 0a b a b    and 

2 2 2 2( , ),  , 0a b a b   respectively. The joint prior of   and   can be written as 

 1 1 2 21 1
( , ) ,        0,   0.

a b a b
e e

       − − − −
    (20) 

Here, the squared error loss function (SELF) is considered. According to the UPrgHyCS, and by using 

the SELF, the posterior distribution of   and   can be given by 

 ( ) 2 1 21
1

)

1 1 : :
( /2)(1 ) 1 2 2 /22 2

1 : :

(

,
( )( )
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i
i

i
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b

n
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x
data e

Tx

 
  

 

 
    



=+ − + − − −

−

+

−

=

+

 
  
 


 
  


  ++ 



  (21) 

Thus, the BE of any function with the model parameters say ( , )g   , under the SELF is represented as 

 
0 0

0 0

( , ) ( , )

ˆ

( , )

SEBayes

g data d d

g

data d d

      

    

 

 


 

 

. (22) 

The Metropolis-Hastings (M-H) algorithm [28,29] is proposed to evaluate the BEs of parameters; 

additionally, the corresponding intervals due to the multiple integrals in (22) are not computed 

analytically and there are difficulties in the numerical computations of these integrals. It is worth 

mentioning that the M-H algorithm has the ability to simulate complicated posteriors and is free from 

the reliance on conjugate priors. This algorithm is an efficient method to calculate the BEs, as it can 

be easily conducted and help to reduce the operation complexity of high dimensional distribution. To 

apply the M-H algorithm, the posterior density functions of  and  can be re-expressed as 
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and 
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 . (24) 

The following steps can be employed to calculate consistent estimates of the model parameters and RCH. 

Step 1: Set 1z =  and start with ˆˆ( , )ML ML   and M = MCMC iteration with NB = burn in. 

Step 2: Generate ( )z  and ( )z  with the proposal distributions ( 1)( , ( ))zN Variance −  and 
( 1)( , ( ))zN Variance −  respectively. 

Step 3: Calculate 

* ( 1) *
1

( 1
1

1( )

( -
1

( 1) 1))
min 1, ;  the

 

( , )      
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, where 1 ~ (0,1)Uniform  and 2 ~ (0,1)Uniform . 

Step 4: Set 1z z= + . 

Step 5: Redo Steps 1–4 M times. 

Step 6: Discard the burn-in period (NB); then, the BEs of   and   and the RCH under the SELF 

are ( )

1

1
ˆ

SE

M
z

Metropolis Gibbs

z NB
M NB
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= +

=
−
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1
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




= 

+
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Step 7: Order 
( )i , ( ) ( ) and ,   1,..,i iR i M = ; then, the HPDI of any function ( )  has the following 

form 

 ( /2) ( (1 /2)),M M   −
 
  . (25) 

4. MAPE 

We know that the performance of the MAPE is better than that of the MLE based on small samples 

for heavy tailed or skewed distributions. Therefore, the MAPEs for the unknown parameters of the 

GMR distribution under the UPrgHyCS are investigated [30]. The MAPE can be obtained as 

 ( ) ( )
( , ) ( , )

arg max ( , ) arg max ln ( , ) ln ( , )Map data data
   

        = = + . (26) 

where ( , )data     is the joint distribution. Using (21) and (26), the following is the maximum a 

posteriori estimator: 
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ˆ
MAP  and ˆ

MAP , can be obtained by deriving the normal equations for the partial differentiation 

functions (27) and setting it to zero, as follows 
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To evaluate ˆ
MAP   and ˆ

MAP  , we can apply the useful package, namely, the “nleqslv” 

package in R software. 

5. Simulation study 

This section is devoted to the comparative study of the proposed estimates under different cases 

of the UPrgHyCS. The simulation was carried out using R software. We considered different values 

for n, m, k and ;  1,2iT i =  to generate 104 UPrgHyCSs from the ( 2.5, 1.25)GMR  = = . Two different 

,  1,2,iT i =  i.e., 1 21.2,  2.4T T= =   and 1 21.5,  2.8,T T= =   and various combinations of ( ), ,n m  i.e., 

( ) ( ) ( ) ( )30,15 , 30,20 , 50,25 , 50,30 ,  are proposed. Also, for a given ( , )n m  , different censoring schemes 

have been adopted: 

CSI : 0    ;  1,..., 1.z mR and R n m z m= = − = −  

CSII : 1     0;  2,..., .zR n m and R z m= − = =  

CSIII 
1 21,   ... 0;   2 ,  1,...,

1,   2 1;   2 ,  1,..., .                     

z n m n m m

z m

R R R R n m z n m

R R n m n m z n m

− + − += = = = =  = −


= = − +  = −
 

There are two kinds of Bayes estimation techniques that were simulated, i.e., use of the 

informative prior (INP) and non-informative prior (NOINP), respectively, where all 
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hyperparameters in the NOINP were chosen to be 0.0001 instead of 0, which is more appropriate 

since the hyperparameters are greater than 0, and the hyperparameters in the INP are selected 

according to this manner: the means of the PDs are equal to the original parameters 

( 1 1 2 25, 2, 1.25, 1a b a b= = = = ). Using the M-H algorithm, 10000 MCMC samples were generated and 

then the first 1000 values (NB = 1000) were discarded. The trace plots for the MCMC chain of   

and   for n = 30, m = 15, k = 10, T1 = 1.2 and T2 = 2.4 are shown in Figure 3. Different estimates 

were calculated and are displayed in the Tables 1–8. The mean squared errors (MSEs) of the point 

estimators (SEMA and Bayesian estimation under an INP) are presented in Tables 1 and 2, and the 

average length and coverage probability (CP) for the interval estimators are shown in Tables 3 and 4. 

The MSEs of the estimators and the average confidence lengths (ACLs) with their CPs for the 

ACI/credible intervals of ( )R x  are also presented in Table 5. Also, to compare the BEs under the INP 

and NOINP, the heat-map plots for the MSEs of the Bayesian estimators are presented in Figures 4 and 

5. The heat-map provides better visualization of the validity of different estimation methods. 

The following results have been observed: 

I. For fixed n and m, the MSEs of all attained estimates decrease when the values of T1, T2 and k 

increase. Larger k, T1 and T2 provide more effective samples which indicates more information 

about the parameters. 

II. For a fixed n, the MSEs of the obtained estimates decrease with an increase in the values of m, 

k and pre-fixed time points T1 and T2. 

III. Due to the fact that BEs include more information about the parameters compared to other 

estimates, the MCMC estimates are better than the frequentist estimates. 

IV. Simulation results show that the increase in Ti for other fixed values, decrease the biases and 

MSE values in all cases since it provides more testing-time to let more failure occur. 

V. The BEs under the INP perform better than the NOINP. 

VI. The MAPEs have a better performance than the MLEs in terms of average MSEs. 

VII. The results from the interval estimation suggest that with the increase of k, T1 and T2, the 

average interval lengths reduce, along with the average CPs approaching the nominal 

confidence level, by keeping n and m fixed. 

VIII. The average lengths of the confidence intervals decrease with larger sample sizes. Also, the 

HPDIs perform better than the ACIs regarding the average lengths.  

In summary, the performances of both BEs are more favorable than those obtained under the 

frequentist approach and MPAEs. Moreover, based on the CPs, ACIs are better than credible interval 

estimates. 

 

Figure 3. Trace plots for   and   (M = 10000, NB = 1000). 
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Table 1. The MSEs of  under different censoring schemes (C.S.) (T*: (T1,T2) = (1.2,2.4) 

and T**: (T1,T2) = (1.5,2.8)). 

 

 

Figure 4. The heat-map results the MSEs of the BEs of  under the INP and NOINP. 

  

n m k C.S. 
 T   T  

MLE M-H MAP MLE M-H M-H 

30 15 5 I 0.24522 0.11398 0.13427 0.22543 0.10326 0.11875 

30 15 5 II 0.11456 0.09432 0.10558 0.10109 0.07994 0.09654 

30 15 5 III 0.18654 0.10986 0.13654 0.17003 0.10329 0.12305 

30 15 10 I 0.22453 0.10942 0.12654 0.21743 0.09942 0.11198 

30 15 10 II 0.10954 0.09122 0.10200 0.09327 0.07122 0.09254 

30 15 10 III 0.18013 0.09985 0.12998 0.16532 0.09285 0.11548 

30 20 10 I 0.22206 0.10435 0.12254 0.19858 0.09832 0.10548 

30 20 10 II 0.10684 0.08828 0.09547 0.09004 0.06843 0.08543 

30 20 10 III 0.17542 0.09784 0.12326 0.15643 0.09004 0.11034 

30 20 15 I 0.19975 0.09335 0.11647 0.17674 0.08522 0.10365 

30 20 15 II 0.10154 0.08207 0.09126 0.08756 0.06097 0.08312 

30 20 15 III 0.15897 0.08426 0.10988 0.15111 0.08038 0.10587 

50 30 15 I 0.19576 0.08894 0.10885 0.17214 0.07859 0.09942 

50 30 15 II 0.10111 0.07857 0.08335 0.08342 0.05436 0.07690 

50 30 15 III 0.15784 0.08066 0.10670 0.14587 0.07885 0.10216 

50 30 20 I 0.16754 0.08095 0.09758 0.14732 0.04999 0.09112 

50 30 20 II 0.08963 0.07214 0.08055 0.06353 0.03761 0.06546 

50 30 20 III 0.13479 0.08037 0.09843 0.11955 0.06203 0.09492 
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Table 2. The MSEs of   under different censoring schemes (T*: (T1,T2) = (1.2,2.4) and 

T**: (T1,T2) = (1.5,2.8)). 

 

Figure 5: The heat-map results the MSEs of the BEs of   under the INP and NOINP. 

  

n m k C.S. 
 T   T  

MLE M-H MAP MLE M-H MAP 

30 15 5 I 0.12932 0.10432 0.10783 0.11324 0.09470 0.09633 

30 15 5 II 0.09843 0.08258 0.08959 0.09209 0.07742 0.07884 

30 15 5 III 0.11442 0.09765 0.99842 0.11014 0.09365 0.09621 

30 15 10 I 0.11705 0.09911 0.10076 0.10321 0.09416 0.09498 

30 15 10 II 0.09121 0.07984 0.08169 0.08674 0.07121 0.07543 

30 15 10 III 0.11032 0.08842 0.09327 0.10300 0.08205 0.08986 

30 20 10 I 0.11409 0.09445 0.09782 0.09754 0.09008 0.09095 

30 20 10 II 0.08432 0.07324 0.07893 0.08214 0.06885 0.06894 

30 20 10 III 0.10999 0.08224 0.08674 0.09743 0.08054 0.08292 

30 20 15 I 0.09953 0.09005 0.09366 0.09354 0.08685 0.08890 

30 20 15 II 0.08123 0.07210 0.07632 0.07489 0.06236 0.06668 

30 20 15 III 0.09674 0.08016 0.08417 0.09266 0.07985 0.08065 

50 30 15 I 0.07854 0.07205 0.07341 0.07430 0.06957 0.07001 

50 30 15 II 0.07094 0.06749 0.06867 0.06546 0.06028 0.06369 

50 30 15 III 0.07645 0.07111 0.07389 0.07116 0.06934 0.06721 

50 30 20 I 0.05894 0.05243 0.05757 0.05354 0.04778 0.04799 

50 30 20 II 0.04776 0.04255 0.04509 0.04032 0.03858 0.03995 

50 30 20 III 0.05214 0.04893 0.04928 0.05318 0.04643 0.04690 
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Table 3. Average lengths and CPs of 95% intervals for   under different censoring schemes. 

Table 4. Average lengths and CPs of 95% intervals for   under different censoring schemes. 

Continue to next page 

n m k C.S. 

T T T T T T T T 

ACIs CP-ACI HPD CP-HPD ACIs CP-ACI HPD CP-HPD 

30 15 5 I 0.96843 0.9532 0.67328 0.9719 0.94765 0.9588 0.66223 0.9632 

30 15 5 II 0.95321 0.9536 0.65473 0.9612 0.94066 0.9532 0.65126 0.9611 

30 15 5 III 0.96463 0.9531 0.67120 0.9634 0.94327 0.9565 0.67157 0.9637 

30 15 10 I 0.96324 0.9495 0.66437 0.9632 0.94256 0.9435 0.65346 0.9721 

30 15 10 II 0.09506 0.9511 0.65132 0.9715 0.93687 0.9588 0.63675 0.9598 

30 15 10 III 0.95879 0.9478 0.66453 0.9643 0.93998 0.9485 0.64895 0.9600 

30 20 10 I 0.95876 0.9573 0.65357 0.9632 0.93870 0.9600 0.65357 0.9665 

30 20 10 II 0.94685 0.9524 0.64219 0.9487 0.93265 0.9517 0.64219 0.9498 

30 20 10 III 0.95642 0.9537 0.65325 0.9634 0.93756 0.9565 0.65325 0.9701 

30 20 15 I 0.95327 0.9533 0.64329 0.9465 0.93161 0.9428 0.63425 0.9675 

30 20 15 II 0.93996 0.9539 0.63646 0.9599 0.92457 0.9515 0.62886 0.9589 

30 20 15 III 0.95400 0.9478 0.64177 0.9621 0.92995 0.9600 0.63423 0.9623 

50 30 15 I 0.94124 0.9600 0.63785 0.9654 0.92876 0.9423 0.61598 0.9609 

50 30 15 II 0.93675 0.9564 0.63115 0.9622 0.91980 0.9488 0.61110 0.9567 

50 30 15 III 0.93896 0.9576 0.63684 0.9653 0.92693 0.9436 0.61378 0.9411 

50 30 20 I 0.92453 0.9488 0.60884 0.9642 0.89954 0.9600 0.58989 0.9633 

50 30 20 II 0.91549 0.9525 0.59805 0.9578 0.89305 0.9490 0.56999 0.9589 

50 30 20 III 0.92159 0.9596 0.60785 0.9633 0.89894 0.9449 0.58757 0.9610 

n m k C.S. 

T T T T T T T T 

ACIs CP-ACI HPD CP-HPD ACIs CP-ACI HPD CP-HPD 

30 15 5 I 0.62355 0.9616 0.58435 0.9700 0.61886 0.9588 0.57214 0.9675 

30 15 5 II 0.59675 0.9563 0.57312 0.9615 0.59004 0.9587 0.56543 0.9421 

30 15 5 III 0.61994 0.9475 0.58223 0.9655 0.61332 0.9600 0.56896 0.9622 

30 15 10 I 0.61785 0.9477 0.58009 0.9421 0.60773 0.9456 0.58009 0.9700 

30 15 10 II 0.59324 0.9537 0.56874 0.9446 0.57324 0.9565 0.56874 0.9597 

30 15 10 III 0.61566 0.9600 0.57897 0.9632 0.60508 0.9600 0.57897 0.9413 

30 20 10 I 0.61110 0.9600 0.57099 0.9621 0.58329 0.9566 0.56685 0.9426 

30 20 10 II 0.58873 0.9522 0.56231 0.9453 0.56874 0.9469 0.55319 0.9411 

30 20 10 III 0.60987 0.9589 0.56998 0.9600 0.58895 0.9429 0.56208 0.9589 

30 20 15 I 0.60753 0.9548 056638 0.9459 0.58005 0.9539 0.56022 0.9586 
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Table 5. The MSEs, average lengths and CPs of ( )R x under different censoring schemes. 

Continue to next page 

n m k C.S. 
T T T T T T T T 

ACIs CP-ACI HPD CP-HPD ACIs CP-ACI HPD CP-HPD 

30 20 15 II 0.57999 0.9533 0.56008 0.9600 0.56206 0.9469 0.55812 0.9421 

30 20 15 III 0.60442 0.9400 0.56539 0.9631 0.57649 0.9611 0.55998 0.9615 

50 30 15 I 0.60044 0.9435 0.56154 0.9424 0.56995 0.9600 0.56154 0.9600 

50 30 15 II 0.57325 0.9543 0.54997 0.9576 0.55369 0.9535 0.54997 0.9566 

50 30 15 III 0.59745 0.9554 0.55686 0.9400 0.56560 0.9579 0.55686 0.9408 

50 30 20 I 0.58432 0.9565 0.55648 0.9587 0.55210 0.9543 0.55648 0.9460 

50 30 20 II 0.56894 0.9511 0.54026 0.9465 0.54767 0.9515 0.54026 0.9455 

50 30 20 III 0.58207 0.9488 0.55622 0.9600 0.54989 0.9485 0.55622 0.9580 

n m k C.S. 

T T T T T T T T 

MLE M-H 
ACIs 

(CP) 

HPD 

(CP) 
MLE M-H 

ACIs 

(CP) 

HPD 

(CP) 

30 15 5 I 0.07985 0.06432 
0.34873 

(0.958) 

0.21873 

(0.965) 
0.07143 0.06068 

0.34643 

(0.960) 

0.21532 

(0.972) 

30 15 5 II 0.07324 0.05798 
0.34531 

(0.945) 

0.21307 

(0.970) 
0.06897 0.05712 

0.34144 

(0.946) 

0.20966 

(0.936) 

30 15 5 III 0.07744 0.06219 
0.34855 

(0.964) 

0.21822 

(0.932) 
0.07007 0.06025 

0.34623 

(0.941) 

0.21514 

(0.934) 

30 15 10 I 0.07173 0.05998 
0.34507 

(0.963) 

0.21477 

(0.974) 
0.06895 0.05785 

0.34205 

(0.940) 

0.21213 

(0.931) 

30 15 10 II 0.06537 0.05605 
0.33867 

(0.940) 

0.21009 

(0.964) 
0.06650 0.05545 

0.33532 

(0.940) 

0.20768 

(0.960) 

30 15 10 III 0.07009 0.05746 
0.34216 

(0.938) 

0.21481 

(0.972) 
0.06822 0.05717 

0.34100 

(0.961) 

0.21203 

(0.935) 

30 20 10 I 0.06996 0.05788 
0.34094 

(0.962) 

0.20886 

(0.935) 
0.06485 0.05720 

0.33658 

(0.941) 

0.20628 

(0.972) 

30 20 10 II 0.06312 0.05346 
0.33256 

(0.961) 

0.20154 

(0.964) 
0.06131 0.05291 

0.33026 

(0.943) 

0.20010 

(0.962) 

30 20 10 III 0.06704 0.05673 
0.33965 

(0.940) 

0.20653 

(0.971) 
0.06467 0.05655 

0.33537 

(0.942) 

0.20537 

(0.973) 

30 20 15 I 0.06494 0.05290 
0.33658 

(0.940) 

0.19748 

(0.933) 
0.06212 0.05234 

0.33302 

(0.938) 

0.19456 

(0.975) 

30 20 15 II 0.06010 0.05111 
0.32760 

(0.958) 

0.19394 

(0.940) 
0.05899 0.05009 

0.32445 

(0.942) 

0.19133 

(0.940) 

30 20 15 III 0.06486 0.05266 
0.32999 

(0.939) 

0.19659 

(0.972) 
0.06178 0.05210 

0.32876 

(0.960) 

0.19441 

(0.973) 
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6. Optimum progressive censoring 

Determination of the optimum progressive censoring scheme plan is a critical purpose for a 

reliability researcher. To determine the optimum progressive censoring scheme plan, some criteria for 

specified values of n, m, k, 1T , 2T  and ,  1,...,iR i m=  have been adopted as follows 

• Criterion 1: ˆ ˆ -1 -1det(I (q)); The objective is to minimize det(I (q)) . 

• Criterion 2: 
1 1ˆ ˆ( ( ));    ( ( ))trace I The objective is to minimize trace I − − . 

• Criterion 3: ˆ ˆ , 0 1p pVariance(log(V )); The objective is to minimize Variance(log(V ))  p  . 

• Criterion 4: ˆ  ,

1 1

p

0 0

= Variance(log( ))w(p)dp; The objective is to minimize  w(p) 0, w(p)dp = 1    . 

Also, the logarithmic for p  of the GMR distribution can be represented as follows 

 ( )
1/2

2/
1 2log( ) (1 ) ;    0 1.p p p


  − 

= − −  
  

 (30) 

Using (30) and the delta method, the approximation of ˆ(log( ))pVariance   can be shown as 

 ( ) ( )1 ˆˆ ˆ ˆ(log( )) log( ) ( ) log( )
T

p p pVariance I   −=   , (31) 

n m k C.S. 

T T T T T T T T 

MLE M-H 
ACIs 

(CP) 

HPD 

(CP) 
MLE M-H 

ACIs 

(CP) 

HPD 

(CP) 

50 30 15 I 0.06231 0.04574 
0.31887 

(0.962) 

0.18765 

(0.964) 
0.06180 0.04498 

0.31366 

(0.938) 

0.18332 

(0.974) 

50 30 15 II 0.05769 0.04390 
0.31539 

(0.942) 

0.18222 

(0.940) 
0.05713 0.04323 

0.31199 

(0.939) 

0.17985 

(0.935) 

50 30 15 III 0.06318 0.04577 
0.31889 

(0.959) 

0.18753 

(0.938) 
0.06156 0.04476 

0.31358 

(0.942) 

0.18141 

(0.960) 

50 30 20 I 0.05873 0.03879 
0.31266 

(0.943) 

0.18227 

(0.960) 
0.05800 0.03799 

0.30807 

(0.939) 

0.17843 

(0.961) 

50 30 20 II 0.05266 0.03452 
0.30687 

(0.957) 

0.17639 

(0.959) 
0.05189 0.03358 

0.30256 

(0.958) 

0.17467 

(0.939) 

50 30 20 III 0.05831 0.03709 
0.30890 

(0.957) 

0.18185 

(0.960) 
0.05790 0.03689 

0.30775 

(0.960) 

0.17699 

(0.939) 
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where, ( )
ˆˆ( , )

ˆ ˆ ˆlog( ) og( ), og( )
T

p p pl l

   

  
 

= =

  
 =  

  
 is the gradient of ˆlog( )p  with respect to   and  . 

Note that the optimized censoring scheme corresponds to the lowest values of the proposed criteria. 

7. Real data analysis 

For the application of the UPrgHyCS in practice, we use real data analysis to validate the 

estimation methods acquired in this paper. The real life data contain the time between failures for 30 

items of repairable mechanical equipment [31]. The fitted result of the dataset is compared by utilizing 

the Kolmogorov-Smirnov (K-S) distance, as well as the p-value. The K-S distance is 0.0862 with a p-

value of 0.9788. We also presented the probability-probability (P-P) and empirical cdf plots for the 

fitted GMR distribution in Figures 6 and 7 respectively. It can be seen that the presentations follow 

from the numerical results. We also compared the GMR distribution with other well-known 

distributions by using the different model selection (MS) criteria such as the log-likelihood criterion, 

Akaike information criterion (AIC), Bayesian information criterion (BIC), K-S statistic, Cramer-von 

Mises (CVM) statistic and Anderson-Darling (AnDa) statistic. The results have been presented in Table 

6. The computations of these criteria were carried out using R software by implementing the 

“fitdistrplus” package. From Table 6, it can be seen that the GMR is the best model, as compared to 

other fitted models in the literature, for fitting real-life data; this is because it has the lowest statistic 

values. Also, to show the existence and uniqueness of the MLEs, the contour plot of the joint 

( )|,l data  using the complete dataset is plotted in Figure 8. It confirms these properties of the MLEs. 

We consider the following UPrgHyCSs, which are given as follows 

• Scheme I: *21
1 230, 22, 18, 1.9, 2.5, (8,0 ),n m k T T R= = = = = =  

• Scheme II: *21
1 230, 22, 21, 1.79, 1.95, (8,0 ),n m k T T R= = = = = =  

• Scheme III: *21
1 230, 22, 20, 1.8, 2.5, (8,0 ).n m k T T R= = = = = =  

Table 6: Different MS criteria for the fitted distributions. 

  

Distribution Log-likelihood AIC BIC K-S CVM AnDa 

GMR -39.84937 83.69873 86.50113 0.086269 0.019857 0.146416 

Inverse Weibull -46.37561 96.75122 99.55361 0.133855 0.183039 1.229709 

Inverse Gamma  -45.50735 95.01469 97.81709 0.157632 0.173521 1.066590 

Log-Normal -40.73513 85.47025 88.27265 0.098692 0.036932 0.257797 

Inverted Exp-Rayleigh  -52.88474 109.7695 112.5719 0.259787 0.620545 3.236685 
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Figure 6. The P-P plot for the GMR. 

 

Figure 7. The empirical and the fitted GMR. 

 

Figure 8. The 3D plot of negative ( )|,l data  . 
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According to the censoring schemes described above, the MLEs based on the SEMA, Bayesian 

point estimation, maximum a posteriori estimation, ACIs and HPDIs were acquired.  Borrowing the 

idea from [32], the hyperparameters under the NOINP were taken as 0.0001,  1,2i ia b i= = = . Table 7 

displays the point and interval estimates of the parameters. It is clear that the BEs perform marginally 

better than the MLEs. Also, the Bayesian approach features the shortest credible interval while the 

length of the ACI is the longest. 

To express the concept of optimal censoring, the different criteria are evaluated based on the 

following three generated samples: 

( *21 *21 *11 *10(1) : (0 ,8),  (2) : (8,0 ),  (3) : (0 ,8,0 )R R R= = = ). 

Based on two values of ;( 0.4,0.7)p p = , the results were obtained as reported in Table 8. It is clear 

that *21(8,0 )R =  is optimal scheme under criteria 1, 3 and 4, while *11 *10(0 ,8,0 )R = is optimal based 

on criterion 2. We notice that these outcomes support our results in the simulation section. 

Table 7: Different estimates for  and   based on different censoring schemes. 

Table 8: Optimum censoring schemes for the proposed samples. 

6. Conclusions 

It is of great significance to find the appropriate lifetime distribution and optimal censoring 

scheme. This is also the basis of life-testing research and reliability research. In this article, the 

estimation and optimal censoring problems of the parameters and RCH of the GMR distribution are 

studied based on the UPrgHyCS. The SEMA is provided to calculate the MLEs of the model 

parameters and RCH, as well as the ACIs. We provided conditions under which the MLEs exist and 

are unique. Moreover, the Bayesian approach has been investigated with the gamma priors; since the 

Bayesian estimation cannot be acquired in closed form, the MCMC method was utilized to provide the 

Schemes  MLEs BEs ACI HPD 

CSI   4.54394 4.19734 (4.2455,5.7984) (4.3874,5.3258) 

CSI   2.43283 2.20064 (1.9784,3.1109) (2.0406,3.0244) 

CSII   3.85462 3.82115 (3.4318,4.1732) (3.5433,4.1263) 

CSII   1.99794 1.89873 (1.1178,2.7943) (1.3642,2.5648) 

CSIII   4.75328 4.26964 (4.1658,5.2154) (4.3275,5.2295) 

CSIII   2.31763 2.19835 (1.9226,2.9974) (1.9998,2.6893) 

Schemes Criterion 1 Criterion 2 p Criterion 3 Criterion 4 

(1) 0.000672 
 

0.189035 

p = 0.4 

p = 0.7 

0.0585438 

0.0511043 

0.0732473 

0.0634898 

(2) 0.000264 
 

0.150968 

p = 0.4 

p = 0.7 

0.0328412 

0.0299632 

0.0532815 

0.0477685 

(3) 0.000348 
 

0.1495437 

p = 0.4 

p = 0.7 

0.0489853 

0.0402164 

0.0599854 

0.0564893 
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BEs and the HPDIs. Also, we have obtained the MAPEs for the unknown parameters. An elaborate 

simulation study was performed for the comparison of the considered estimators. Simulation results 

indicate that the Bayes estimator outperforms the MLE in terms of their accuracies as reported in 

Tables 1–5. Also, the classical and Bayes estimations based on the NOINP show similar performances. 

Different information measures are utilized to achieve the optimal censoring scheme. To elucidate the 

practical application of the proposed methods to real-life phenomenon, and to determine the optimal 

censoring plan, a real dataset was analyzed. According to the research, the GMR distribution is a 

suitable model for the proposed data, and the left censoring scheme is optimal in most cases. Future 

work will explore estimation for stress-strength reliability models and accelerated life-testing models 

under an UPrgHyCS. 
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Nomenclature Acronyms 

Approximate Confidence Intervals ACIs 

Bayes Estimates BEs 

Censoring Scheme CS 

Coverage Probability CP 

Gamma-Mixed Rayleigh GMR 

Highest Posterior Density Interval HPDI 

Informative Prior INP 

Metropolis-Hastings M-H 

Mean Square Error MSE 

Maximum Likelihood ML 

Maximum a Posteriori Estimate MAPE 

Monte Carlo Markov Chain MCMC 

Non-Informative Prior NOINP 

Optimal Censoring Plan OCP 

Prior Distribution PD 

Progressive Censoring Prg 
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Nomenclature Acronyms 

Reliability Characteristic RCH 

Stochastic Expectation-Maximization Algorithm SEMA 

Squared Error Loss Function   SELF 

Unified Hybrid UH 

Unified Progressive Hybrid Censoring Scheme  UPrgHyCS 
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