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Abstract: Machine learning (ML) techniques are extensively applied to practical maritime 
transportation issues. Due to the difficulty and high cost of collecting large volumes of data in the 
maritime industry, in many maritime studies, ML models are trained with small training datasets. The 
relative predictive performances of these trained ML models are then compared with each other and 
with the conventional model using the same test set. The ML model that performs the best out of the 
ML models and better than the conventional model on the test set is regarded as the most effective in 
terms of this prediction task. However, in scenarios with small datasets, this common process may lead 
to an unfair comparison between the ML and the conventional model. Therefore, we propose a novel 
process to fairly compare multiple ML models and the conventional model. We first select the best ML 
model in terms of predictive performance for the validation set. Then, we combine the training and the 
validation sets to retrain the best ML model and compare it with the conventional model on the same 
test set. Based on historical port state control (PSC) inspection data, we examine both the common 
process and the novel process in terms of their ability to fairly compare ML models and the 
conventional model. The results show that the novel process is more effective at fairly comparing the 
ML models with the conventional model on different test sets. Therefore, the novel process enables a 
fair assessment of ML models’ ability to predict key performance indicators in the context of limited 
data availability in the maritime industry, such as predicting the ship fuel consumption and port traffic 
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volume, thereby enhancing their reliability for real-world applications. 

Keywords: fair evaluation of prediction models; machine learning; small dataset; maritime transportation  
 

1. Introduction  

ML has advanced significantly in recent years, and the application of this data-driven method 
has been extended to various fields, such as computer vision, smart cities, biometrics and 
agriculture (see [1–4]). ML has recently received much attention in terms of solving maritime 
transportation problems [5,6]. ML techniques have been applied to ship energy efficiency 
management [5,7], ship risk prediction and safety management [8,9], ship inspection planning [10,11], 
ocean freight market condition prediction [12,13] and other areas. 

ML is a branch of artificial intelligence in which computers learn by improving their task 
performance through fitting to historical data rather than being literally programmed [2,14]. The ML 
algorithm is generally trained on a proportion of the historical data and the remainder of these data are 
regarded as the test set, which validates the generalization ability of the trained model. The 
construction of ML models usually requires a large volume of data, so decisions concerning how many 
data samples to use have a significant impact on their performance. Faber et al. [15] report that the 
accuracy of an ML model in predicting the energy required for the formation of Elpasolite crystals 
improves significantly as the training data size increases. Ng et al. [16] find that the prediction accuracy 
of three ML models in terms of soil properties improves as the training sample size increases by 
examining the learning curves. These studies unambiguously demonstrate that the predictive 
performance of ML models can be improved by increasing the size of the training dataset. However, 
the improvement brought about by data accumulation is likely to be limited by the noise and errors in 
the training data. The amount of data required for training ML models depends on many factors, such 
as the complexity of the ML algorithm, the expected prediction accuracy and the number of features 
considered. In terms of complexity, the more complex the ML model, the more training data are 
required to train the algorithm and thus guarantee the generalization ability of the prediction model.  

In practice, learning curves are widely applied to identify the extent to which an ML model 
benefits from adding more training data and whether the model suffers from underfitting or overfitting. 
A learning curve graph typically displays two curves: one depicting the relationship between the 
number of training samples and the predictive accuracy on the training set and the other depicting the 
relationship between the number of training samples and the predictive accuracy on the validation set. 
When the prediction accuracies for both the training and validation datasets converge to a value as the 
training data size increases, the size corresponding to the value represents the minimum requirement 
for training an ML model to obtain satisfactory performance. Thus, a training dataset with a size below 
the minimum is too small to guarantee the satisfactory performance of the model. In addition, some 
technologies, such as semi-supervised learning [17,18], have been developed to train ML models on 
relatively small training dataset. For example, Wu and Prasad [19] propose a semi-supervised deep 
learning approach for hyperspectral image classification, which uses both limited labeled data and 
abundant unlabeled data to train a deep neural network.  

Although the ML models emerging in recent years demonstrate competitive performance in 
multiple prediction tasks, conventional models which are usually based on expert knowledge or simple 
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rules such as linear regression (LR) also play an important role in the maritime industry. To determine 
whether ML models or the conventional model is more accurate in terms of a prediction task, 
researchers usually train multiple ML models and the conventional model on the same training set 
simultaneously. If one ML model is more accurate than the conventional model on the test set, we can 
conclude that ML methods can better fit the training data and offer a higher prediction accuracy for 
unseen data than the conventional model [20]. The above comparison process is referred to as the 
common process in this study. For example, in ship fuel consumption prediction research, statistical 
regression methods are regarded as the conventional approach for ship speed–fuel consumption 
modeling (see [21–23]). Gkerekos et al. [24] collect 745 ship sailing records from a noon report and 
compare LR methods and several ML algorithms such as random forest (RF), the extra tree model, the 
support vector machine (SVM), the boosting model, the bagging model and artificial neural networks 
(ANNs) in terms of their abilities to predict ship fuel consumption. They conclude that SVM is the 
most accurate according to the coefficient of determination (R2) on the same test set. Uyanık et al. [25] 
also compare the performance of ML and statistical regression models in terms of predicting ship fuel 
consumption using 724 samples from the noon report, and find that deep neural networks perform best 
on the test data. Li et al. [26] combine the noon report data and meteorological data according to the 
estimated geographical positions derived from the great circle route. Based on the fusion dataset of no 
more than 500 samples, they conduct a study to evaluate the performance of statistical regression 
models, including ridge regression and least absolute shrinkage and selection operator (LASSO) 
regression, and nine ML models, such as RF, SVM, ANNs and extremely randomized trees (ERTs), in 
predicting ship fuel consumption rate. They conclude that ERTs present the best fit and generalization 
performances among all models. Different from Li et al. [26], Du et al. [27] combine the noon report 
data and the meteorological data according to the actual geographical coordinates provided by the AIS 
data. They also compare the performance of statistical regression models, including ridge regression 
and LASSO regression, with nine ML models such as RF, SVM, ANNs and ERTs to predict ship fuel 
consumption rate. Their findings also show that ERTs exhibit the most promising predictive 
performance among all the models. 

Due to the difficulty and huge expense of collecting large quantities of data, most of the 
aforementioned studies use no more than 1000 records to train and test ML models. However, these 
training datasets may be inadequate, particularly for ML models with a high degree of complexity. 
Training ML models using a small quantity of data may lead to two problems. First, inadequate training 
data not only make pattern recognition more difficult but also reduce the generalization ability of the 
models [3]. Although ML models perform better than statistical regression models on small test sets, 
this improvement cannot be guaranteed for a larger and unseen dataset. In addition, with a small test 
set and the exponential number of trained ML models required to cover the whole hypothesis space, 
an ML model that can make predictions with 100% accuracy on the test set may exist (i.e., provide the 
ground truth). For example, if each sample in the test set takes the value of 0 or 1 and the test set 
contains 𝑛 samples, then the values of all samples have 2௡ cases, and the true value for all samples 
is one of the 2௡ cases. If we have 2௡ ML models and each randomly predicts the targets, one of 
the models must have 100% prediction accuracy. However, this does not indicate that the ML 
model outperforms the conventional model in terms of predictive ability. Thus, the common 
process of comparing multiple ML models and the conventional model on the same training set 
leads to unfair comparisons. 

We design a novel process to compare the performance of ML models and the conventional model 
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for a small dataset. First, we train multiple ML models on the same dataset, and the model with the 
best performance is selected using the validation set. The best ML model is then retrained on a new 
training dataset, which is comprised of the original training set and the validation set. This new training 
dataset is then used to train the conventional model. Finally, the prediction accuracies of the retrained 
ML model and the conventional model are compared on the same test data. This novel process 
guarantees a fair comparison between the ML models and the conventional model. It is worth noting 
that this novel process is used to compare the predictive performance of ML models and conventional 
models rather than to compare the performance of multiple ML models. 

In this study, we regard an ML model as having consistent performance if its superiority over the 
conventional model is consistent across different test sets. For example, the novel process or the 
common process can select the best ML model 𝐴∗ from multiple ML models and 𝐴∗ then performs 
better/worse than the conventional model on different test sets in terms of a certain metric. Model 𝐴∗ 
thus has consistent performance. To verify that the novel process is more likely to select an ML model 
with consistent performance, two processes are executed simultaneously many times to calculate the 
probability that each process selects an ML model with consistent performance. LR is the most basic 
regression method and ANN is a popular ML method, so numerous ANN models with different 
structures are randomly generated and two processes are used to select the ANN model with the best 
predictive performance in each execution. Based on the selection, the predictive performance of the 
best ANN model is compared twice with that of the LR model on two test sets. When the preset number 
of executions is reached, we can calculate and compare the probabilities of selecting ML models with 
consistent performance for the two processes. The results show that the proposed process has a higher 
probability of selecting the ML model with consistent performance under a small dataset.  

The proposed novel process for comparing the performance of ML models and conventional 
models on small datasets has important implications for the maritime industry. By enabling a fair 
comparison between ML and conventional models in the context of limited data availability in the 
maritime industry, the proposed process provides a more accurate assessment of the ability of ML 
models to predict key performance indicators such as ship fuel consumption. This, in turn, can enhance 
the reliability and robustness of ML models used in the maritime industry, making them more suitable 
for real-world applications.  

2. Data description 

Our data are derived from two sources: the Asia Pacific Computerized Information System 
(APCIS) operated by the Memorandum of Understanding on Port State Control in the Asia-Pacific 
(Tokyo MoU)1 and the World Register of Ships (WRS)2. The APCIS is a freely accessible database of 
historical PSC inspection data from the member authorities of the Tokyo MOU. These data mainly 
include information on deficiencies and detentions of ships that have been identified during PSC 
inspections. Many studies use PSC inspection data derived from this database to train different ML 
models for predicting different types of ship risk, such as the ship detention probability and the 
number of ship deficiencies, thereby achieving accurate identification of high-risk foreign visiting 
ships (see [28–30]). The WRS is a comprehensive database maintained by the International Maritime 
Organization (IMO) that contains information on ships of all types and sizes around the world [31]. It 

 
1 https://www.tokyo-mou.org/inspections_detentions/psc_database.php. 
2 https://world-ships.com/. 



4757 

Electronic Research Archive  Volume 31, Issue 8, 4753–4772. 

provides information on ships’ ownership, classification, construction and operational status, as well 
as details of their flag state, port of registry and other relevant information. PSC plays an important 
role in ensuring maritime safety and control ship pollutants in maritime transportation (see [32–39]). 

Table 1. Feature description. 

Output target Description Min 
value  

Max 
value 

Mean 
value 

The number of 
deficiencies 

This output target represents overall number of ship deficiencies 
found in the PSC inspection. 

0 51 4.10 

Input features Description Min 
value 

Max 
value 

Mean 
value 

Ship age This parameter is the years between the date of keel laid and the 
date of PSC inspection. 

0.36 48.94 11.63 

Ship type Bulk carrier, general cargo/multiple purpose, container ship, 
passenger ship, tanker, other. 

/ / / 

Ship gross tonnage This parameter measures the overall internal volume of ships in unit 
100 cubic feet. 

299.00 228,283.0
0 

44031.12

Ship length This parameter is the maximum length of a ship in unit of meter. 40.75 400.00 214.44 
Ship beam The parameter is the width of the hull in unit meter. 7.80 63.10 31.84 
Ship depth The parameter measures the perpendicular distance between the top 

of the keel and the bottom of the upper deck in unit meter. 
3.30 38.00 17.73 

Total detention times The parameter presents the sum of the detentions in all historical 
PSC inspections around the world. 

0 18 0.57 

Last inspection time This parameter calculates the number of months between the last 
PSC inspection and the current PSC inspection. 

0.03 180.67 10.01 

The number of 
deficiencies in the last 
inspection 

The parameter presents the ship deficiencies number detected in the 
previous PSC inspection. 

0 55 2.43 

State of last inspection 1, if the ship was detained in the last inspection; 0, otherwise; none, 
if the ship was inspected for the first time in the Tokyo MoU. 

/ / / 

The number of times 
changing the flag 

The parameter represents the number of times changing a ship’s 
flag. 

0 8 0.68 

Ship flag performance This parameter is provided by the flag Black-Grey-White list [43], 
whose state can be ranked by “white”, “grey”, “black”. The state of 
this parameter is “not listed” if the flag is not displayed on the list. 

/ / / 

Ship company 
performance 

This parameter is calculated according to historical detention and 
deficiency records of all vessels in a company’s fleet in the last 
running 36 months [44]. The performance of ship companies can be 
ranked by “high”, “medium”, “low” and “very low”. The state of 
“not listed” is used to represent that the performance of the 
companies is not displayed on the list. 

/ / / 

Ship recognized 
organization (RO) 
performance 

This parameter is calculated according to the RO performance list 
[45], whose state can be ranked by “high”, “medium”, “low” and 
“very low”. The state of this parameter is “not listed” if the 
performance of the RO is not displayed on the list. 

/ / / 

Casualties in the last 
five years 

The parameter takes a value of 1 if the ship suffered casualties in the 
past five years, otherwise it takes a value of 0. 

0 3 0.08 

Note: The flag Black-Grey-White list and the RO performance list are provided by the Tokyo MoU. 

We use the conventional model (LR model) and the ML model (ANN) to make predictions about 
ship deficiencies. After reviewing the existing literature (see [40–42]), we choose 15 input features 
from the APCIS database and WRS database that are considered to be useful to predict the number of 
deficiencies of ships in PSC inspections. The input features from the two databases are combined based 
on the ship IMO numbers. The selected features are listed and described in Table 1. For new ships 
appearing in the Tokyo MoU, the values for “the number of deficiencies in the last inspection” and 
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“last inspection time” are set to the median and the values for “state of last inspection” are set to be 
the mode. The inspection records period we consider is from January 2, 2015 to November 24, 2020 
and we obtain a total of 3672 records. 

3. Models for predicting the number of ship deficiencies 

3.1. Conventional method: LR model 

The LR model is the most common and simplest regression algorithm and is often considered as 
the baseline model for evaluating the predictive performance of other models. Let 𝐷 ൌ ሼሺ𝒙௜, 𝑦௜ሻሽ௜ୀଵ

௡  
denote the sample data, where 𝒙௜ ൌ ሺ𝑥௜ଵ, 𝑥௜ଶ,⋯ , 𝑥௜௥ሻ represents the 𝑖th sample with 𝑟 features and 
𝑦௜ denotes the output target. The output in the LR model is calculated by a linear combination of the 
input variables [46,47]:  

𝑦ො௜ ൌ 𝑤଴ ൅ 𝑤ଵ𝑥௜ଵ ൅ ⋯൅ 𝑤௥𝑥௜௥ ൌ 𝑤଴ ൅ ∑ 𝑤௝𝑥௜௝
௥
௝ୀଵ , (1) 

where 𝑦ො௜ is the prediction of sample 𝒙௜. Parameters 𝑤௝ሺ𝑗 ൌ 0,1,⋯ , 𝑟ሻ in Eq (1) can be estimated by 
minimizing half of the mean squared error (MSE) shown in Eq (2) 

𝒘ෝ ൌ argmin
𝒘

ቄ ଵ
ଶ௡
∑ ሺ𝑦௜ െ 𝑦ො௜ሻଶ
௡
௜ୀଵ ቅ.        (2) 

3.2. ML algorithm: ANN model 

An artificial neuron is the basic element of an ANN model. It receives one or more inputs from 
the training data or the previous layer and then processes them via an activation function to produce 
an output. Figure 1 shows the structure of a neuron. The neuron receives inputs of 𝑟 dimensions that 
are associated with weights 𝑤௜ሺ𝑖 ൌ 1,2,⋯ , 𝑟ሻ. The weighted sum of all of the inputs denoted by 𝑡 is 
calculated by 𝑡 ൌ ∑ 𝑤௜𝑥௜ ൅ 𝑏௡

௜ୀଵ  , where 𝑏  is the bias. The weighted sum 𝑡  is passed through an 
activation function 𝑓 to generate the output 𝑧, which can be represented as 𝑧 ൌ 𝑓ሺ𝑡ሻ (see [47–49]). 
Three widely used activation functions are rectified linear unit (ReLU), logistic and tanh.  

 

Figure 1. The structure of a neuron. 
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Figure 2. The network structure of an ANN model with three layers. 

Figure 2 shows an ANN model with three layers, and its structure can be presented using the 
following equations. Let 𝑡௞ሺ𝑘 ൌ 1,2,⋯ ,𝐾ሻ denote the weighted sum of the inputs to all neurons in 
HL. 𝑡௞ can be calculated by 

𝑡௞ ൌ ∑ 𝑤௝௞𝑥௝
௥ାଵ
௝ୀଵ , 𝑘 ൌ 1,2,⋯ ,𝐾.        (3) 

The output of neurons in the HL, denoted by 𝑧௞ሺ𝑘 ൌ 1,2,⋯ ,𝐾ሻ, is calculated by 

𝑧௞ ൌ 𝑓ሺ𝑡௞ሻ, 𝑘 ൌ 1,2,⋯ ,𝐾,        (4) 

𝑧௄ାଵ ൌ 1.          (5) 

𝑧௞ሺ𝑘 ൌ 1,2,⋯ , 𝐾ሻ and 𝑧௄ାଵ are then regarded as the input to the output layer. The predicted 
value generated by the output layer is calculated as follows: 

𝑦ො ൌ 𝑓ሺ∑ 𝑣௞𝑧௞
௄ାଵ
௞ୀଵ ሻ.         (6) 

Thus, the relationship between the input features 𝑥௝ሺ𝑗 ൌ 1,2,⋯ ,𝑚 ൅ 1ሻ and the final prediction 
𝑦ො can be presented by 

 𝑦ො ൌ 𝑓ሺ∑ 𝑣௞𝑧௞
௄ାଵ
௞ୀଵ ሻ ൌ 𝑓ሺ∑ 𝑓ሺ𝑡௞ሻ𝑧௞ ൅ 𝑣௄ାଵ

௄
௞ୀଵ ሻ ൌ 𝑓൫∑ 𝑓൫∑ 𝑤௝௞𝑥௝

௥ାଵ
௝ୀଵ ൯𝑧௞ ൅ 𝑣௄ାଵ

௄
௞ୀଵ ൯. (7) 

In this regression problem, half of the MSE in Eq (2) is usually typically regarded as the loss 
function for training an ANN model. The training process of an ANN aims to minimize the loss 
function by successively adjusting the weights in the model, including 𝑤௝௞ሺ𝑗 ൌ 1,2,⋯ , 𝑟 ൅ 1; 𝑘 ൌ
1,2,⋯ , 𝐾ሻ  and 𝑣௞ሺ𝑘 ൌ 1,2,⋯ ,𝐾 ൅ 1ሻ , so that the neural network can produce an output that is 
increasingly similar to the target output. Various algorithms can be adopted to adjust the weights, such 
as adaptive moment estimation (Adam) [50].  
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To simulate the scenario of comparing multiple ML models and the conventional model, we 
generate multiple ANNs with different structures as our ML models, as shown in Algorithm 1. We 
adopt the ANN models with one hidden layer (HL) while varying the number of neurons in the hidden 
layer, the activation function and the number of edges connecting the input layer (IL) and HL to create 
an adequate number of ANN models. The strategy of varying the number of edges involves randomly 
deleting some that connect the IL to the HL. The ratio of the number of deleted edges to the maximum 
number of edges between the IL and HL, i.e., the disconnection rate, can be set manually.  

Algorithm 1. Algorithm for generating multiple different ANN models. 

Algorithm for generating multiple different ANN models 

Input  
The number of input features: 𝑓; 
The number of generated ANNs: 𝑞; 
Candidate set for the number of neurons in the HL: 𝑁; 
Candidate set for the disconnection rate: 𝑅; 
Candidate set for the activation function: 𝐴; 

Output  
Set of ANNs with different structures: 𝑀. 

For 𝑛 in 𝑁: 
The number of neurons in the HL is set to 𝑛; 
If the ANN is fully connected, the number of edges between the IL and the HL denoted by 𝑁௖ 
will be 𝑓 ൈ 𝑛; 

 For 𝑟 in 𝑅: 
The disconnection rate is set to 𝑟; 
The deleted number of edges between the IL and the HL is 𝑟 ൈ 𝑁௖;  
For 𝑎 in 𝐴: 

Among 𝑁௖ edges connecting the IL and the HL, 𝑟 ൈ 𝑁௖ edges are randomly deleted, 
obtaining 𝐶ே೎

௥ൈே೎ different ANNs which adopt the same activation function 𝑎; 

Randomly select 𝑞/൫𝑠𝑖𝑧𝑒ሺ𝑁ሻ ൈ 𝑠𝑖𝑧𝑒ሺ𝑅ሻ ൈ 𝑠𝑖𝑧𝑒ሺ𝐴ሻ൯  ANNs obtained in the last step 
and add them into the set 𝑀. 

Return set 𝑀. 

4. Comparisons of the common process and the novel process for model comparison 

Figure 3 shows two processes for comparing the performance of ANNs and the LR model, which 
are executed multiple times to calculate the probability of selecting the ANN model with consistent 
performance. In a problem with a small dataset, only a small amount of data are available for model 
training and testing. The final model should be applied to solve practical problems associated with an 
open dataset which is unforeseeable and is usually significantly larger than the datasets used in the 
training and testing processes. To simulate such a problem, a larger proportion of data in our dataset is 
preserved as the unseen data while the remaining smaller proportion is used for model training and 
testing. Therefore, in each execution, we randomly split the whole dataset into four parts: 300 samples 
(Part A); 100 samples (Part B); 100 samples (Part C); and 3172 samples (Part D). The combination of 
Parts A and B is regarded as the training set and Part C as the test set, while Part D is regarded as the 
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unseen data. The common process and the novel process are then conducted.  

 

(a) The common process 

 

(b) The novel process 

Figure 3. Two processes for comparing ANNs and LR models. 

In the common process, as shown in Figure 3(a), Parts A and B are first merged into the training 
set containing 400 samples, which are used to train many ANN models and one LR model. Second, 
Part C is regarded as the first test set, and the trained ANN models and the LR model can then be 
utilized to predict outputs in the Part C dataset. By comparing the MSE of all of the ANN models and 
the LR model on the first test set, we can select the best ANN and evaluate its predictive performance 
and that of the LR model. We can then determine whether the best ANN performs better than the LR 
model on the test set. Third, Part D is regarded as the second test set, and the best ANN and the LR 
model are used to predict the output in the test set. Similarly, we can determine whether the best ANN 
performs better or worse than the LR model on the current test set. 

In the novel process shown in Figure 3(b), Part A is first used to train many ANN models and the 
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performance of these calibrated ANN models on the validation set, i.e., Part B, is compared to identify 
the best model. Second, the best ANN model is retrained using the new training set consisting of Parts 
A and B. The LR model is also trained using this training set. Third, the best ANN model is compared 
with the LR model on the first test set, i.e., Part C. We can then determine whether the best ANN 
performs better or worse than the LR model on the test set in terms of MSE. Finally, based on the 
second test set, i.e., Part D, the same comparison procedure can be conducted between the best ANN 
and the LR model to evaluate which model has better predictive performance on this test set. 

When the preset number of executions is reached, the number of executions for which the best 
ANN has consistent performance can be obtained for each process, and thus we can calculate its 
consistency rate denoted by 𝐶௜ሺ𝑖 ൌ 1,2ሻ (𝑖 ൌ 1 presents the common process; 𝑖 ൌ 2 presents the 
novel process), using the following equation:  

𝐶௜ ൌ
஻೔ାௐ೔

ெ
, 𝑖 ൌ 1,2,         (8) 

where 𝑀 represents the overall number of executions; 𝐵௜ presents the number of executions that the 
best ANN model identified using process 𝑖 performs better than the LR model on two test sets; 𝑊௜ 
presents the number of executions that the best ANN model identified using process 𝑖 performs worse 
than the LR model on two test sets. 

5. Computational experiments 

We conduct two processes 1000 times and 1000 ANN models are generated each time. Thus, 106 
ANN models with different structures are generated in the experiment. The inputs of Algorithm 1 are 
set as follows: the candidate set for the number of neurons 𝑁 is ሾ3, 6, 9ሿ; the candidate set for the 
disconnection rate 𝑅  is ሾ0.2, 0.3ሿ ; the candidate set for the activation function 𝐴 is 
ሾ𝑅𝑒𝐿𝑈, 𝑡𝑎𝑛ℎ, 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐ሿ; the number of input features is 15; and the number of generated ANNs 𝑞 
is 106. For each type of activation function, the maximal number of generated ANNs under different 
settings ሺ𝑛, 𝑟ሻ , where 𝑛 ∈ 𝑁  and 𝑟 ∈ 𝑅 , is shown in Table 2. For each combination of ሺ𝑛, 𝑟, 𝑎ሻ , 
where 𝑛 ∈ 𝑁, 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐴, we randomly select 555,556 ANNs to obtain 106 ANNs. 

Table 2. The maximal number of generated ANNs under each setting of ሺ𝑛, 𝑟ሻ for each 
activation function. 

ሺ𝑛, 𝑟ሻ 0.3 0.2 
3 1.67  1011 8.87  108  
6 6.87  1022 7.13  1018 
9 3.19  1034 1.87  1028 

Note: 𝑛 represents a member of the set 𝑁 (the candidate set for the number of neurons); 𝑟 represents a member of the set 𝑅 (the candidate set for the 

disconnection rate). 

The hyperparameters of each ANN, such as the number of HLs, the number of neurons in each 
HL and the activation function, are set according to Algorithm 1. Other hyperparameters, including the 
learning rate and the number of epochs, are optimized according to a constructed ANN. This 
constructed ANN has one HL with nine neurons, its activation function is ReLU, and its 20% of the 
edges between the IL and the HL are randomly deleted. Therefore, the hyperparameters of this 
constructed ANN, including the number of HLs, the number of neurons in each HL, and the activation 
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function are fixed. Based on 400 training samples, we then tune the learning rate and the number of 
epochs for this constructed ANN using five-fold cross validation combined with a grid search method. 
Table 3 shows that the search spaces for the learning rate and the number of epochs are 
ሾ0.005, 0.01, 0.05, 0.1, 0.2ሿ and ሾ100, 300, 500, 700ሿ. The optimal learning rate and the number of 
epochs for this constructed ANN are thus 0.01 and 500, respectively. Then, the learning rate and the 
number of epochs for each ANN are set to 0.01 and 500. All experiments are conducted using a desktop 
(Intel Core i7-12700H CPU, 2.30 GHz). The computational time for a single execution of the novel 
and common processes is 371.32 s and 307.14 s, respectively. 

Table 3. Hyperparameters in the ANN model. 

Hyperparameter Search space Best value 
Learning rate [0.005, 0.01, 0.05, 0.1, 0.2] 0.01 
The number of epochs [100, 300, 500, 700] 500 

Two processes are then performed, first to select the best ANN among the 1000 ANN models with 
different structures and then to compare the best ANN model with the LR model in terms of MSE. 
These are performed 1000 times to calculate the consistency rate of each process, as noted in Section 4. 
Table 4 gives the experimental results for the novel process. In 498 out of 1000 executions, our novel 
process chooses the best ANN, which outperforms the LR model on the small test set, whereas in 502 
out of 1000 executions, the best ANN performs worse than the LR model. Of the 498 executions, we 
find that the best ANN performs better than the LR model on the large test set for 331 executions. Of 
the 502 executions, the best ANN performs worse than the LR model on the larger test set for 313 
executions. Thus, the consistency rate of the novel process is 62.6% according to Eq (8). Table 5 gives 
the experimental results of the common process, with a consistency rate of 58.1%. The consistency 
rate of the novel process is 4.5% higher than that of the common process, demonstrating that it 
performs better in selecting the best ANN with consistent performance among multiple ANN models 
compared to the common process.  

Table 4. Experimental results of novel process. 

Performance comparison on 
the small test set 

Counts Performance comparison on the 
large test set 

Counts 

Best ANN > LR  498 Best ANN > LR (consistent) 331 
LR > Best ANN (not consistent) 167 

LR > Best ANN 502 Best ANN > LR (not consistent) 189 
LR > Best ANN (consistent) 313 

Overall consistency rate = 62.6% 

Table 5. Experimental results of common process. 

Performance comparison on the 
small test set 

Counts Performance comparison on the 
large test set 

Counts 

Best ANN > LR  982 Best ANN > LR (consistent) 576 
LR > Best ANN (not consistent) 406 

LR > Best ANN 18 Best ANN > LR (not consistent) 13 
LR > Best ANN (consistent) 5 

Overall consistency rate = 58.1% 

Note: Greater than sign means that the former prediction model performs better than the latter one in terms of MSE. 
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In addition, for the two processes, we visually compare the MSE of the best ANN and the LR 
model in each execution. For the novel process, we depict a scatter plot in Figure 4(a) to show the ratio 
between MSE of the best ANN model and that of the LR model on the small test set (x-axis) and on 
the large test set (y-axis), where each point on the plot represents a trial. In region Ⅱ (where both ratios 
are larger than 1) and region Ⅳ (where both ratios are smaller than 1), the best ANN model 
demonstrates consistent performance on both the small and large test sets. In contrast, regions Ⅰ and Ⅲ 
correspond to trials where the performance of the best ANN model on the two test sets is inconsistent. 
Similarly, we also generate such a scatter plot for the common process, as shown in Figure 4(b). It is 
found that most of the points in regions Ⅰ and Ⅲ in Figure 4(a) are concentrated around point (1, 1). 
This indicates that there is not much deviation in the executions with inconsistent performance (i.e., 
the best ANN and LR model have similar predictive performance on the two test sets). However, in 
Figure 4(b), points in region I are far away from point (1, 1), which demonstrates significant 
inconsistency of these executions (i.e., the best ANN performs highly inconsistently on both test sets). 

  

(a) Novel process (b) Common process 

Figure 4. The ratio between MSE of the best ANN model and that of the LR model 
on the small test set and on the large test set. 

6. Conclusions and future research 

With the widespread use of ML techniques in maritime transportation, researchers often train ML 
models and compare their predictive performance with conventional models on the same test set to 
confirm that ML models have higher accuracy. Due to the high cost and difficulty of collecting data, 
the training and comparison processes are typically conducted on a small amount of data, but this 
process has two major problems. First, many studies use inadequate training data when training ML 
models, leading to the problem of underfitting, i.e., the ML models cannot learn the patterns in the data 
well and thus the predictive performance on unseen data is reduced. Second, the common process of 
comparing the performance of multiple ML models and the conventional model on a small dataset is 
unfair. To address these problems, we propose a novel process to fairly compare the predictive 
performance of ML models and the conventional model. In this process, we first select the best model 
based on the predictive performance of multiple ML models on the validation set, and then retrain it 
using a combination of the original training set and the validation set. This ML model is then compared 
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with the conventional model on the same test set.  
We perform the two processes 1000 times to calculate the consistency rate, and thus compare the 

performance of the two processes in terms of their ability to select the best ML model with consistent 
performance. The results show that the consistency rate of the novel process is 4.5% higher than that 
of the common process. This demonstrates that the novel process has a higher probability of selecting 
the best ML model with consistent performance from all candidate ML models. Our study can thus 
assist researchers in selecting the best ML model in scenarios where there are small datasets, such that 
the selected model has consistent performance on different test sets, i.e., it performs better/worse than 
the conventional model in all cases. In addition, such consistent predictive model can provide 
prediction results for the decision problem in the transport industry. For example, in the berth 
scheduling problems (see [51–59]), knowing a vessel’s arrival time is a prerequisite. However, a 
vessel’s arrival time is uncertain until the vessel actually arrives. Therefore, predictive models such as 
LR and ML models can to be employed to estimate the vessel’s arrival time [60]. Another example is 
predicting the energy consumption of electric vehicles to better plan the route and charging station 
choice (see [61–65]). Deploying models with consistent predictive performance could be essential to 
obtain robust berth scheduling results.  

Nevertheless, this research has several limitations and points out future directions, as listed below:  
1) One limitation of this study is that only MSE is used as the evaluation metric to select the ML model 
with the best performance from multiple ML models and to compare the performance of the ML 
models and the conventional model. Although MSE is a widely used metric for regression problems 
and provides a measure of the overall error between the predicted and actual values, it may not capture 
all aspects of the model’s performance. For example, an ML model with a low MSE may perform 
poorly in predicting extreme values. In future research, it would be beneficial to consider a wider range 
of evaluation metrics, such as mean absolute error or mean absolute percentage error, to obtain a more 
comprehensive assessment of the models’ performance. Additionally, if multiple metrics are used to 
evaluate model prediction performance, it is important to consider how to combine multiple evaluation 
metrics to select the best performing ML model and to compare the best performing ML model with 
the conventional model. 
2) Another limitation is that this research only discusses the fair comparison problem in regression 
problems but not in the classification problems. In order to extend the proposed fair comparison 
framework to the classification problem, the experimental design should be modified to evaluate the 
ability of the novel process to select the best ML model with the consistent performance. One concern 
is the class imbalance problem. In current experimental design, we run the two processes 1000 times, 
with the whole dataset randomly split into four parts in each run. However, with random splitting of 
the dataset, there is a risk that some classes may be underrepresented in the training or test set, resulting 
in underperformance of the predictive model on the minority class. Therefore, splitting the data in a 
random manner would affect the consistency rate of the novel and common processes. One possible 
modification could be to use stratified sampling when splitting the dataset. Stratified sampling divides 
the dataset so that the proportions of classes in the training and test sets are the same as in the overall 
dataset. This can help to ensure that all classes are adequately represented in the training and test sets, 
which can lead to more reliable and unbiased results. 
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Appendix: Distribution of the features used in this study 

  

(a) Distribution of the number of deficiencies (b) Distribution of ship age 

  

(c) Distribution of ship type (d) Distribution of gross tonnage 

  

(e) Distribution of ship length (f) Distribution of ship beam 
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) Distribution of ship depth (h) Distribution of total detention times 

  

(i) Distribution of last inspection time (j) Distribution of the number of deficiency in the 
last inspection 

 

  

(k) Distribution of the state of last detention (l) Distribution of the number of times changing 
the flag 
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(m) Distribution of the ship flag performance (n) Distribution of the ship company performance

  

(o) Distribution of the ship RO performance (p) Distribution of casualities in the last five years

Figure A1. Distribution of the features used in this study. 
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