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Abstract: The class of B1-matrices is a subclass of P-matrices and introduced as a generalization
of B-matrices. In this paper, we present several properties for B1-matrices. Then, the infinity norm
upper bound for the inverse of B1-matrices is obtained. Furthermore, the error bound for the linear
complementarity problem of B1-matrices is presented. Finally, some numerical examples are given to
illustrate our results.
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1. Introduction

The linear complementarity problem is to find a vector x ∈ Rn satisfying

x ≥ 0, Ax + q ≥ 0, xT (Ax + q) = 0, (1.1)

where A is an n × n real matrix, and q ∈ Rn. Usually, it is denoted by LCP(A, q).
LCP(A, q) arises in many applications such as finding a Nash equilibrium point of a bimatrix game,

the network equilibrium problem, the contact problem etc. For details, see [1]. Moreover, it has been
shown that the LCP(A, q) has a unique solution for any vector q ∈ Rn if and only if A is a P-matrix,
where an n × n real matrix A is called a P-matrix if all its principal minors are positive. Therefore, the
class of P-matrices plays an important role in LCP(A, q); see [2–4].

The cases when the matrix A for the LCP(A, q) belongs to P-matrices or some subclasses of P-
matrices have been widely studied, such as B-matrices [5, 6], S B-matrices [7], DB-matrices [8] and
so on [9–13]. The class of B1-matrices is a subclass of P-matrices that contains B-matrices, which
was proposed by Peña [14]. However, the error bound for the linear complementarity problem of
B1-matrices has not been reported yet.

At the end of this section, the structure of the article is given. Some properties of B1-matrices
are given in Section 2. In Section 3, the infinity norm upper bound for the inverse of B1-matrices
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is obtained. In Section 4, the error bound for the linear complementarity problem corresponding to
B1-matrices is proposed.

2. Some properties for B1-matrices

In this section, some properties for B1-matrices are proposed. To begin with, some notations,
definitions and lemmas are listed as follows.

Let n be an integer number, N = {1, 2, . . . , n} and Cn×n be the set of all complex matrices of order n.
ri(A) =

∑
j,i
|ai j|,

N1(A) = {i ∈ N : |aii| ≤ ri(A)},
N2(A) = {i ∈ N : |aii| > ri(A)},
pi(A) =

∑
j∈N1(A)\{i}

|ai j| +
∑

j∈N2(A)\{i}

r j(A)
|a j j |
|ai j|,

r+iA = max{0, ai j|i , j},

B+=(b+i j)1≤i, j≤n=


a11 − r+1A

a12 − r+1A
· · · a1n − r+1A

a21 − r+2A
a22 − r+2A

. . . a2n − r+2A
...

. . .
...

an1 − r+nA
an2 − r+nA

· · · ann − r+nA

,
pi(B+) =

∑
j∈N1(A)\{i}

|ai j − r+iA | +
∑

j∈N2(A)\{i}

r j(B+)
|a j j−r+jA |

|ai j − r+iA |.

Definition 2.1. [2] A matrix A = (ai j) ∈ Cn×n is a P-matrix if all its principal minors are positive.

Definition 2.2. [14] A matrix A = (ai j) ∈ Cn×n is an S DD1 by rows if for each i ∈ N1(A),

|aii| > pi(A). (2.1)

Definition 2.3. [14] A matrix A = (ai j) ∈ Cn×n is a B1-matrix if for all i ∈ N,

aii − r+iA > pi(B+). (2.2)

Lemma 2.1. [14] If a matrix A = (ai j) ∈ Cn×n is an S DD1 by rows, then it is also a nonsingular
H-matrix.

Lemma 2.2. [15] If a matrix A = (ai j) ∈ Cn×n is an H-matrix with positive diagonal entries, then it is
also a P-matrix.

In the following, some properties of B1-matrices are derived.
First of all, utilizing Definitions 2.2 and 2.3, Theorems 2.1–2.4 can be easily obtained.

Theorem 2.1. Let matrix A = (ai j) ∈ Cn×n be a B1-matrix. Then, B+ is an S DD1 matrix.

Example 2.1. Let matrix

A =


2 −1 0
1 3 −2
9 10 110

 .
Electronic Research Archive Volume 31, Issue 8, 4773–4787.
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We write A = B+ +C, where

B+ =


2 −1 0
0 2 −3
−1 0 100

 ,
and

C =


0 0 0
1 1 1

10 10 10

 .
By calculation, we have that

N1(B+) = {2},N2(B+) = {1, 3},

a11 − r+1A
= 2 > 1 = p1(B+) = |a12 − r+1A

| +
r3(B+)
|a33 − r+3A

|
|a13 − r+1A

|,

a22 − r+2A
= 2 > 0.0300 = p2(B+) =

r1(B+)
|a11 − r+1A

|
|a21 − r+2A

| +
r3(B+)
|a33 − r+3A

|
|a23 − r+2A

|,

and

a33 − r+3A
= 100 > 0.5000 = p3(B+) = |a32 − r+3A

| +
r1(B+)
|a11 − r+1A

|
|a31 − r+3A

|.

From Definition 2.3, it is easy to obtain that A is a B1-matrix, and B+ is an S DD1 matrix since
|b+22| = 2 > 0.0300 = p2(B+) = r1(B+)

|a11−r+1A
|
|a21 − r+2A

| +
r3(B+)
|a33−r+3A

|
|a23 − r+2A

| from Definition 2.2.

However, Theorem 2.1 is not true on the contrary, and the following Example 2.2 illustrates this
fact.

Example 2.2. Let us consider the matrix

A =


−3 1 1
−4 −2 1
3 1 −2

 .
We write A = B+ +C, where

B+ =


−4 0 0
−5 −3 0
0 −2 −5

 ,
and

C =


1 1 1
1 1 1
3 3 3

 .
Electronic Research Archive Volume 31, Issue 8, 4773–4787.
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By calculation, we have that

N1(B+) = {2},N2(B+) = {1, 3}.

From Definitions 2.2 and 2.3, we obtain that B+ is an S DD1 matrix since
|b+22| = 3 > 0 = p2(B+) = r1(B+)

|a11−r+1A
|
|a21 − r+2A

| +
r3(B+)
|a33−r+3A

|
|a23 − r+2A

|, but A is not a B1-matrix since

a11 − r+1A
= −4 < 0 = p1(B+) = |a12 − r+1A

| +
r3(B+)
|a33−r+3A

|
|a13 − r+1A

|.

Motivated by Example 2.2, one can easily obtain Theorem 2.2.

Theorem 2.2. Let matrix A = (ai j) ∈ Cn×n be a B1-matrix if and only if B+ is an S DD1 matrix with
positive diagonal entries.

Note that B+ is a Z-matrix with positive diagonal entries from the definition of B+, and it is easy to
obtain Theorem 2.3.

Theorem 2.3. Let matrix A = (ai j) ∈ Cn×n be a B1-matrix if and only if B+ is a B1-matrix.

Example 2.3. Let us consider the matrix

A =


75 74 23
10 15 12
9 10 110

 .
We write A = B+ +C, where

B+ =


1 0 −51
−2 3 0
−1 0 100

 ,
and

C =


74 74 74
12 12 12
10 10 10

 .
By calculation, we have that

N1(B+) = {1},N2(B+) = {2, 3},

a11 − r+1A
= 1 > 0.5100 = p1(B+) =

r2(B+)
|a22 − r+2A

|
|a12 − r+1A

| +
r3(B+)
|a33 − r+3A

|
|a13 − r+1A

|,

a22 − r+2A
= 3 > 2 = p2(B+) = |a21 − r+2A

| +
r3(B+)
|a33 − r+3A

|
|a23 − r+2A

|,

and

a33 − r+3A
= 100 > 1 = p3(B+) = |a31 − r+3A

| +
r2(B+)
|a22 − r+2A

|
|a32 − r+3A

|.

Electronic Research Archive Volume 31, Issue 8, 4773–4787.



4777

From Definition 2.3, we get that A is a B1-matrix, and B+ is also a B1-matrix since b+11 − r+1B+
=

1 > 0.5100 = p1(V+), b+22 − r+2B+
= 3 > 2 = p2(V+) and b+33 − r+3B+

= 100 > 1 = p3(V+), where
pi(V+) = pi(B+) since r+iB+

= 0. Consequently, Theorem 2.3 is shown to be valid by the example
provided in Example 2.3.

Note that when A is a Z-matrix, we have that r+iA = 0 and B+ = A, and therefore, it is easy to obtain
Theorem 2.4.

Theorem 2.4. If A = (ai j) ∈ Cn×n is a Z-matrix with positive diagonal entries, then A is a B1-matrix if
and only if A is an S DD1 matrix.

Example 2.4. Let us consider the Z-matrix with positive diagonal entries

A =


1 −3 −2
0 1 0
0 0 1

 .
We write A = B+ +C, where

B+ =


1 −3 −2
0 1 0
0 0 1

 ,
and

C =


0 0 0
0 0 0
0 0 0

 .
That is, A = B+. By calculation, we have that

N1(B+) = {1},N2(B+) = {2, 3},

a11 − r+1A
= 1 > 0 = p1(B+),

a22 − r+2A
= 1 > 0 = p2(B+),

and

a33 − r+3A
= 1 > 0 = p3(B+).

From Definition 2.3, we get that A is a B1-matrix, and A is also an S DD1 matrix since |a11| = 1 >
0 = p1(A). Therefore, Example 2.4 illustrates that Theorem 2.4 is valid.

Next, some properties between B1-matrix and nonnegative diagonal matrix, P-matrix are proposed.

Theorem 2.5. If A = (ai j) ∈ Cn×n is a B1-matrix, and D is a nonnegative diagonal matrix of the same
order, then A + D is a B1-matrix.

Electronic Research Archive Volume 31, Issue 8, 4773–4787.
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Proof. Let D = diag(d1, d2, . . . , dn) with di ≥ 0, and C = A + D with C = (ci j) ∈ Cn×n, where

ci j =

{
aii + di, i = j,
ai j, i , j.

Next, let us prove cii − r+iC > pi(V+) for all i ∈ N , where V+ = (vi j) ∈ Cn×n with vi j = ci j − r+iC , and
r+iC = max{0, ci j|i , j} = r+iA .

Since A is a B1-matrix, for all i ∈ N,

cii − r+iC = aii + di − r+iA ≥ aii − r+iA > pi(B+). (2.3)

For i ∈ N1(V+) ⊆ N1(B+),

pi(V+) =
∑

j∈N1(V+)\{i}

|vi j| +
∑

j<N1(V+)∪{i}

r j(V+)
|v j j|

|vi j|

=
∑

j∈N1(V+)\{i}

|ai j − r+iA | +
∑

j<N1(V+)∪{i}

r j(B+)
|a j j − r+jA + d j|

|ai j − r+iA |

≤
∑

j∈N1(B+)\{i}

|ai j − r+iA | +
∑

j<N1(B+)∪{i}

r j(B+)
|a j j − r+jA |

|ai j − r+iA |

= pi(B+).

By (2.3), we deduce that cii − r+iC > pi(B+) ≥ pi(V+), and this proof is completed.

Example 2.5. Let the matrix

A =


75 74 23
10 15 12
9 10 110

 ,
and

D =


5 0 0
0 15 0
0 0 0

 .
By calculation, we have that

N1(B+) = {1},N2(B+) = {2, 3},

a11 − r+1A
= 1 > 0.5100 = p1(B+),

a22 − r+2A
= 3 > 2 = p2(B+),

and

a33 − r+3A
= 100 > 1 = p3(B+).

From Definition 2.3, we get that A is a B1-matrix. Further, Theorem 2.5 demonstrates that A + D
satisfies the conditions required for a B1-matrix.

Electronic Research Archive Volume 31, Issue 8, 4773–4787.
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Theorem 2.6. If A = (ai j) ∈ Cn×n is a B1-matrix, then we write A as A = B + C, where B is a Z-
matrix with positive diagonal entries, and C is a nonnegative matrix of rank 1. In particular, if A is a
B1-matrix and Z-matrix, then C is a zero matrix.

Proof. Let us define B = (bi j) ∈ Cn×n with bi j = ai j − r+iA . Taking into account that bi j ≤ 0 from
definition of r+iA , and bii > 0 since A is a B1-matrix, then B is a Z-matrix with positive diagonal entries.

Let C = (ci j) ∈ Cn×n with ci j = r+iA , and obviously C is a nonnegative matrix of rank 1. Hence, A can
be decomposed as A = B +C.

Theorem 2.7. If A = (ai j) ∈ Cn×n is a B1-matrix, then B+ is a P-matrix.

Proof. Since A is a B1-matrix, it is easy to obtain that B+ is an H-matrix by Theorem 2.1 and Lemma
2.1. aii−r+iA > pi(B+) ≥ 0, and it is equivalent to b+ii > 0 for all i ∈ N. We conclude that B+ is a P-matrix
from Lemma 2.2.

Example 2.6. Let the matrix

A =


1 0.1 0.1
3 4 2

0.1 0.1 1

 .
We write A = B+ +C, where

B+ =


0.9 0 0
0 1 −1
0 0 0.9

 ,
and

C =


0.1 0.1 0.1
3 3 3

0.1 0.1 0.1

 .
By calculation, we have that

N1(B+) = {2},N2(B+) = {1, 3},

a11 − r+1A
= 0.9000 > 0 = p1(B+) = |a12 − r+1A

| +
r3(B+)
|a33 − r+3A

|
|a13 − r+1A

|,

a22 − r+2A
= 1 > 0 = p2(B+) =

r1(B+)
|a11 − r+1A

|
|a21 − r+2A

| +
r3(B+)
|a33 − r+3A

|
|a23 − r+2A

|,

and

a33 − r+3A
= 0.9000 > 0 = p3(B+) = |a32 − r+3A

| +
r1(B+)
|a11 − r+1A

|
|a31 − r+3A

|.

From Definition 2.3, we get that A is a B1-matrix, and by Definition 2.1, one can easily verify that
B+ is a P-matrix. Therefore, Example 2.6 illustrates that Theorem 2.7 is valid.
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Theorem 2.8. If A = (ai j) ∈ Cn×n is a B1-matrix, and C is a nonnegative matrix of the form

C =


c1 c1 · · · c1

c2 c2 · · · c2
...
... · · ·

...

cn cn · · · cn

 ,
where C = (ci j) ∈ Cn×n with ci j = r+iA , then A +C is a B1-matrix.

Proof. Note that for each i ∈ N, r+iA+C
= r+iA + ci, and moreover, (A + C)+ = B+. Since A is a B1-matrix,

from Theorem 2.3, we have that B+ is a B1-matrix, and then (A + C)+ is also a B1-matrix. Therefore,
A +C is a B1-matrix.

3. Infinity norm upper bound for the inverse of B1-matrix

In this section, an infinity norm upper bound for the inverse of B1-matrices is obtained. Before that,
some lemmas and theorems are listed.

Lemma 3.1. [10] If P = (p1, . . . , pn)T e, where e = (1, . . . , 1) and p1, . . . , pn ≥ 0, then

||(I + P)−1||∞ ≤ n − 1, (3.1)

where I is the n × n identity matrix.

Theorem 3.1. [16] Let matrix A = (ai j) ∈ Cn×n be an S DD1 matrix, and then

||A−1||∞ ≤
max{1,maxi∈N2(A)

pi(A)
|aii |
+ ε}

min{mini∈N1(A) Hi,mini∈N2(A) Qi}
, (3.2)

where
Hi = |aii| −

∑
j∈N1(A)\{i}

|ai j| −
∑

j∈N2(A)\{i}
( p j(A)
|a j j |
+ ε)|ai j|, i ∈ N1(A),

Qi = ε(|aii| −
∑

j∈N2(A)\{i}
|ai j|) +

∑
j∈N2(A)\{i}

r j(A)−p j(A)
|a j j |

|ai j|, i ∈ N2(A),

and ε satisfies 0 < ε < mini∈N
|aii |−pi(A)∑

j∈N2(A)\{i}
|ai j |

.

Theorem 3.2. Let A = (ai j) ∈ Cn×n be a B1-matrix, and then

||A−1||∞ ≤ (n − 1)
max{1,maxi∈N2(B+)(

pi(B+)
|aii−r+iA |

+ ε)}

min{mini∈N1(B+) Ti,mini∈N2(B+) Mi}
, (3.3)

where B+ = (b+i j)1≤i, j≤n with b+i j = ai j − r+iA ,

Ti = |aii − r+iA | −
∑

j∈N1(B+)\{i}
|ai j − r+iA | −

∑
j∈N2(B+)\{i}

( p j(B+)
|a j j−r+jA |

+ ε)|ai j − r+iA |, i ∈ N1(B+),

Mi = ε(|aii − r+iA | −
∑

j∈N2(B+)\{i}
|ai j − r+iA |) +

∑
j∈N2(B+)\{i}

r j(B+)−p j(B+)
|a j j−r+jA |

|ai j − r+iA |, i ∈ N2(B+),

and ε satisfies 0 < ε < mini∈N
|aii−r+iA |−pi(B+)∑

j∈N2(A)\{i}
|ai j−r+iA |

.
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Proof. Since A is a B1-matrix, let A = B++C, with B+ = (b+i j) ∈ Cn×n and b+i j = ai j−r+iA , C = (ci j) ∈ Cn×n

with ci j = r+iA . From Theorem 2.1 and Lemma 2.1, B+ is an H-matrix, and it is also a nonsingular
M-matrix. Then, B+ has nonnegative inverse. According to A = B+ + C = B+(I + (B+)−1C), it
holds that ||A−1||∞ ≤ ||(I + (B+)−1C)−1||∞||(B+)−1||∞. Observe that the matrix C is nonnegative, and
(B+)−1 ≥ 0. Then, (B+)−1C can be written as (p1, p2, . . . , pn)T e, where pi ≥ 0 and e = (1, 1, . . . , 1), for
i = 1, 2, . . . , n, and by Lemma 3.1,

||(I + (B+)−1C)−1||∞ ≤ n − 1. (3.4)

However, B+ is an S DD1 matrix, by Theorem 3.1,

||(B+)−1||∞ ≤

max{1,maxi∈N2(B+)
pi(B+)
|aii−r+iA |

+ ε}

min{mini∈N1(B+) Ti,mini∈N2(B+) Mi}
, (3.5)

where
Ti = |aii − r+iA | −

∑
j∈N1(B+)\{i}

|ai j − r+iA | −
∑

j∈N2(B+)\{i}
( p j(B+)
|a j j−r+jA |

+ ε)|ai j − r+iA |, i ∈ N1(B+),

Mi = ε(|aii − r+iA | −
∑

j∈N2(B+)\{i}
|ai j − r+iA |) +

∑
j∈N2(B+)\{i}

r j(B+)−p j(B+)
|a j j−r+jA |

|ai j − r+iA |, i ∈ N2(B+),

and ε satisfies 0 < ε < mini∈N
|aii−r+iA |−pi(B+)∑

j∈N2(A)\{i}
|ai j−r+iA |

.

By (3.4) and (3.5), we get (3.3).

4. Error bound for the linear complementarity problem of B1-matrices

In this section, before an error bound for the linear complementarity problem corresponding to
B1-matrices is proposed, some lemmas are listed.

Lemma 4.1. [11] Let γ > 0 and η ≥ 0, and then for any x ∈ [0, 1],

1
1 − x + xγ

≤
1

min{γ, 1}
,

ηx
1 − x + xγ

≤
η

γ
.

Lemma 4.2. [12] Let A = (ai j) ∈ Cn×n be an S DD1 matrix with positive diagonal entries, and then
AD = I − D + DA is also an S DD1 matrix, where D = diag(di) with 0 ≤ di ≤ 1.

Theorem 4.1. Let A = (ai j) ∈ Cn×n(n ≥ 2) be an S DD1 matrix with positive diagonal entries, and
AD = I − D + DA is also an S DD1 matrix, where D = diag(di) with 0 ≤ di ≤ 1. Then,

||A−1
D ||∞ ≤

max{1,maxi∈N2(AD)
pi(A)
|aii |
+ ε}

min{mini∈N1(AD) Li,mini∈N2(AD) Gi}
, (4.1)

where
Li = |diaii| −

∑
j∈N1(AD)\{i}

|diai j| −
∑

j∈N2(AD)\{i}
( p j(A)
|a j j |
+ ε)|diai j|, i ∈ N1(AD),

Gi = ε(|diaii| −
∑

j∈N2(AD)\{i}
|diai j|) +

∑
j∈N2(AD)\{i}

d jr j(A)
|1−d j+d ja j j |

|diai j| −
∑

j∈N2(AD)\{i}

p j(A)
|a j j |
|diai j|, i ∈ N2(AD),

and ε satisfies 0 < ε < mini∈N
|1−di+diaii |−pi(AD)∑

j∈N2(AD)\{i}
|diai j |

.
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Proof. Let AD = I − D + DA be an S DD1 matrix, where

AD =

{
1 − di + diaii, i = j,
diai j, i , j.

By Theorem 3.1,

||A−1
D ||∞ ≤

max{1,maxi∈N2(AD)
p j(AD)

|1−d j+d ja j j |
+ ε}

min{mini∈N1(AD) Hi,mini∈N2(AD) Qi}
, (4.2)

where
Hi = |1 − di + diaii| −

∑
j∈N1(AD)\{i}

|diai j| −
∑

j∈N2(AD)\{i}
( p j(AD)
|1−d j+d ja j j |

+ ε)|diai j|, i ∈ N1(AD),

Qi = ε(|1 − di + diaii| −
∑

j∈N2(AD)\{i}
|diai j|) +

∑
j∈N2(AD)\{i}

r j(AD)−p j(AD)
|1−d j+d ja j j |

|diai j|, i ∈ N2(AD),

and ε satisfies 0 < ε < mini∈N
|1−di+diaii |−pi(AD)∑

j∈N2(AD)\{i}
|diai j |

.

For i ∈ N1(AD) and from 0 ≤ di ≤ 1, we obtain that

|diaii| ≤ |1 − di + diaii| ≤ ri(AD) = diri(A),

which means that i ∈ N1(A), that is, N1(AD) ⊆ N1(A). Then,

pi(AD) =
∑

j∈N1(AD)\{i}

|diai j| +
∑

j<N1(AD)
⋃
{i}

d jr j(A)
|1 − d j + d ja j j|

|diai j|

= di(
∑

j∈N1(AD)\{i}

|ai j| +
∑

j<N1(AD)
⋃
{i}

d jr j(A)
|1 − d j + d ja j j|

|ai j|)

≤ di(
∑

j∈N1(A)\{i}

|ai j| +
∑

j<N1(A)
⋃
{i}

r j(A)
|a j j|
|ai j|)

= di pi(A).

By Lemma 4.1,

pi(AD)
|1 − di + diaii|

≤
di pi(A)

1 − di + diaii
≤

pi(A)
|aii|
, (4.3)

1
Hi
=

1

|1 − di + diaii| −
∑

j∈N1(AD)\{i}
|diai j| −

∑
j∈N2(AD)\{i}

( p j(AD)
|1−d j+d ja j j |

+ ε)|diai j|
(4.4)

≤
1

|diaii| −
∑

j∈N1(AD)\{i}
|diai j| −

∑
j∈N2(AD)\{i}

( p j(A)
|a j j |
+ ε)|diai j|

=
1
Li
≤

1
min Li

, i ∈ N1(AD),
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1
Qi
=

1

ε(|1 − di + diaii| −
∑

j∈N2(AD)\{i}
|diai j|) +

∑
j∈N2(AD)\{i}

r j(AD)−p j(AD)
|1−d j+d ja j j |

|diai j|
(4.5)

≤
1

ε[|diaii| −
∑

j∈N2(AD)\{i}
|diai j|] +

∑
j∈N2(AD)\{i}

d jr j(A)
|1−d j+d ja j j |

|diai j| −
∑

j∈N2(AD)\{i}

p j(A)
|a j j |
|diai j|

=
1
Gi
≤

1
min Gi

, i ∈ N2(AD).

Then, by (4.2)–(4.5), we get (4.1).

Example 4.1. Let

A =


16 −8 4.1 8
0 8 3.1 1
−8 8 20 8
1 1.2 5 8

 ,
and D = diag(di) with di = 0.9000. Then, we have

AD = I − D + DA =


14.5 −7.2 3.69 7.2

0 7.3 2.79 0.9
−7.2 7.2 18.1 7.2
0.9 1.08 4.5 7.3

 .
By calculation, N1(AD) = {1, 3}, N2(AD) = {2, 4}, p2(A) = 4, p4(A) = 6.6150 and 0 < ε < 0.0541.

We choose ε = 0.0540. Then, L1 = 0.3789, L3 = 0.4689, G2 = 0.3949 and G4 = 0.3364. Hence,
||A−1

D ||∞ ≤ 2.9727, and the true value is ||A−1
D ||∞ = 0.3188.

Next, an error bound for the linear complementarity problem corresponding to B1-matrices is
proposed.

Theorem 4.2. Let A = (ai j) ∈ Cn×n(n ≥ 2) be a B1-matrix satisfying the hypotheses of Theorem 4.1.
Then,

max
d∈[0,1]n

||(I − D + DA)−1||∞ ≤ max
d∈[0,1]n

(n − 1) max{1,maxi∈N2(B+D)(
pi(B+)
|b+ii |
+ ε)}

min{mini∈N1(B+D) Fi,mini∈N2(B+D) Zi}
,

where
B+ = (b+i j) ∈ Cn×n with b+i j = ai j − r+iA ,

Fi = |dib+ii | −
∑

j∈N1(B+D)\{i}
|dib+i j| −

∑
j∈N2(B+D)\{i}

( p j(B+)
|b+j j |
+ ε)|dib+i j|, i ∈ N1(B+D),

Zi = ε(|dib+ii | −
∑

j∈N2(B+D)\{i}
|dib+i j|) +

∑
j∈N2(B+D)\{i}

d jr j(B+)
|1−d j+d jb+j j |

|dib+i j| −
∑

j∈N2(B+D)\{i}

p j(B+)
|b+j j |
|dib+i j|, i ∈ N2(B+D),

and ε satisfies 0 < ε < mini∈N
|1−di+dib+ii |−pi(B+D)∑

j∈N2(B+D)\{i}
|dib+i j |

.
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Proof. Let A = B+ + C, where B+ = (b+i j) ∈ Cn×n with b+i j = ai j − r+iA , C = (ci j) ∈ Cn×n with ci j = r+iA .
B+ is an S DD1 matrix with positive diagonal entries. Thus for each diagonal matrix D = diag(di) with
0 ≤ di ≤ 1,

AD = I − D + DA = (I − D + DB+) + DC = B+D +CD,

where B+D = I − D + DB+ and CD = DC. Similar to the proof of Theorem 3.2,

||A−1
D ||∞ ≤ ||[I + (B+D)−1CD]||∞||(B+D)−1||∞ ≤ (n − 1)||(B+D)−1||∞.

Notice that B+ is an S DD1 matrix, and by Lemma 4.2, B+D = I − D + DB+ is also an S DD1 matrix.
Hence, by (4.1), it holds that

||(B+D)−1||∞ ≤
max{1,maxi∈N2(B+D)(

pi(B+)
|b+ii |
+ ε)}

min{mini∈N1(B+D) Fi,mini∈N2(B+D) Zi}
,

where
Fi = |dib+ii | −

∑
j∈N1(B+D)\{i}

|dib+i j| −
∑

j∈N2(B+D)\{i}
( p j(B+)
|b+j j |
+ ε)|dib+i j|, i ∈ N1(B+D),

Zi = ε(|dib+ii | −
∑

j∈N2(B+D)\{i}
|dib+i j|) +

∑
j∈N2(B+D)\{i}

d jr j(B+)
|1−d j+d jb+j j |

|dib+i j| −
∑

j∈N2(B+D)\{i}

p j(B+)
|b+j j |
|dib+i j|, i ∈ N2(B+D),

and ε satisfies 0 < ε < mini∈N
|1−di+dib+ii |−pi(B+D)∑

j∈N2(B+D)\{i}
|dib+i j |

.

Example 4.2. Let the matrix

A =


8 −2 −1 −1
4 13 4 5
−8 −8 15 −8
−4 −4 −2 6

 ,
and

B+ =


8 −2 −1 −1
−1 8 −1 0
−8 −8 15 −8
−4 −4 −2 6

 ,
where we set D = diag(di) with di = 0.7000. Then,

B+D = I − D + DB+ =


5.9 −1.4 −0.7 −0.7
−0.7 5.9 −0.7 0
−5.6 −5.6 10.8 −5.6
−2.8 −2.8 −1.4 4.5

 .
By the definitions of B-matrix and B1-matrix, it is easy to get that A is not a B-matrix but is a

B1-matrix. Therefore, the existing bounds (such as the bound (13) in Theorem 4 [10]) cannot be used
to compute the error bound for the linear complementarity problem for matrix A. However, the error
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bound for the linear complementarity problem for matrix A can be computed by Theorem 4.2.
By simple calculation, N1(B+D) = {3, 4}, N2(B+D) = {1, 2}, p1(B+) = 2.5000, p2(B+) = 1.5000 and

0 < ε < 0.1084. Let ε = 0.1083. Then, from our bound in Theorem 4.2, the error bound for the linear
complementarity problem for matrix A is given as maxd∈[0,1]n ||(I −D+DA)−1||∞ ≤ 5.7186, and the true
value is ||(I − D + DA)−1||∞ = 0.3359.

Example 4.3. Consider the matrix

A =


0.5 −0.24 −0.22
−0.05 0.2 0.01
0.01 −0.06 0.2

 ,
and we write A = B+ +C, where

B+ =


0.5 −0.24 −0.22
−0.06 0.19 0

0 −0.07 0.19

 .
It is easy to verify that A is a B-matrix. Then, it is also a B1-matrix [14]. By the bound (13) in

Theorem 4 [10], we have

max
d∈[0,1]n

||(I − D + DA)−1||∞ ≤ 50.

By simple calculation, we have that

B+D = I − D + DB+ =


0.5005 −0.2398 −0.2198
−0.0599 0.1908 0

0 −0.0699 0.1908

 ,
and p1(B+) = 0.1568, p2(B+) = 0.0552, p3(B+) = 0.0221 and 0 < ε < 0.8154. Let ε = 0.8153,
and then from our bound in Theorem 4.2, we get that maxd∈[0,1]n ||(I − D + DA)−1||∞ ≤ 24.2275 < 50.
Therefore, Example 4.3 shows that the error bound of a B1-matrix is sharper than the error bound of a
B-matrix under some cases.

5. Conclusions

In this paper, some properties for B1-matrices and the infinity norm upper bound for the inverse
of B1-matrices are presented. Based on these results, the error bound for the linear complementarity
problem of B1-matrices is obtained. Moreover, numerical examples are also presented to illustrate the
corresponding results.
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5. C. M. Araújo, J. R. Torregrosa, Some results on B-matrices and doubly B-matrices, Linear Algebra
Appl., 459 (2014), 101–120. https://doi.org/10.1016/j.laa.2014.06.048

6. F. Wang, D. S. Sun, New error bound for linear complementarity problems for B-matrices, Linear
Multilinear Algebra, 66 (2018), 2156–2167. https://doi.org/10.1080/03081087.2017.1389847

7. P. F. Dai, C. J. Lu, Y. T. Li, New error bounds for the linear complementarity problem with an S B-
matrix, Numerical Algorithms, 64 (2013), 741–757. https://doi.org/10.1007/s11075-012-9691-6

8. P. F. Dai, Error bounds for linear complementarity problems of DB-matrices, Linear Algebra Appl.,
434 (2011), 830–840. https://doi.org/10.1016/j.laa.2010.09.049

9. Z. Z. Bai, On the convergence of the multisplitting methods for the linear complementarity
problem, SIAM J. Matrix Anal. Appl., 21 (1999). https://doi.org/10.1137/S0895479897324032

10. M. Esnaola, J. Peña, B−Nekrasov matrices and error bounds for linear complementarity problems,
Numerical Algorithms, 72 (2016), 435–445. https://doi.org/10.1007/s11075-015-0054-y

11. L. Gao, An alternative error bound for linear complementarily problems involving BS -matrices, J.
Inequal. Appl., 2018 (2018). https://doi.org/10.1186/s13660-018-1618-x

12. Y. X. Zhao, L. L. Liu, F. Wang, Error bounds for linear complementarity problems of S DD1

matrices and S DD1 − B matrices, AIMS Math., 7 (2022), 11862–11878.

13. C. Q. Li, Schur complement-based infinity norm bounds for the inverse of S DD matrices, Bull.
Malays. Math. Sci. Soc., 43 (2020), 3829–3845. https://doi.org/10.1007/s40840-020-00895-x

14. J. M. Peña, Diagonal dominance, Schur complements and some classes of H-matrices and P-
matrices, Adv. Comput. Math., 32 (2011), 357–373. https://doi.org/10.1007/s10444-010-9160-5

Electronic Research Archive Volume 31, Issue 8, 4773–4787.

http://dx.doi.org/https://doi.org/10.1287/mnsc.17.9.612
http://dx.doi.org/https://doi.org/10.1002/nla.524
http://dx.doi.org/https://doi.org/10.1007/s10107-005-0645-9
http://dx.doi.org/https://doi.org/10.1016/0024-3795(90)90058-K
http://dx.doi.org/https://doi.org/10.1016/j.laa.2014.06.048
http://dx.doi.org/https://doi.org/10.1080/03081087.2017.1389847
http://dx.doi.org/https://doi.org/10.1007/s11075-012-9691-6
http://dx.doi.org/https://doi.org/10.1016/j.laa.2010.09.049
http://dx.doi.org/https://doi.org/10.1137/S0895479897324032
http://dx.doi.org/https://doi.org/10.1007/s11075-015-0054-y
http://dx.doi.org/https://doi.org/10.1186/s13660-018-1618-x
http://dx.doi.org/https://doi.org/10.1007/s40840-020-00895-x
http://dx.doi.org/https://doi.org/10.1007/s10444-010-9160-5


4787

15. R. Bru, C. Corral, I. Gimenez, J. Mas, Classes of general H-matrices, Linear Algebra Appl., 429
(2008), 2358–2366. https://doi.org/10.1016/j.laa.2007.10.030

16. X. Y. Chen, Y. T. Li, L. Liu, Y. Q. Wang, Infinity norm upper bounds for the inverse of S DD1

matrices, AIMS Math., 2022 (2022), 8847–8860.

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Electronic Research Archive Volume 31, Issue 8, 4773–4787.

http://dx.doi.org/https://doi.org/10.1016/j.laa.2007.10.030
http://creativecommons.org/licenses/by/4.0

	Introduction
	Some properties for B1-matrices
	Infinity norm upper bound for the inverse of B1-matrix 
	Error bound for the linear complementarity problem of B1-matrices 
	Conclusions

