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Abstract: In this paper, we present a two-grid scheme of fully discrete finite element approximation
for optimal control problems governed by parabolic integro-differential equations. The state and co-
state variables are approximated by a piecewise linear function and the control variable is discretized
by a piecewise constant function. First, we derive the optimal a priori error estimates for all variables.
Second, we prove the global superconvergence by using the recovery techniques. Third, we construct
a two-grid algorithm and discuss its convergence. In the proposed two-grid scheme, the solution of
the parabolic optimal control problem on a fine grid is reduced to the solution of the parabolic optimal
control problem on a much coarser grid; additionally, the solution of a linear algebraic system on the
fine grid and the resulting solution maintain an asymptotically optimal accuracy. Finally, we present a
numerical example to verify the theoretical results.

Keywords: parabolic integro-differential equations; finite element methods; a priori error estimates;
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1. Introduction

It is well known that optimal control problems play a very important role in the fields of science
and engineering. In the operation of physical and economic processes, optimal control problems have
a variety of applications. Therefore, highly effective numerical methods are key to the successful
application of the optimal control problem in practice. The finite element method is an important
method for solving optimal control problems and has been extensively studied in the literature. Many
researchers have made various contributions on this topic. A systematic introduction to the finite
element method for partial differential equations (PDEs) and optimal control problems can be found
in [1,2]. For example, a priori error estimates of finite element approximation were established for the
optimal control problems governed by linear elliptic and parabolic state equations, see [3,4]. Using
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adaptive finite element method to obtain posterior error estimation; see [5, 6]. Furthermore, some
superconvergence results have been established by applying recovery techniques, see [7, 8].

The two-grid method based on two finite element spaces on one coarse and one fine grid was first
proposed by Xu [9-11]. It is combined with other numerical methods to solve many partial differ-
ential equations, e.g., nonlinear elliptic problems [12], nonlinear parabolic equations [13], eigenvalue
problems [14—16] and fractional differential equations [17].

Many real applications, such as heat conduction control of storage materials, population dynamics
control and wave control problems governed by integro-differential equations, need to consider optimal
control problems governed by elliptic integral equations and parabolic integro-differential equations.
More and more experts and scholars began to pay attention to the numerical simulation of these op-
timal control problems. In [18], the authors analyzed the finite element method for optimal control
problems governed by integral equations and integro-differential equations. In [19], the authors con-
sidered the error estimates of expanded mixed methods for optimal control problems governed by
hyperbolic integro-differential equations. As far as we know, there is no research on a two-grid finite
element method for parabolic integro-differential control problems in the existing literature.

In this paper, we design a two-grid scheme of fully discrete finite element approximation for optimal
control problems governed by parabolic integro-differential equations. It is shown that when the coarse
and fine mesh sizes satisfy 7 = H?, the two-grid method achieves the same convergence property as
the finite element method. We are interested in the following optimal control problems:

. 1 2 2
ug}gu{ifo lly = yall” + ||l dt}, (1.1)
!
v, — div(AVy) + f div(B(t, s)Vy(s))ds = f+u, YVxeQ, teJ, (1.2)
0
y(x, 1) =0, Yx€0Q, t € J, (1.3)
y(x,0) = yo(x), ¥ x € Q, (1.4)

where Q is a bounded domain in R? and J = (0, T]. Let K be a closed convex set in U = L>(J; L*(QY)),
f e L*J; LX(Q)), ys € H'(J; L*(Q)) and y, € H'(Q). K is a set defined by

K= {u eU: fu(x, Hdx > 0}; (1.5
Q

A = A(x) = (a;j(x)) is a symmetric matrix function with a;;(x) € W=(Q), which satisfies the ellipticity
condition

2
a kel < Y a(0EE; < al VEX) R X Q, 0 <a, <d'.

i,j=1

Moreover, B(t, s) = B(x,t,s) is also a 2 X 2 matrix; assume that there exists a positive constant M
such that

1B(t, $)llo.o + [I1B:(2, $)llo.0 < M.
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In this paper, we adopt the standard notation W"?(€2) for Sobolev spaces on Q2 with a norm || - ||m p
given by [V, = X 1DV}, ), as well as a semi-norm | - |,,., given by Wi, = X 1DV}, q)-

la|l<m |a|l=m
set Wy (Q) = {v € W™P(Q) : vlsgo = 0}. For p = 2, we denote H™(Q) = W™*(Q), HJ(Q) = W(’)"z(Q),
and ||l = I llm2s 1111 =11 Mlo2-
We denote by L°(J; W™P(Q)) the Banach space of all L’ integrable functions from J into W""(Q))

with the norm [Wllzwmr@y = (Jfy MEymood ) " for 5 € [1,00) and the standard modification for
s = oo. For simplicity of presentation, we denote |[V||.ss:wmrq)) by I[VIlLsqwnry. Similarly, one can
define the spaces H'(J; W™P(Q)) and C*(J; W™P(Q)). In addition C denotes a general positive constant
independent of /& and At, where £ is the spatial mesh size and At is a time step.

The outline of this paper is as follows. In Section 2, we first construct a fully discrete finite element
approximation scheme for the optimal control problems (1.1)—(1.4) and give its equivalent optimality
conditions. In Section 3, we derive a priori error estimates for all variables, and then analyze the global
superconvergence by using the recovery techniques. In Section 4, we present a two-grid scheme and
discuss its convergence. In Section 5, we present a numerical example to verify the validity of the
two-grid method.

2. Fully discrete finite element scheme

In this section, we shall construct a fully discrete finite element approximation scheme for the
control problems (1.1)—(1.4). For sake of simplicity, we take the state space Q = L*(J;V) and V =

H(Q).
O(W; recast (1.1)—(1.4) in the following weak form: find (y,u) € Q X K such that
min {l fT lly = yall® + IIMIIZdI}, (2.1)
uekcU (2 Jo
(v, v) + (AVy, Vy) = ft(B(t, $)Vy(s), Vvyds + (f +u,v), VveV, tel, (2.2)
y(x,0) = yo(x), YV x € SOZ, (2.3)

where (-, -) is the inner product of L*(Q).

Since the objective functional is convex, it follows from [2] that the optimal control problems (2.1)—
(2.3) have a unique solution (y, #), and that (y, u) is the solution of (2.1)—(2.3) if and only if there is a
co-state p € Q such that (y, p, u) satisfies the following optimality conditions:

(v, v) + (AVy, Vv) = f (B(t, s)Vy(s),Vvyds + (f +u,v), YveV, tel, 2.4)
0
y(x,0) = yo(x), ¥ x € Q, (2.5)
T
= (pq) +(AVp,Vq) = f (B*(s5,0Vp(s), Vg)ds + (y = ya,q), Y g€V, t € J, (2.6)
p(x,T)=0,VxeQ, 2.7)
(u+pii—u)>0,Viek, tel (2.8)
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As in [20], the inequality (Eq 2.8) can be expressed as
u :1n]aX{0,j5}—']L (2'9)

fQ pdx
o ¥ . . . .
Let T}, denote a regular triangulation of the polygonal domain €, /. denote the diameter of 7 and

h = max h,. Let V,, C V be defined by the following finite element space:

7€y,

where p = denotes the integral average on Q of the function p.

Vi ={vy € COQ) NV, vyl; € Pi(1), ¥V T €T (2.10)
And the approximated space of control is given by
U, ={i, € U :Y71e€T, i|, = constant}. (2.11)

Set K, = U, N K.

Before the fully discrete finite element scheme is given, we introduce some projection operators.
First, we define the Ritz-Volterra projection [21] R, : V — V,,, which satisfies the following: for any
yv,peV

(A(V(y = Ryy), Vvy) — f(: (B(t, s)V(y — Ryy), Vvp)ds =0, Y v, €V, (2.12)
e R
m=0
(A(V(p = Ryp), Vvy) — fT (B*(s,))V(p = Ryp), Vv,)ds =0, Y v, €V, (2.14)

t
HWH + h“vw” <cK mzo H?;;f Li=0l 2.15)

Next, we define the standard L*-orthogonal projection [22] Q; : L*(Q) — U,, which satisfies the
following: for any ¢ € L*(Q)

((p - Qh‘pa Wh) = 07 v Wh € Uh’ (216)
¢ — OQll-s2 < CH'™S|ully, s =0,1, V ¢ € H(Q), (2.17)

At last, we define the element average operator [7] ;, : L>(Q) — U, by

fT Ywdx

Tple = S, V¢ € LX(Q), T € T) (2.18)

dex

We have the approximation property

W = mllsr < CH* W1 s = 0,1, ¥ gy € WH(Q). (2.19)
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We now consider the fully discrete finite element approximation for the control problem. Let Ar > 0,
N =T/At € Z and t, = nAt, n € Z. Also, let

¢n _ wﬁ—l

n _ gyn _ yn—l
At s W=yt =yt

=" (x) = Y(x, 1),  dnyt =

Like in [23], we define for 1 < s < oo and s = oo, the discrete time dependent norms

N-I

WA s wmp(y = AW o | > Tz wmr ) = max ||lﬂ . p»
P 1-

n=1-1

where [ = 0 for the control variable u and the state variable y, and / = 1 for the co-state variable p.

Then the fully discrete approximation scheme is to find (y},u)) € V;, X Kj, n = 1,2,--- | N, such
that
1 N
i {5 2 00 P + 1) . 20)
(dty,, vi) + (AVy), V) = (Z AtB(t,, 1;-1)Vy),, Vvh) + (" + )y, vn), Yvp €V, (2.21)
i=1
vy = Rp’. (2.22)

Again, we can see that the above optimal control problem has a unique solution (y}, u;), and that
OV, u ) E V), X K}, is the solution of (2.20)—(2.22) if and only if there is a co-state p}~ e V, such that

Oy, P, up) satisfies the following optimality conditions:
(dtyz’ vh) + (AV}’Z7 VVh) = (Z AtB(tna ti—l)vyila Vvh) + (fn + MZ, Vh)a v Vi € V/’l’ (223)
i=1
i = Ry, (2.24)
— (dtp}, qi) + (AVp; ', V)
N

= (Z AIB*(IH tn—l)vp;,_l, VQh] + ()’Z - )’Zv, Qh), v qn € Vh’ (225)
p, =0, (2.26)
y + py ' iy — 1) 2 0, V ity € K. 2.27)

Similarly, employing the projection (2.9), the optimal condition (2.27) can be rewritten as follows:

uj, = max{0, pi~'} = myp) ', (2.28)

prn 1
LT
In the rest of the paper, we shall use some intermediate variables. For any control function it € K
satisfies the following:

where p
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(dty, (@), vi) + (AVy,(it), Vvy,)

= (Z AlB(ln, t,-_l)VyZ(it), Vvh) + (fn + L~tn, Vh), Y Vv, € Vh,
=1

yiii) = Ry’

— (dtp}}(ib), q1) + (AV P}~ (@1), Vi)

N
= (Z AIB (1 1,V iy ), th] + OR@ ~ i an). V ga € Vi
py (@) = 0.

3. A priori error estimates and superconvergence

(2.29)

(2.30)

(2.31)

(2.32)

In this section, we will discuss a priori error estimates and superconvergence of the fully discrete
case for the state variable, the co-state variable and the control variable. In order to do it, we need the

following lemmas.

Lemma 3.1. Let (y}(u), pZ‘l(u)) be the solution of (2.29)—(2.32) with it = u and (y, p) be the solution
of (2.4)—(2.8). Assume that the exact solution (y, p) has enough regularities for our purpose. Then, for

At small enough and 1 < n < N, we have

Iy = ye@lllzo2y + lp = pr@)lllz2) < C(At + hZ),
VO = yu@)llz=z2y + IIV(p = pr@)lllz=i2) < C(At + h).

Proof. For convenience, let
V' =) =" = Ry + Ry = yy(u) =: m) + &,
p" = py(w) = p" = Ryp" + Ryp" — pj(w) =: 1, + &,.
Taking ¢ = ¢, in (2.4), subtracting (2.29) from (2.4) and then using (2.12), we have

(dt&y, vi) + (AVE], Vvy)
=(dty" — yi,vi) — (din, vi)

+

fn (B(t,, $)VR,y(s), Vvy)ds — [Z AtB(t,, ti_l)Vy;l(u), Vvh) .
0

i=1

Choosing v, = di&y in (3.3), we get

(dig, di&}) + (AVE], diVE))
=(dry" -y}, di&y) — (din;, dig))

+

Electronic Research Archive Volume 31, Issue 8,

f ! (B(ty, $)VR,Y(s), dtVE))ds — [Z AtB(t,, t;_1)Vy, (w), dzvg;})] .
0 i=1

(3.1)
(3.2)

(3.3)

(3.4)
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Notice that
1 Lo on R
(diVE],AVED) > 2—At(IIAZV§yII2 — [|[A2 V&) 7). (3.5)

Multiplying Af and summing over n from 1 to / (1 < / < N) on both sides of (3.4), and by using
(3.5) and £ = 0, we find that

l
1 1012 ny2
SIATvel +;ndt§yn At
1 l
< Y (dty" =y dighAe = (dofl, dig))At
n=1 n=1
1
+
n=1
3
= ZA,-. (3.6)

i=1

fn (B(t,. $)VRy(5). a’thf;l)dS - (Z AtB(t,, ti—l)V)’Z(u), le§;)] At
0 i=1

Now, we estimate the right-hand terms of (3.6). For A;, from the results given in [24], we have

A, <CZ( f ||y,,||dr) At+ ||Z||drf IPA

n=1

1 l
2 2
<C(AD) fo IyelfPds + 3 > i€ At

n=1

<CN Myl + Z i€ |PAr. (3.7)

For A,, using (2.13), the Holder inequality and the Cauchy inequality, we have
1 nn _ nn—l 1 1
y Y 2 ny2
Ay <C Z ”T” A+ Z ldee! P At
Z 1 [ e+ 2 Z Ideg | At
-1

CZ ( ||<ny),||2dt) ( f 12dn?)’ ledtf IPAr

i
1
<Cii* f Iydi3de + 5 Mgy IF Ar
0 n=1
<CRIY I gy + 42”‘”5 IPA. (3.8)
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At last, for As, it follows from the Cauchy inequality, Cauchy mean value theorem and assumptions
on A and B that

)
=Z f (B(t,, $)VRiY(5), dIVE" )ds—[z AtB(t,, t)Vy (u), dzvg]
=1

[Z AtB(t,, t;)Vy),(u), diVE] ) (Z AtB(t,, 1)V, (w), dtVfﬁ] ]At

i=1

]
<CADA VR ) + VRN 2) + C D IVEIPAr

n=1

+CZAtZ|lV§,|| A+ Z RAGLE (3.9)

where

) tn n
> f (B(t,, s)VR,,y(s),dtvgg)ds—[Z AzB(z,,,ti)vy;(u),dzvgg)]m
0

n=1 i=1

1 / l
= B(t,, s)VRy(s)ds — » B(t;, t,)VR,y'At, V. ’) + AtB(1,,1,)VEL, Ve
fo 1 A ; 1 h &) Z( 1, 1)VE) gy)

i=1

-1 f

+ Z ‘fo (B(tna S) - B(tn+l’ S))VRhde’ Vf;z)
n=1
-1

In+1
f B(ty1, $)(VRyy — VR ds, Vf;’)
ll‘l

- n -1
= D D AH(Bltns 1) = Bty 1) VR, Vf;’] = D (AtBltaer, 1,)VE ", VE)

n=1 \i=1 n=1

-1 n
+) (Z AL(B(ty, ) = Btyi1, t))VE, Vf,)

Ik

h

l
B(t, 5)VRyy(s)ds - Z B(1, 1) VR,y'At, Vf;] + [Z AtB(1, t)VE,, Vfi)]
i=1 i=1

~

-1

In -1 Tn+1
+ f Bi(t, |, $)AtVR,yds, Vf;) - Z (f AtB(ty.1, $)VRyY ' ds, Vg’;)
n=1 \WJ0 =1 Wi,
-1 -1

M

D B0V Bty t)VR,Y ds, vg;?) = > (AtB(tyir, 1) VE, VE)
i=1

n=1

~ 3
| 1
- =

+ | D (AB 1)VE, Vf;f]
i=1

n=1

Electronic Research Archive Volume 31, Issue 8, 4818—-4842.
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I
<CADA VR ) + IVRNE 2) + C D IVEIPAr

n=1
i n
. a,
+C ) A ) IVEIPA+ LIVE I
n=1 i=1
and

1 n n
Z [ [Z AtB(t,, 1)V (), dtvg;') - (Z AtB(t,, 1;1)Vy},(w), dtVfS] ]At

=1 i=1 i=1
l

!
= ( AK(B(t;, 1;) = B(11, 1i-1))VRyY', Vfi) - (Z AH(B(t1, t;) = B(t1, 1)) V&, ij,J
i=1 i=1

-1 n
+ Z Z At(B(ln, ti) - B(tn’ ti—l))thyi’ Vf;l)

n=1 \i=1

_ Z Z AH(B(ty, 1;) — B(ty, ti-1))VE., Vf;’)
i=1

- n+l
- Z Z At(B(ty41, t;) — B(ty41, ti—l))VRhyi, Vf’?)

n=1 \i=1

=1 (n+l
+ Z Z] At(B(tys1,1;) = Bty 1i1))VE,, Vf’;]

n=1

l l
= (Z(Ar)ﬁst(rl, VR, ng,) - [Z(At)zB,(tl, 1VE,, V.g;]
i=1 =1

1 [i
1 1

n+1 -1 (n+l
- (Z(Ar)23,<t,,+1, VR, vg;’) + (Z(Af)sz(lnﬂ, Ve, vg;’)
i=1

i=1

-1 n -1
+ (Z(AI)ZB,(I,,, (VR ngg) -
1

i=1

(A1 Bi(ty, 1)) VE,, vg;]
n= n= =1
-

n=1 n=1

1 1 n
, a.
SCANIVRIG 2y + C ) INEIPAL+C ) Ar Y IVEIFA+ ZIVEP,
n=1 n=1 i=1

where 77 is located between 7;,_; and #;, and we also used

fn n
f B(tn’ S)VRh)’(S)dS - Z B(tna ti)VRhyiAt
0

i=1
<CAU(IVRyllizw2) + [IVRuYI1222))-

From (3.7)—(3.9), we have

l
1 1 i
SIASVEIR + 2 > lldig P Ar
n=1

Electronic Research Archive Volume 31, Issue 8, 4818—-4842.
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SC‘h4||yl‘||iZ(].12) + C(At)z(”)’tt”iz@z) + ”VRhyl”iQ(LZ) + ||VRh)’||i2(L2))
1 1 n
. a.
+C Y IVEIPAL+C Y At Y IVEIPAL+ Z||V§;||2. (3.10)
n=1 n=1 i=1

Adding 22:1 IIVf;ZIIZAt to both sides of (3.10), by use of the assumption on A and discrete Gronwall’s
inequality, we have

YRRy = ya@)lllz=a2) < C(AL + B). (3.1
Using (2.13), the Poincare inequality and the triangle inequality, we get
Iy = ya@)llls@2) < CAL+ 1), IV = yu@)lll=2) < C(AL + h). (3.12)
Taking ¢ = ¢, in (2.6), subtracting (2.31) from (2.6) and then using (2.14), we have

— (d&), qp) + (AVEY ", Vgy)

- (dtpn - pt_19 ‘Ih) + (dtnga Qh)
T
(B*(s, ta-1) VRyp(5), Vai)ds — ZAIB (ti, ta-)V P}y (w), Vg

th—1
+ Oy — 0y" + " =y (w), qn). (3.13)

Choosing g, = —dt&), in (3.13), multiplying by Ar and summing over n from /+1to N (0 </ < N-1)
on both sides of (3.13), since §N 0, we find that

—||A2V§ P+ Z e At

n=[+1

N
< Z (dip" — p;~', di&l) At — Z (dm, dig)At

n=I[+1 n=I[+1

- Z f (B (s, tu1) VR p(s), d1VEL)ds ZAtB (tiy a1V Pi (1), dIVE" H

n=I[+1

- Z (8Y; = 8y + " = yj(w), digh)At

n=I[+1

= B,. (3.14)

Notice that

~(AVE, divEy) > E(IIA vETP — A2 VEP). (3.15)

Now, we estimate the right-hand terms of (3.14). Similar to (3.7), we have

By <CANpullfsy + 5 Z ldiz|PA. (3.16)

n=I[+1

Electronic Research Archive Volume 31, Issue 8, 4818—-4842.



4828

For B,, using (2.15) and the Cauchy inequality, we have

1 N
By <ChY|pPs i, + = \\dt&"|1* At. (3.17)
4 p

L2(H?)
n=I[+1

For Bs, applying the same estimates as Az, we conclude that

N T N
B; = - Z [ (B*(s,t,-1)VR,p(s), dtVer)dS - [Z AtB*(t;_y, l‘n—1)sz_1(u), leéfZ]

n=[+1 In-1

N N
+ (Z AtB*(ti-1, t,-1)V ), (w), dtVf;i] - [Z AtB*(t;, t,-1)V pjy ' (u), dtsz] ]At

N
<CADA(IVRPE ) + IVRpIE ) +C D IVELPAL

n=[+1
N N
i (12 Ao gl 12
+C ) MY IVEIFA+ IVEF, (3.18)
n=[+1 i=n

where
IVRLpl22) + IVRupl 22y IV (P = Rup)llzzazy + IV pallzz ez
+IV(p = Rupllzazy + IV Pll22).
For By, using the Cauchy inequality and the smoothness of y and y,;, we have

N
B, =- Z 6y — 0y" +¥" — yp(w), di&,) At

n=I[+1

SC(AI)Z(”yl”iZ(LZ) + ||(yd)l||i2(L2)) + C”yn - yZ(u)”iZ(LZ)

1 S n12
+g Z ldzg) PAt. (3.19)

n=I[+1

Combining (3.16)—(3.19), we have
1 T2 RN )2
SIATVEIR + 2 ) ldigyPAr
n=I[+1

2 2 2 2 2 2
SC(AI) (”Ptt“Lz(Lz) + ”Vtht”LZ(LZ) + ”VthHLZ(LZ) + ”yl‘”LZ(LZ) + ||(yd)t||L2(L2))

n n Q.
+ CH P ) + CIY' = V@I iz, + 7 IVE P

N N N
+C Y IVEIPAL+C Y| A Y IVEIPAL (3.20)

n=I[+1 n=I+1 i

By adding 3V ||V§;’,||2At to both sides of (3.20) and applying the assumption on A, discrete Gron-

n=[+1
wall’s inequality and (3.12), we conclude that

IVRp = pr@)ll=2) < C(AL + ). (3.21)
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Using (2.15) and the triangle inequality, we get

P = Pa(@)lllz=2y < C(AL+ 1), IV(p = pr@))lll=2y < C(AL + h); (3.22)
we have completed the proof of the Lemma 3.1.

Lemma 3.2. Choose it" = Quu" and it" = u" in (2.29)—(2.32) respectively. Then, for At small enough
and 1 <n < N, we have

IV () = Y@ ll=i2y + NIV (Pa() = pu(@ui)lll=uz) < CH. (3.23)

Proof. For convenience, let

= yu() = yp(Qnu), A, = pj(u) — p(Qnut).

Taking #" = u" and &" = Quu" in (2.29), we easily get
(de2s,vy) + (AVAL, V) = ZAI (Bt ti-0)VAL V) + (" = Qui”, vy) (3.24)

By choosing v, = ddy in (3.24), multiplying by As and summing over n from 1 to /(1 </ < N) on
both sides of (3.24), we find that

||A VAR +Z||dt/l"||2At

n=1

) n
SZ( At(B(t,, t; 1)V/l’,dtV/1”]At+Z (" = Que", a2 = 27")

n=1 \i=1

2

+ Z (Zn: AtB(t, 1;-1)V A} ~ i AtB(ty41, 1 1)V/l’,V/l”)

-1

+ @ - Qhul,/l;) _ Z (urH—l — O™ — (" - Qhu"),/lz)

n=1

l -1 n
(Z AtB(1;, 1;- 1)V/l’,V/ll] (Z(AI) Bt} 1. 1i- 1)V/v,w"]

i=1
-1
(AtB(tyer, 1)V, V)
1

~

AtB(ty, ti-1)V A, ,w;]

n=1

n

-1

+ Cllu' = Qi1 IIV A + Z (= Oni)i (@)1 IV AN AL

n=1
[
ny2 l [
SCZ;IIW I At+CZ;AtZ||V/l I2Ar + & ||w II?
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+ CH (1} + Nl (3.25)

LZ(H]))

where we use (2.17) and the assumption on B; additionally, " is located between #,, and 7, .
Add 22:1 IIVﬂgllet to both sides of (3.25); then for sufficiently small Az, combining (3.25) and the
discrete Gronwall inequality, we have

IV () = yu(Quie)llz=i2y < Ch2. (3.26)

Similar to (3.24), we have

N
_(dt/lz’ CIh) + (AV/l;_l’ th) = [Z AtB*(tl’ tn—l)VA;)_la th] + (/1;’ Qh), V Qh € Vh' (327)

i=n

By choosing g, = —dtA}, in (3.27), multiplying by Az and summing over n from/+1to N (0 </ <
N — 1) on both sides of (3.27), combining (3.26) and Poincare inequality gives

—||A2V/1’|| + anm"n At

n=1
N N
<-> (Z AtB' (t;, 1,V AL dtV/l”)At (A7, de2) Ar
n=Il+1 \i n:l+1
N N-1 N
:[Z AtB (8, zl)wgl,wﬁ,) - ZAtB*(z,-,t,,_l)wj;l,wg]
i=l+1 n=i+1 \'i=n
N-1 N N
) (Z ALB' (1, 1)V VAL | = 3" (AL, dedy) At
n=Il+1 \i=n+1 n=I+1
N . N-1 N
:[Z AtB' (1, t,)wgl,wg) - Z(At) B (6, 1)V l,wg)
i=l+1 n=I[+1 =n
N-1 N
= > (MB @)V, V) = " (A8, dedy) A
n=I+1 n=I+1
<Ch* + ||V/l’|| +C Z VAP AL
n=I+1
+C Z Atz IVALIPAL + Z ldt 2| PAt. (3.28)
n=I+1 i=n n [+1

Add fo:l » IIV/lZ‘1 |I*At to both sides of (3.28); then for sufficiently small Az, applying the discrete
Gronwall inequality and the assumptions on A and B, we have

IV (pu() = pr(@ui)lllz=az) < CH. (3.29)

Using the stability analysis as in Lemma 3.2 yields Lemma 3.3.
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Lemma 3.3. Let (v}, p;) and (y;(Qnu), p;(Qnu)) be the discrete solutions of (2.29)—(2.32) with " = uj,
and " = Quu", respectively. Then, for At small enough and 1 < n < N, we have

IVR(Ontt) = yi)lllzez2y + IV(pr(Qntt) = plllz=z2) < CllIIQntt — unlllz2(z2).- (3.30)
Next, we derive the following inequality.
Lemma 3.4. Choose ii" = Quu" and it" = uj in (2.29)—(2.32) respectively. Then, we have

N
> (O =y, p (Qu) = ") Ar > 0. (3.31)

n=1

Proof. Forn=0,1,...,N, let
= pp(Onit) = pjys 1y = Y(Qnt) = Y-

From (2.29)—(2.32), we have

(der,va) + (AVFL, V) - Z At (B(ty, ti-1)Vri, Vvy)
= (Qn" =, vi), Y v, €V, (3.32)

N
= (dtr, qn) + (VP V) - Z At (B (1, t,-)VPS " Van) = (Pan) . Y g € Vi (3.33)

Notice that

i AthlB(t,,,t, DV, Ve 1] = i[AtZN:B*(ti,tn_l)Vr”,Vr;'

n=1 i=n

and

le(dtr;,r” ! At+Z (dern, 1) Ar = 0.

n=1

By choosing v, = —rZ‘l in (3.32), g», = ry in (3.33), and then multiplying the two resulting equations

by At and summing it over n from 1 to N, we have

N N
D (0w =iy, p Q) - i) Ar = D IFIPA, (3.34)
n=1 n=1

which completes the proof of the lemma.

Lemma 3.5. Let u be the solution of (2.4)—(2.8) and u;, be the solution of (2.23)~(2.27). Assume that
all of the conditions in Lemmas 3.1-3.4 are valid. Then, for At small enough and 1 < n < N, we have

Qe = unlllz2i2) < CCH* + Av). (3.35)
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Proof. Take it = uj in (2.8) and ii;, = Qpu" in (2.27) to get the following two inequalities:
W +p'u,—u")>0 (3.36)
and
(up + ", Q" = ) 2 0. (3.37)
Note that u} — u" = uy — Qpu" + Quu" — u". Adding the two inequalities (3.36) and (3.37), we have
@y + py' —u" = p", Q" — ) + (" + p, Q" — ") > 0. (3.38)
Thus, by (3.38), (2.16), (2.8) and Lemma 3.4, we find that

2
|||Qhu - uh”lLZ(LZ)

N
= Z (Qnu" — uj, Qpu" — uy) At
n=1
N N
< Z (Opu" — u", Qpu" — uy,) At + Z (pz_l —p", Opu’" — ”Z) At
n=1 n=1
+ Z(u + p", Qpu" —u") At

N N
= (o' = P Quw), Q" = ) A+ > (p" = p", Qi — ) At
n=1

—+

1
N N
Z ( ) - pth Q' - uZ) At + Z " + p", Quu" — u") At

n=1 n=1

N
* Z ( i Q) = pi” (), Q" ~ MZ) At

_. Z F, (3.39)

It follows from the Cauchy inequality, Lemma 3.1, Lemma 3.2 and Poincare’s inequality that

1 N
Fi < CONNPLgs, + 7 D 10" = P A, (3.40)
n=1

1 N
Fy < C(h* + (An?) ZZ Ot — u}|PAt, (3.41)
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1 N
Fy<Ch*+ 7 Z 10" — ul|PAt. (3.42)
n=1

Substituting the estimates for F;—F3 into (3.39), we derive (3.35).

Using (3.11), (3.21), Lemmas 3.2-3.5 and the triangle inequality, we derive the following super-
convergence for the state variable.

Lemma 3.6. Let u be the solution of (2.4)—(2.8) and u}, be the solution of (2.23)~(2.27). Assume that

all of the conditions in Lemmas 3.1-3.5 are valid. Then, for At small enough and 1 < n < N, we have

IV Ry = yilllz=z2y + IV Rup = pi)lllzszy < COR* + Ar). (3.43)
Now, the main result of this section is given in the following theorem.

Theorem 3.1. Let (y, p, u) and (y;, pZ‘l, uy) be the solutions of (2.4)—«2.8) and (2.23)—(2.27), respec-
tively. Assume that y, p and u have enough regularities for our purpose; then, for At small enough and
1 <n <N, we have

Iy — yh|||L°°(L2) +llp - Ph|||L°°(L2) < C(h2 + A1), (3.44)
VO = ylllz=@z) + IV = p)lll=@zy) < C(h + Ad), (3.45)
lle = uplllz22y) < C(h + Ab). (3.46)

Proof. The proof of the theorem can be completed by using Lemmas 3.1-3.5, (2.17) and the triangle
inequality.

To provide the global superconvergence for the control and state, we use the recovery techniques on
uniform meshes. Let us construct the recovery operators P, and G;,. Let P,v be a continuous piecewise
linear function (without the zero boundary constraint). The value of Pj,v on the nodes are defined by a
least squares argument on element patches surrounding the nodes; the details can be found in [25,26].

We construct the gradient recovery operator G,v = (Pyv,, P,vy) for the gradients of y and p. In
the piecewise linear case, it is noted to be the same as the Z-Z gradient recovery (see [25,26]). We
construct the discrete co-state with the admissible set

o = max{0, pi~'} — py . (3.47)

Now, we can derive the global superconvergence result for the control variable and state variable.

Theorem 3.2. Let u and uj, be the solutions of (2.4)(2.8) and (2.29)—(2.32), respectively. Assume that
all of the conditions in Lemmas 3.1-3.5 are valid. Then we have

llu = flll 22y < C(h* + At). (3.48)

Proof. Using (2.9), (3.47) and Theorem 3.1, we have

N
A2 Any2
lle = 3l g0y = D " = 1P AL
n=1
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IA

M=

N
C > limax{0, 57} — max{0, pj YPA +C ) lIp" = py'IPAr
n=1

1

S
1l

IA
a
1=

N
" = Py IPAL+C Y Ip" = py IPA
1 n=1

S
Il

IA

M=

C ) lIp" = piIPAe

1

3
Il

<C

M=

N
lp" = P IPAE+C Y Il = i IPA
n=1

—

n=

< C(h* + (AD?).

(3.49)

Theorem 3.3. Let (y, p) and (y}, pZ‘l) be the solutions of (2.4)—(2.8) and (2.29)—(2.32), respectively.

Assume that all of the conditions in Lemmas 3.1-3.5 are valid. Then we have
Gryn = Vyllleo@2y + IGrpr = Vplll o2y < C(h2 + A1).
Proof. Notice that
WGryn — Vyllleowzy <NGryn — GrRiyllle@2) + NIGrREY = Vylllzeor2).-
It follows from Lemma 3.6 that
G wyn = GuRiYll=i2y < CIV G = Riylllsizy < C(A* + Ar).
It can be proved by the standard interpolation error estimate technique (see [1]) that
NGiRyy = Vllle2) < CH.
Therefore, it follows from (3.52) and (3.53) that
NGryn = Vylllo@ry < C(h* + Ab).
Similarly, it can be proved that
WGhpn — VPlll o2y < C(h* + At).
Therefore, we complete the proof.

4. Two-grid scheme

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

In this section, we will present a two-grid scheme and analyze a priori error estimates. Now, we

present our two-grid algorithm which has the following two steps:
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Step 1. On the coarse grid Ty, find (v, pi ', u,) € V2 X Ky that satisfies the following optimality

conditions:
(dtyy,vu) + (AVy}, Vvy)

= [Z AtB(t,, ti—l)vyjq, VVH) +(f" +uy,ve), Y vy € Vg,

i=1
Yy = Riy”,
— (dtphy, qu) + (AVDY ', V)

N
= [Z AtB*(t;, fn—l)szl, VC]H] + 0% =Y qu), Y qu € Vg,

N _
pH_09
ly + Pl — ) = 0, Y ul, € Ky

—n —n—-1 —n
Step 2. On the fine grid Ty, find (,, p, ,u,) € V} X K}, such that
(diyys vi) + (AVY,, Vi)

= [Z AtB(t,,1;1)V5), VW,] (" + W), Y vy €V,
i=1
=0
yh = Rhy(),
—n :l’l—]
- (dtph’ C[h) + (Avph ) th)

N
s —i-1 4 n
= [Z AtB (ti9 tn—l)ph s th] + @h —Ya Clh)’ v qn € Vh’
ﬁh = O’

—n —n—1

—n
w, +p, ~u,—u,) =20, Vu; €K

Combining Theorem 3.1 and the stability estimates, we easily get the following results.

4.1)

4.2)

4.3)

4.4)
4.5)

(4.6)

4.7)

(4.8)

4.9)
(4.10)

Theorem 4.1. Let (y, p, u) and @Z, ;TZ,;VZ) be the solutions of (2.4)—(2.8) and (4.1)—(4.10), respectively.
Assume that y, y,, p, pa and u have enough regularities for our purpose; then, for At small enough and

1 <n <N, we have

IV = F)lllze@zy + IIV(p = Plllzs2y < Clh + H? + A),
lllu = Uplll 22y < C(h+ H* + Ab).

Proof. For convenience, let

V' =V =Y =R + Ry =y, =0 + e,
P =Py =pP"—Rip" +Rp" —p, =1, + €.

(4.11)
(4.12)
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Taking ¢ = ¢, in (2.4), subtracting (4.6) from (2.4) and then using (2.12), we have

(drel,vi) + (AVer, Vi)

tn n _
- ( f B(ty, )R, VY(s)ds = > AtB(t,, 1;-1)Vy, Vv | + (dty" = ¥, vi) = (din), va)
0

i=1
+ (I/tn - fth,Vh) , Yv, eV,

(4.13)

Selecting v, = dtey in (4.13), multiplying by As and summing over n from 1to /(I </ < N) on

both sides of (4.13), we find that

!
1 .
E||A2Ve§,||2+ § \ldee} > At

n=1

) l
<- Z (drpy. deel) At + Z (dry" =y dtel) At
n=1 n=1

) fn n _
+ Z:‘ (I) B(t,, $)R,Vy(s)ds — Zl AtB(t,, t;-1)Vy,, dtVe;f) At

l
+ " = iy, drel)Ar

Similar to Lemma 3.1, it is easy to show that

L2(H?)

1
1
I+ b <CR Yy + CADlullae, + 5 D Idee}IPAL
n=1

Similar to Az, we find that

)
I SCADA VRl ) + VR 2) + C D IVELIPAL

n=1
l n
+C ) A Y IVEIP AL+ Ve
n=1 i=1
For 1,, using Theorem 3.2, we have

1 /
I <C(H' + (AD) + 7 ) ldre}|PA.
n=1

(4.14)

(4.15)

(4.16)

(4.17)

Combining (4.15)—(4.17), the discrete Gronwall inequality, the triangle inequality and (2.13), we

get

VG = Flllewz) < C(h+ H? + Ap).

(4.18)
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By taking ¢ = #,; in (2.6), subtracting (4.8) from (2.6) and using (2.12), we have

(dte qn) + (AVe th)

T N .
. —i-1 _
=( f B (s, t,1)VRyp(s)ds — Z B (ti,tu1)D) AL Van) = (dtp" = p™" i)

In-1 i=n
+ (A, gi) + (V) — 6", qn) + " = e ai)s ¥ G € Vi (4.19)

By selecting g, = —dte’, in (4.19), multiplying by Az and summing over n from/+ 1 to N (0 </ <
N — 1) on both sides of (4.19), we find that using (2.15), (4.18) and the triangle inequality, similar to
(3.14), gives

IIV(p = Pllle) < C(h + H? + Ad). (4.20)

Note that

—n —n-1 —n—1
w, = max{0,p, }—mp, ,
n

u" = max{0, p"} — p".

Using (2.19), (4.20) and the mean value theorem, we have
_ N
lloe = Tl 2, = Z "~y |PAr

- N
:ﬂ—l :I’l—l
| max{0, p"} — max{0, p, }I*At+C E lp" — mup,, |PAt

1 n=1

— N
—_— :}’l—l n n—
" =Py IPAL+C D lIp" - p'IPA

n=1

I/\
- -

S
1l

C

M=

S
Il
—_

N

N
:l’l—l
CH P = mp" IPAL+ C Y llmp"™ =y, IPAL

n=1 n=1

<C Y lIp" - by ||2At+cZ||p PP
n=1

|
n=1

=

N
Z'P’” " 1||2At+CZ||7rhp 7y IPA

n=1
N

<C ) lp" = pIPAr+C Z Ilp"" = " At

n=1 n=1

:n—l
+C Z " =By IPA
n=1

<C(h* + H* + (An)H), 4.21)

which completes the proof.
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5. Numerical experiments

In this section, we present the following numerical experiment to verify the theoretical results. We
consider the following two-dimensional parabolic integro-differential optimal control problems

(1! ) 2
%{5 fo Uy = yall® + )dr}

b, v) + (Vy,Vy) = f(Vy(s), Vyds + (f +u,v), Yvevy,
0

y(x,0) = yo(x), ¥ x € Q,

subject to

where Q = (0, 1)%.

We applied a piecewise linear finite element method for the state variable y and co-state variable
p. The stopping criterion of the finite element method was chosen to be the abstract error of control
variable u between two adjacent iterates less than a prescribed tolerance, i.e.,

oy = wll < €,
where € = 107 was used in our numerical tests. For the linear system of equations, we used the
algebraic multigrid method with tolerance 10~°.

The numerical experiments were conducted on a desktop computer with a 2.6 GHz 4-core Intel
17-6700HQ CPU and 8 GB 2133 MHz DDR4 memory. The MATLAB finite element package iFEM
was used for the implementation [27].

Example: We chose the following source function f and the desired state y,; as

4
Fx,1) = (26 + 4x%” + 4n + sin()) sin(rx) sin(ry) — = sin(r),
T

cos(rmt cosnT
(1)) _ cosm + ) sin(rx) sin(ry)
T

ya(x, 1) = (71 cos(nit) — 8% sin 7t + 877 (
such that the exact solutions for y, p, u are respectively,

y = ¢* sin(zrx) sin(ry),

p = sin(mt) sin(zrx) sin(ry),
U= sin(m)(% — sin(mrx) sin(ny)).

In order to see the convergence order with respect to time step size At and mesh size i, we choose
At = hor At = hp with h = 1, 1, ;. To see the convergence order of the two-grid method, we choose
the coarse and fine mesh size pairs (3, 1), (3, 7). (3, 2;)- Let us use y”, p”" and u” as two-grid solutions
in the following tables. In Tables 1 and 2, we let At = h, and present the errors of the finite element
method and two-grid method for y and p in the L>-norm. Next, in Tables 3 and 4, we set At = h and
show the errors of the two methods for y and p in the H'-norm and u in the L?>-norm. We can see that

the two-grid method maintains the same convergence order as the finite element method. Moreover,
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we also display the computing times of the finite element method and the two-grid method in these
tables. By comparison, we find that the two-grid method is more effective for solving the optimal
control problems (1.1)—(1.4).

Table 1. Errors of finite element method with Ar = A% atr = 0.5.

h Iy = yall lp — pall CPU time (s)
41'1 0.1095 0.0856 0.7031
% 0.0079 0.0045 8.8702
6—14 0.0005 0.0002 2253.6396
Table 2. Errors of two-grid method with At = h? at t = 0.5.
(h, H) lly = ¥" lip = P CPU time (s)
i, % 0.1059 0.0853 0.4335
1—16, 4—1‘) 0.0056 0.0043 5.0842
(é, é) 0.0006 0.0002 1027.9740
Table 3. Errors of finite element method with Ar = h at¢ = 0.5.
h Iy = yulls lp = pall Al CPU time (s)
i 1.6604 1.1385 0.1358 0.4720
1—16 0.6187 0.2143 0.0367 0.6320
6—14 0.1687 0.0578 0.0090 24.0800
Table 4. Errors of two-grid method with Af = hatt = 0.5.
(h,H) lly = "Il lp =Pl [l — u"]| CPU time (s)
X 1.6755 1.1375 0.0988 0.2880
(%, }l) 0.6288 0.2142 0.0346 0.3870
(6‘—4, %) 0.1716 0.0579 0.0089 7.3120

6. Conclusions

In this paper, we presented a two-grid finite element scheme for linear parabolic integro-differential
control problems (1.1)—(1.4). A priori error estimates for the two-grid method and finite element
method have been derived. We have used recovery operators to prove the superconvergence results.
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These results seem to be new in the literature. In our future work, we will investigate a posteriori error
estimates. Furthermore, we shall consider a priori error estimates and a posteriori error estimates for
optimal control problems governed by hyperbolic integro-differential equations.
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