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Abstract: Compared to many infectious diseases, tuberculosis has a high mortality rate. Because of this, a great deal of illustrative
research has been done on the modeling and study of tuberculosis using mathematics. In this work, a mathematical model is created
by taking into account the underlying presumptions of this disease. One of the main novelties of the paper is to consider two different
treatment strategies namely protective treatment for the latent populations from the disease and the main treatment applied to the infected
populations. This situation can be regarded as the other novelty of the paper. The susceptible, latent, infected, and recovered populations,
as well as the two mentioned treatment classes, are all included in the proposed six-dimensional model’s compartmental framework.
Additionally, a region that is biologically possible is presented, as well as the solution’s positivity, existence, and uniqueness. The
suggested model’s solutions are carried out as numerical simulations using assumed and literature-based parameter values and analyzing
its graphics. To get the results, a fourth-order Runge-Kutta numerical approach is used.
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1. Introduction

Humanity has fought epidemics for centuries, and
millions of people have lost their lives. From time to time,
these outbreaks manifest themselves in the form of plague,
smallpox, HIV/AIDS, SARS, avian flu, and influenza. One
of these epidemics is tuberculosis (TB) which is popularly
known. Tuberculosis is a long-term bacterial and infectious
disease caused by the microbe “mycobacterium tuberculosis
(MTB)”. The way of transmission is often caused by sputum
that a tuberculosis patient spits into the environment, or by
Bacillus-laden droplets that are scattered when coughing.
Although tuberculosis is an infection that can occur in more
than one organ, it is mainly observed in the lungs and
mediastinal lymph nodes of the lungs. Bacillus is emitted
from an active tuberculosis patient by coughing, sneezing,

or other means through droplets into the air in saliva, and
the infection is spread by removing particles suspended in
the air. It is one of the oldest known diseases, that can be
maintained, although still continues to be one of the world’s
most common and deadly infectious diseases, and more
than three million people per year are died due to TB [1].
People who experience tuberculosis can continue their
healthy lives for months without any symptoms. During
this period, the person’s immune system tries to prevent
the development of the disease by fighting against the MTB
bacterium. But in cases where the immune system cannot
show sufficient resistance, tuberculosis microbes become
active and tuberculosis disease occurs [2].

24th of March is commemorated every year as “World
Tuberculosis Day”, dedicated to the day of March 24, 1882,
when MTB Bacillus was discovered by Robert Koch in

http://www.aimspress.com/journal/mmc
http://dx.doi.org/10.3934/mmc.2023009


89

order to end the global TB epidemic and paved the way
for the diagnosis and treatment of the disease. About a
quarter of the world’s population has been infected with
tuberculosis Bacillus. The increase in HIV/AIDS infection
in the world also increases the global threat of TB. 30.000
people are being infected with tuberculosis and 4.500 of
them die due to tuberculosis every day. In the world, 54
million lives have been saved and tuberculosis has been
reduced by 42% by global efforts since 2000. The World
Health Organization (WHO) has implemented its global
tuberculosis eradication strategy and the WHO European
Region Tuberculosis Action Plan 2016-2020, identifying the
steps to be taken after 2015. In this context, it is aimed to
reduce TB incidence by 90% all over the world by 2030 [3].

The first mathematical model given by Waaler et al. [4]
was established by taking into account relationships with
other social sciences, and the potentials of this model are
shown in three examples that show how the model can
help predict the tendency of tuberculosis, either in a given
state, which develops spontaneously suddenly or under the
influence of certain control programs. In particular, these
examples emphasize that the model can be profitable in
evaluating specific control programs, reflecting the effects
of tuberculosis on its natural tendency. Schulzer et al.
(1994) [5] presented a mathematical model to study the
accelerating effect of HIV infection on TB disease, while
Castillo-Chavez and Feng (1997) [6] revealed differences
between two TB individuals with and without drug-resistant
TB. In another study, it was stated that the effect of
exogen on the qualitative dynamics of TB was too great [7].
Monte-Carlo simulations were conducted to determine the
likelihood that 10,000 clinical patients receiving different
doses of moxifloxacin could reach or exceed the point of
exposure to the drug required to suppress their resistance to
moxifloxacin in TB [8]. In addition, it was concluded that
advanced TB diagnostic techniques have a significant impact
on t-related disease and death rates in HIV endemic areas,
and it was emphasized that as TB rates continue to increase,
advanced diagnostic techniques should be considered as TB
control strategies [9].

Analysis of the mathematical model created in research on
multidrug-resistant (CID) and common drug-resistant (YID)
strains in South Africa, the region with the highest TB rate

worldwide, has yielded important results for the next 10
years. It showed that the spread of TB culture and drug
sensitivity among adults in South Africa could save more
than 47.000 lives and prevent more than 7.000 cases of CID-
TB in the period from 2008 to 2017. This corresponds
to a 17% decrease in total TB deaths and a 47% decrease
in CID-TB deaths [10]. Bowong and Tewa (2009) [11]
proved that the TB system they studied was asymptotically
globally stable and has a single stable equilibrium, and
showed that depending on the basic reproductive rate, this
stable structure occurs either in a regional disease state or in
disease-free situations. Aparicio and Castillo-Chavez (2009)
analyzed a TB model they established on three separate
classes: a homogeneous mixture with the probability of
standard virus hit, a non-homogeneous mixture containing
“household-household” contacts, and a mixture grouped by
age, and discussed the factors affecting TB. From these
factors, they examined in detail the effects of population
growth, stochasticism, clustering of contacts, and age
structure on disease dynamics. In a study where a new
deterministic mathematical model was created, Liu and
Zhang (2011) [12] described the effects of vaccination
and treatment on the spread of tuberculosis. Tewa et
al. (2012) [13] took into account that it is possible
for TB-sensitive individuals to switch from one part to
another, and proved the existence-uniqueness of related
endemic balances in quadratic forms using the Lyapunov
function. Trauer et al. [14] The model presented by
(2014) simulated program-based responses to tuberculosis
in extreme endemic countries in the Asia-Pacific region and
stated that the model could not be adjusted according to the
predicted rate of a hit without allowing reinfection during
the delay. In another study, by adding vaccine parameters
to the mathematical model, it was aimed to infect the least
people among susceptible individuals and to minimize the
number of infected individuals [15].

January 2005 December 2012 in a mathematical model
created with a focus on tuberculosis data in China [16] fit
the relevant data and thus determined the optimal parameter
values of the model using the chi-square test; with these
parameters, they calculated the effective number of disease
reproduction each year. Dodd et al. (2016) [17], in
their study of children in the 22 countries where TB cases
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are most common, they set a benchmark for the rates
of tuberculosis cases at the country level and developed
recommendations to prevent TB cases at these rates. In
another study [18], a model describing the impact of a public
health education campaign for tuberculosis and comparing
it with data from Senegal was developed. Taking into
account the results found, they suggested that some data
could be added to the model, such as chronological age
and/or spatial structure, which takes into account sensitivity
by age, to observe the difference between the approaches
of individuals in rural and urban areas to TB. Vinh et
al. (2018) [19] the passage of the virus in the world is
one of the cities most likely HIV/AIDS and TB happens
very fast synchronization between the dynamics of a city,
Ho Chi Minh City (HCMC-Vietnam). In their study, a
mathematical model to integrate many data sources HCMC
the dynamics of TB was explored. This study was the first
detailed study on TB at HCMC and provides information
on TB dynamics at HCMC from 1996 to 2005. In [20], the
authors considered two different treatment strategies: one
of them is to point out the impact of treating latent TB
infection (LTBI) in the elderly in addition to current TB
control strategies. The other one is the treatment of infected
individuals with anti-TB drugs. A lot of modeling studies
have also been conducted in relation to significant area of
science and infectious illnesses including COVID-19 [21–
32], cancer cells-cancer stem cells [33], optimal control
and bifurcation [34], alcoholism [35], cholera [36, 37],
Parkinson’s disease [38], disturbance effect in intracellular
calcium dynamic on fibroblast cells [39], HIV [40, 41],
babesiosis [42], predator-prey [43,44], viral system with the
non-cytolytic immune assumption [45], Nipah virus [46],
an epidemic model with general interference function
and high-order perturbation [47], potential scenarios for
wastewater treatment [48], Gompertz growth model [49],
a general epidemic model with logistic growth [50],
synchronization [51], a sewage treatment model [52].

2. Model formulation

In the present TB model, population compartments
consist of six populations: Susceptible (S ), Latent
(L), Treatment for latently infected individuals (T1),

Infected (I), Treatment for the actively infected individuals
(T2) and Recovered (R) which mean that Susceptible:
Individuals susceptible to disease, Latent: those who
are latently infected by tuberculosis, that is, individuals
who do not experience the disease actively, Treatment 1:
Preventive treatment applied optionally to patients with
latent tuberculosis, that is, conscious individuals who accept
this treatment, Infected: Individuals who are actively
living the disease with reduced body resistance, Treatment
2: Curative treatment applied to infected individuals,
Recovered: Individuals who have survived tuberculosis
disease. In Tuberculosis (TB) model that we have
constructed, the Λ parameter includes all people, and a
certain part of them are thought to be susceptible to the
disease. In other words, the state of being susceptible to
this disease is not considered for all people. Because some
people completely isolate themselves from society. For this
reason, these individuals do not get the disease. There is also
a protective treatment (consciousness) compartment that
covers conscious individuals, considering that it will play
a significant role in ending the disease. Transitions between
compartments depend on the proportions which fall into the
range [0.1]. In this model, from the susceptible compartment
at the rate of β to the hidden TB compartment, and also from
the susceptible compartment at the rate of α, individuals
switch to the infected compartment. Although the hidden
TB compartment has high body resistance and contains the
virus in its body, it has not yet actively experienced the
disease and cannot transmit it to other individuals in the
society where it is located. For this reason, protective
treatment is applied to the individuals in this compartment
to ensure that the recovered individuals are transferred to
the compartment in which they are stated. Individuals
who accepted this treatment have been also considered as
conscious individuals. Protective treatment has been applied
to individuals in the ratio of f individuals in the hidden
TB compartment, and individuals in the ratio of m have
given positive responses to the treatment and moved to the
recovered compartment.

Infected individuals live actively and can infect other
people. At the same time, the disease becomes active due
to the decrease in body resistance of individuals at the rate
of γ from the hidden TB compartment and passes to the
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Figure 1. Diagram illustrating the Tuberculosis
Model’s dynamic flow.

compartment where the infected individuals are located.
Individuals at the rate of z in the infected compartment
can join those who recover without any treatment method.
Meanwhile, by applying the main treatment method to the
infected individuals at the ratio of θ, individuals at the rate
of c in this compartment join the individuals who have
overcome the disease and recovered. Normal death occurs
in the rate of µ in all of these compartments, but death from
disease occurs in the fraction of σ in the individuals I, T1

and T2 compartments as shown in Figure 1.

The model is therefore given by the following set of
ordinary differential equations:

dS
dt

= Λ − (βL + αI + µ) S ,

dL
dt

= βS L − (γI + f + µ) L,

dT1

dt
= f L − (m + µ + σ) T1, (2.1)

dI
dt

= γLI + αS I − (θ + z + µ + σ) I,

dT2

dt
= θI − (c + µ + σ) T2,

dR
dt

= mT1 + cT2 + zI − µR,

subject to the initial conditions (IC),

S (0) = S 0, L(0) = L0,T1(0) = T10 ,

I(0) = I0,T2(0) = T20 ,R(0) = R0, (2.2)

where (S (t), L(t),T1(t), I(t),T2(t),R(t)) ∈ R6
+. The functions

S (t), L(t), T1(t), I(t), T2(t), R(t) and their derivatives are
considered to be continuous at t ≥ 0 in this situation.

3. Analysis of the model

The positivity and boundedness of the solution for the
recommended model (2.1) are given in this section. The
existence conditions and stability findings for the equilibria
are then given.

3.1. Positivity of solutions and determining the

biologically invariant region

We begin with the following theorem to this subsection:

Theorem 1. The proposed model (2.1)’s solution set

{S (t) , L (t) ,T1 (t) , I (t) ,T2 (t) ,R (t)} combined with the IC

(2.2), is non-negative for all t > 0.

Proof 1. According to the study’s suggestion [55], we
evaluate the first equation while accounting for the nonlinear
system of equations (2.1):

dS
dt

= Λ − (βL + αI + µ) S , (3.1)

which means that

dS
dt
≥ − (βL + αI + µ) S . (3.2)

By integrating Equation (3.2) and using the exponential
growth condition, we get

S (t) ≥ S (0)e−(βL+αI+µ)t, (3.3)

this gives
S (t) ≥ 0. (3.4)

Theorem 2. In area A ⊂ R6
+, given by following, the

solutions of system (2.1) with IC (2.2) are specified:

A =

{
(S (t), L(t),T1(t), I(t),T2(t),R(t)) ∈ R6

+| N(t) ≤
Λ

µ

}
.

(3.5)

Proof 2. By taking the total population, we have

dN(t)
dt

=
dS (t)

dt
+

dL(t)
dt

+
dT1(t)

dt
+

dI(t)
dt

+
dT2(t)

dt
+

dR(t)
dt

.

(3.6)
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Table 1. Parameter values and their biological meanings along with the source.

Par. Interpretation Value Source

Λ Recruitment rate 1562 assumed
β The rate of susceptible individuals to enter the hidden TB compartment 0.0005 assumed
α Rate of transmission of susceptible individuals to infected compartment 0.0006 assumed
γ Rate of hidden TB individuals entering the Infected compartment 0.00027 assumed
σ Disease-related mortality 0.004 assumed
µ Normal mortality rate 0.03 [53]
f The rate at which hidden TB individuals enter the consciousness compartment 0.6 assumed
m Proportion of individuals recovering with preventive treatment 0.5 assumed
θ Proportion of individuals treated with infected individuals 0.35 assumed
z Proportion of infected individuals recovering without treatment 0.4 assumed
c Proportion of individuals recovering by treating infected individuals 0.06 assumed

S (0) Initial Susceptible population 30201 [54]
L(0) Initial Latent population 830 [54]
T1(0) Initial Treatment 1 population 0 [54]
I(0) Initial Infected population 801 [54]

T2(0) Initial Treatment 2 population 0 assumed
R(0) Initial Recovered population 0 [54]

Then we have the following for the whole population

dN
dt

= Λ − µN − σ(T1 + T2)

≤ Λ − µN. (3.7)

Equation (3.7)’s solution is presented as

N(t) ≤
Λ

µ
−

(
Λ

µ
− N0

)
e−µt, (3.8)

where N0 = N(0) is the definition of the beginning
population. With the aid of the Birkhoff-Rota theorem, we
can state that if N0 < Λ

µ
, then as t → ∞, asymptotically

N(t) → Λ
µ

in Eq (3.5), and the overall population size
becomes N(t) → Λ

µ
, then 0 ≤ N ≤ Λ

µ
. As a result, region A

is where all of the model’s viable solutions converge [57].

3.2. Existence-Uniqueness of solution of model (2.1)

Firstly, we start by the following Volterra-type integral
equations:

S (t) − S (0) =

∫ t

0

[
Λ − (βL (τ) + αI (τ) + µ) S (τ)

]
dτ,

L (t) − L (0) =

∫ t

0

[
βS (τ) L (τ) − (γI (τ) + f + µ) L (τ)

]
dτ,

T1 (t) − T1 (0) =

∫ t

0

[
f L (τ) − (m + µ + σ) T1 (τ)

]
dτ,

I (t) − I (0) =

∫ t

0

[
γL (τ) I (τ) + αS (τ) I (τ)

− (θ + z + µ + σ) I (τ)
]
dτ, (3.9)

T2 (t) − T2 (0) =

∫ t

0

[
θI (τ) − (c + µ + σ) T2 (τ)

]
dτ,

R (t) − R (0) =

∫ t

0

[
mT1 (τ) + cT2 (τ) + zI (τ) − µR (τ)

]
dτ.

Let us define the following kernels as

ϕ1 (t, S ) =
[
Λ − (βL (t) + αI (t) + µ) S (t)

]
,

ϕ2 (t, L) =
[
βS (t) L (t) − (γI (t) + f + µ) L (t)

]
,

ϕ3 (t,T1) =
[
f L (t) − (m + µ + σ) T1 (t)

]
,

ϕ4 (t, I) =
[
γL (t) I (t) + αS (t) I (t)

− (θ + z + µ + σ) I (t)
]
, (3.10)

ϕ5 (t,T2) =
[
θI (t) − (c + µ + σ) T2 (t)

]
,

ϕ6 (t,R) =
[
mT1 (t) + cT2 (t) + zI (t) − µR (t)

]
.

The following theorem then emerges:

Theorem 3. If the following inequality is confirmed, then

ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 and ϕ6 are in accordance with the Lipschitz

assumptions and contractions:

0 ≤ q1, q2, q3, q4, q5, q6 < 1, (3.11)

where, ‖S ‖ ≤ m1, ‖L‖ ≤ m2, ‖T1‖ ≤ m3, ‖I‖ ≤ m4, ‖T2‖ ≤

m5, ‖R‖ ≤ m6, q1 = βm2 +αm4 + µ, q2 = βm1 + γm4 + f + µ,

q3 = m+µ+σ, q4 = γm2 +αm1 +θ+z+µ+σ, q5 = c+µ+σ

and q6 = µ.

Proof 3. Let S 1 and S 2 be two functions for the kernel ϕ1;
L1 and L2 be two functions for the kernel ϕ2; T11 and T12 be
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two functions for the kernel ϕ3; I1 and I2 be two functions
for the kernel ϕ4; T21 and T22 be two functions for the kernel
ϕ5; and R1 and R2 be two functions for the kernel ϕ6. Then
we have

‖ϕ1 (t, S 1) − ϕ1 (t, S 2)‖ = ‖[Λ − (βL + αI + µ)S 1]

− [Λ − (βL + αI + µ)S 2]‖

≤ (βm2 + αm4 + µ)) ‖S 1 − S 2‖

= q1 ‖T1 − T2‖ ,

‖ϕ2 (t, L1) − ϕ2 (t, L2)‖ = ‖[βS L1 − (γI + f + µ)L1]

− [βS L2 − (γI + f + µ)L2]‖

≤ (βm1 + γm4 + f + µ) ‖L1 − L2‖

= q2 ‖L1 − L2‖ ,∥∥∥ϕ3
(
t,T11

)
− ϕ3

(
t,T12

)∥∥∥ = ‖[ f L − (m + µ + σ)T11 ]

− [ f L − (m + µ + σ)T12 ]‖

≤ (m + µ + σ)
∥∥∥T11 − T12

∥∥∥ (3.12)

= q3
∥∥∥T11 − T12

∥∥∥ ,
‖ϕ4 (t, I1) − ϕ4 (t, I2)‖

= ‖[γLI1 + αS I1 − (θ + z + µ + σ)I1]

− [γLI2 + αS I2 − (θ + z + µ + σ)I2]‖

≤ (γm2 + αm1 + θ + z + µ + σ) ‖I1 − I2‖

= q4 ‖I1 − I2‖ ,∥∥∥ϕ5
(
t,T21

)
− ϕ5

(
t,T22

)∥∥∥ = ‖[θI − (c + µ + σ)T21 ]

− [θI − (c + µ + σ)T22 ]‖

≤ (c + µ + σ)
∥∥∥T21 − T22

∥∥∥
= q5

∥∥∥T21 − T22

∥∥∥ ,
and

‖ϕ6 (t,R1) − ϕ6 (t,R2)‖ = ‖[mT1 + cT2 + zI − µR1]

−[mT1 + cT2 + zI − µR2]‖

≤ µ ‖R1 − R2‖

= q6 ‖R1 − R2‖ .

As a result, kernels ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 and ϕ6 satisfy the
Lipschitz requirements, and if 0 ≤ q1, q2, q3, q4, q5, q6 < 1,
then q1, q2, q3, q4, q5 and q6 is likewise a contraction of
kernels ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 and ϕ6, respectively. It establishes
the theorem.

In light of kernels ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 and ϕ6, the system
described in Eq (3.9) can be rewritten as follows:

S (t) = S (0) +

∫ t

0
ϕ1 (τ, S ) dτ,

L (t) = L (0) +

∫ t

0
ϕ2 (τ, L) dτ,

T1 (t) = T1 (0) +

∫ t

0
ϕ3 (τ,T1) dτ, (3.13)

I (t) = I (0) +

∫ t

0
ϕ4 (τ, I) dτ,

T2 (t) = T2 (0) +

∫ t

0
ϕ5 (τ,T2) dτ,

R (t) = R (0) +

∫ t

0
ϕ6 (τ,R) dτ.

We can proceed with the following recursive formula

S n (t) = S (0) +

∫ t

0
ϕ1 (τ, S n−1) dτ,

Ln (t) = L (0) +

∫ t

0
ϕ2 (τ, Ln−1) dτ,

T1n (t) = T1 (0) +

∫ t

0
ϕ3

(
τ,T1n−1

)
dτ, (3.14)

In (t) = I (0) +

∫ t

0
ϕ4 (τ, In−1) dτ,

T2n (t) = T2 (0) +

∫ t

0
ϕ5

(
τ,T2n−1

)
dτ,

Rn (t) = R (0) +

∫ t

0
ϕ6 (τ,Rn−1) dτ,

where S 0 (t) = S (0), L0 (t) = L (0), T10 (t) = T1 (0), I0 (t) =

I (0), T20 (t) = T2 (0) and R0 (t) = R (0) . Then we can write

Ψn (t) = S n (t) − S n−1 (t)

=

∫ t

0

[
ϕ1 (τ, S n−1) − ϕ1 (τ, S n−2)

]
dτ,

∆n (t) = Ln (t) − Ln−1 (t)

=

∫ t

0

[
ϕ2 (τ, Ln−1) − ϕ2 (τ, Ln−2)

]
dτ,

Φn (t) = T1n (t) − T1n−1 (t)

=

∫ t

0

[
ϕ3

(
τ,T1n−1

)
− ϕ3

(
τ,T1n−2

)]
dτ,

Πn (t) = In (t) − In−1 (t) (3.15)

=

∫ t

0

[
ϕ4 (τ, In−1) − ϕ4 (τ, In−2)

]
dτ,

Θn (t) = T2n (t) − T2n−1 (t)

=

∫ t

0

[
ϕ5

(
τ,T2n−1

)
− ϕ5

(
τ,T2n−2

)]
dτ,
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Ξn (t) = Rn (t) − Rn−1 (t)

=

∫ t

0

[
ϕ6 (τ,Rn−1) − ϕ6 (τ,Rn−2)

]
dτ,

where S n (t) =
∑n

j=1 Ψn (t), Ln (t) =
∑n

j=1 ∆n (t), T1n (t) =∑n
j=1 Φn (t), In (t) =

∑n
j=1 Πn (t), T2n (t) =

∑n
j=1 Θn (t) and

Rn (t) =
∑n

j=1 Ξn (t). By taking the norm of both sides of
Eq (3.15), we have

‖Ψn (t)‖ = ‖S n (t) − S n−1 (t)‖

≤

∥∥∥∥∥∥
∫ t

0

[
ϕ1 (τ, S n−1) − ϕ1 (τ, S n−2)

]
dτ

∥∥∥∥∥∥ ,
‖∆n (t)‖ = ‖Ln (t) − Ln−1 (t)‖

≤

∥∥∥∥∥∥
∫ t

0

[
ϕ2 (τ, Ln−1) − ϕ2 (τ, Ln−2)

]
dτ

∥∥∥∥∥∥ ,
‖Φn (t)‖ =

∥∥∥T1n (t) − T1n−1 (t)
∥∥∥ (3.16)

≤

∥∥∥∥∥∥
∫ t

0

[
ϕ3

(
τ,T1n−1

)
− ϕ3

(
τ,T1n−2

)]
dτ

∥∥∥∥∥∥ ,
‖Πn (t)‖ = ‖In (t) − In−1 (t)‖

≤

∥∥∥∥∥∥
∫ t

0

[
ϕ4 (τ, In−1) − ϕ4 (τ, In−2)

]
dτ

∥∥∥∥∥∥ ,
‖Θn (t)‖ =

∥∥∥T2n (t) − T2n−1 (t)
∥∥∥

≤

∥∥∥∥∥∥
∫ t

0

[
ϕ5

(
τ,T2n−1

)
− ϕ5

(
τ,T2n−2

)]
dτ

∥∥∥∥∥∥ ,
‖Ξn (t)‖ = ‖Rn (t) − Rn−1 (t)‖

≤

∥∥∥∥∥∥
∫ t

0

[
ϕ6 (τ,Rn−1) − ϕ6 (τ,Rn−2)

]
dτ

∥∥∥∥∥∥ .
Since the kernels satisfy the Lipschitz condition (see
Theorem 3), we get

‖S n (t) − S n−1 (t)‖ ≤ q1

∫ t

0
‖S n−1 − S n−2‖ dτ,

‖Ln (t) − Ln−1 (t)‖ ≤ q2

∫ t

0
‖Ln−1 − Ln−2‖ dτ,

∥∥∥T1n (t) − T1n−1 (t)
∥∥∥ ≤ q3

∫ t

0

∥∥∥T1n−1 − T1n−2

∥∥∥ dτ, (3.17)

‖In (t) − In−1 (t)‖ ≤ q4

∫ t

0
‖In−1 − In−2‖ dτ,

∥∥∥T2n (t) − T2n−1 (t)
∥∥∥ ≤ q5

∫ t

0

∥∥∥T2n−1 − T2n−2

∥∥∥ dτ,

‖Rn (t) − Rn−1 (t)‖ ≤ q6

∫ t

0
‖Rn−1 − Rn−2‖ dτ.

Then, using the final inequality, we arrive at:

‖Ψn (t)‖ ≤ q1

∫ t

0
‖Ψn−1 (τ)‖ dτ,

‖∆n (t)‖ ≤ q2

∫ t

0
‖∆n−1 (τ)‖ dτ,

‖Φn (t)‖ ≤ q3

∫ t

0
‖Φn−1 (τ)‖ dτ, (3.18)

‖Πn (t)‖ ≤ q4

∫ t

0
‖Πn−1 (τ)‖ dτ,

‖Θn (t)‖ ≤ q5

∫ t

0
‖Θn−1 (τ)‖ dτ,

‖Ξn (t)‖ ≤ q6

∫ t

0
‖Ξn−1 (τ)‖ dτ.

We derive the following theorem from these findings.

Theorem 4. The suggested TB model has a solution under

the presumption that we get tmax holding:

qitmax < 1, i = 1, 2, 3, 4, 5, 6. (3.19)

Proof 4. Taking into account the functions S (t), L (t), T1 (t),
I (t), T2 (t) and R (t) are bounded and their kernels ϕ1, ϕ2, ϕ3,
ϕ4, ϕ5 and ϕ6 hold the Lipschitz condition, we can give the
following by taking Eq (3.18) into account,

‖Ψn (t)‖ ≤ ‖S 0 (t)‖ {q1tmax}
n ,

‖∆n (t)‖ ≤ ‖L0 (t)‖ {q2tmax}
n ,

‖Φn (t)‖ ≤
∥∥∥T10 (t)

∥∥∥ {q3tmax}
n , (3.20)

‖Πn (t)‖ ≤ ‖I0 (t)‖ {q4tmax}
n ,

‖Θn (t)‖ ≤
∥∥∥T20 (t)

∥∥∥ {q5tmax}
n ,

‖Ξn (t)‖ ≤ ‖R0 (t)‖ {q6tmax}
n .

The functions in Eq (3.20) are now demonstrated to be the
solutions of the specified TB model. We believe

S (t) − S (0) = S n (t) − ωn (t) ,

L (t) − L (0) = Ln (t) − ϑn (t) ,

T1 (t) − T1 (0) = T1n (t) − κn (t) , (3.21)

I (t) − I (0) = In (t) − εn (t) ,

T2 (t) − T2 (0) = T2n (t) − ςn (t) ,

R (t) − R (0) = Rn (t) − %n (t) .

Then we now present that the terms stated in Eq (3.21)
maintain that ‖ω∞ (t)‖ → 0, ‖ϑ∞ (t)‖ → 0, ‖κ∞ (t)‖ → 0,
‖ε∞ (t)‖ → 0, ‖ς∞ (t)‖ → 0 and ‖%∞ (t)‖ → 0. Because of
having

‖ωn (t)‖ ≤

∥∥∥∥∥∥
∫ t

0

[
ϕ1 (τ, S ) − ϕ1 (τ, S n−1)

]
dτ

∥∥∥∥∥∥
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≤

∫ t

0
‖ϕ1 (τ, S ) − ϕ1 (τ, S n−1)‖ dτ

≤ tq1 ‖S − S n−1‖ ,

‖ϑn (t)‖ ≤

∥∥∥∥∥∥
∫ t

0

[
ϕ2 (τ, L) − ϕ2 (τ, Ln−1)

]
dτ

∥∥∥∥∥∥
≤

∫ t

0
‖ϕ2 (τ, L) − ϕ2 (τ, Ln−1)‖ dτ

≤ tq2 ‖L − Ln−1‖ ,

‖κn (t)‖ ≤

∥∥∥∥∥∥
∫ t

0

[
ϕ3 (τ,T1) − ϕ3

(
τ,T1n−1

)]
dτ

∥∥∥∥∥∥
≤

∫ t

0

∥∥∥ϕ3 (τ,T1) − ϕ3
(
τ,T1n−1

)∥∥∥ dτ (3.22)

≤ tq3
∥∥∥T1 − T1n−1

∥∥∥ ,
‖εn (t)‖ ≤

∥∥∥∥∥∥
∫ t

0

[
ϕ4 (τ, I) − ϕ4 (τ, In−1)

]
dτ

∥∥∥∥∥∥
≤

∫ t

0
‖ϕ4 (τ, I) − ϕ4 (τ, In−1)‖ dτ

≤ tq4 ‖I − In−1‖ ,

‖ςn (t)‖ ≤

∥∥∥∥∥∥
∫ t

0

[
ϕ5 (τ,T2) − ϕ5

(
τ,T2n−1

)]
dτ

∥∥∥∥∥∥
≤

∫ t

0

∥∥∥ϕ5 (τ,T2) − ϕ5
(
τ,T2n−1

)∥∥∥ dτ

≤ tq5
∥∥∥T2 − T2n−1

∥∥∥ ,
and

‖%n (t)‖ ≤

∥∥∥∥∥∥
∫ t

0

[
ϕ6 (τ,R) − ϕ6 (τ,Rn−1)

]
dτ

∥∥∥∥∥∥
≤

∫ t

0
‖ϕ6 (τ,R) − ϕ6 (τ,Rn−1)‖ dτ

≤ tq6 ‖R − Rn−1‖ ,

recursively carrying out this procedure, we obtain

‖ωn (t)‖ ≤ {t}n+1 qn
1Υ,

‖ϑn (t)‖ ≤ {t}n+1 qn
2Υ,

‖κn (t)‖ ≤ {t}n+1 qn
3Υ,

‖εn (t)‖ ≤ {t}n+1 qn
4Υ,

‖ςn (t)‖ ≤ {t}n+1 qn
5Υ,

and

‖%n (t)‖ ≤ {t}n+1 qn
6Υ.

Considering these last two inequalities at tmax point, we have

‖ωn (t)‖ ≤ {tmax}
n+1 qn

1Υ,

‖ϑn (t)‖ ≤ {tmax}
n+1 qn

2Υ,

‖κn (t)‖ ≤ {tmax}
n+1 qn

3Υ,

‖εn (t)‖ ≤ {tmax}
n+1 qn

4Υ,

‖ςn (t)‖ ≤ {tmax}
n+1 qn

5Υ,

and

‖%n (t)‖ ≤ {tmax}
n+1 qn

6Υ.

The final step is taken, after applying the limit on both
sides of the final inequalities as n → ∞, and by taking into
account the theorem’s 3 conclusions, we get ‖ω∞ (t)‖ → 0,
‖ϑ∞ (t)‖ → 0 , ‖κ∞ (t)‖ → 0, ‖ε∞ (t)‖ → 0, ‖ς∞ (t)‖ → 0 and
‖%∞ (t)‖ → 0.

Theorem 5. The TB model constructed in the paper has a

unique solution.

Proof 5. Suppose that there is a different systemic solution,
such as S 1 (t), L1 (t), T11 (t), I1 (t), T21 (t) and R1 (t). After
that we get

S (t) − S 1 (t) =
∫ t

0

[
ϕ1 (τ, S ) − ϕ1 (τ, S 1)

]
dτ,

L (t) − L1 (t) =
∫ t

0

[
ϕ2 (τ, L) − ϕ2 (τ, L1)

]
dτ,

T1 (t) − T11 (t) =
∫ t

0

[
ϕ3 (τ,T1) − ϕ3

(
τ,T11

)]
dτ, (3.23)

I (t) − I1 (t) =
∫ t

0

[
ϕ4 (τ, I) − ϕ4 (τ, I1)

]
dτ,

T2 (t) − T21 (t) =
∫ t

0

[
ϕ5 (τ,T2) − ϕ5

(
τ,T21

)]
dτ,

R (t) − R1 (t) =
∫ t

0

[
ϕ6 (τ,R) − ϕ6 (τ,R1)

]
dτ.

When both sides of Eq (3.23) are subjected to the norm, we
get

‖S (t) − S 1 (t)‖ ≤
∫ t

0 ‖ϕ1 (τ, S ) − ϕ1 (τ, S 1)‖ dτ,

‖L (t) − L1 (t)‖ ≤
∫ t

0 ‖ϕ2 (τ, L) − ϕ2 (τ, L1)‖ dτ,∥∥∥T1 (t) − T11 (t)
∥∥∥ ≤ ∫ t

0

∥∥∥ϕ3 (τ,T1) − ϕ3
(
τ,T11

)∥∥∥ dτ,(3.24)

‖I (t) − I1 (t)‖ ≤
∫ t

0 ‖ϕ4 (τ, I) − ϕ4 (τ, I1)‖ dτ,∥∥∥T2 (t) − T21 (t)
∥∥∥ ≤ ∫ t

0

∥∥∥ϕ5 (τ,T2) − ϕ5
(
τ,T21

)∥∥∥ dτ,

‖R (t) − R1 (t)‖ ≤
∫ t

0 ‖ϕ6 (τ,R) − ϕ6 (τ,R1)‖ dτ.

As a result of the kernels ϕ1, ϕ2, ϕ3, ϕ4, ϕ5 and ϕ6 satisfying
the Lipschitz criterion, we can write

‖S (t) − S 1 (t)‖ ≤ q1t ‖S (t) − S 1 (t)‖ ,

‖L (t) − L1 (t)‖ ≤ q2t ‖L (t) − L1 (t)‖ ,
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96∥∥∥T1 (t) − T11 (t)
∥∥∥ ≤ q3t

∥∥∥T1 (t) − T11 (t)
∥∥∥ , (3.25)

‖I (t) − I1 (t)‖ ≤ q4t ‖I (t) − I1 (t)‖ ,∥∥∥T2 (t) − T21 (t)
∥∥∥ ≤ q5t

∥∥∥T2 (t) − T21 (t)
∥∥∥ ,

‖R (t) − R1 (t)‖ ≤ q6t ‖R (t) − R1 (t)‖ ,

which gives

‖S (t) − S 1 (t)‖ (1 − q1t) ≤ 0,

‖L (t) − L1 (t)‖ (1 − q2t) ≤ 0,∥∥∥T1 (t) − T11 (t)
∥∥∥ (1 − q3t) ≤ 0, (3.26)

‖I (t) − I1 (t)‖ (1 − q4t) ≤ 0,∥∥∥T2 (t) − T21 (t)
∥∥∥ (1 − q5t) ≤ 0,

‖R (t) − R1 (t)‖ (1 − q6t) ≤ 0.

Hence, we have ‖S (t) − S 1 (t)‖ = 0, ‖L (t) − L1 (t)‖ = 0,∥∥∥T1 (t) − T11 (t)
∥∥∥ = 0, ‖I (t) − I1 (t)‖ = 0,

∥∥∥T2 (t) − T21 (t)
∥∥∥ =

0 and ‖R (t) − R1 (t)‖ = 0 which demonstrate S (t) = S 1 (t),
L (t) = L1 (t), T1 (t) = T11 (t), I (t) = I1 (t), T2 (t) = T21 (t)

and R (t) = R1 (t) . As a result, the model is shown to have a
unique solution, proving the theorem.

4. Equilibria, stability and reproduction number

To determine the system (3.7) equilibrium points, we set:

Λ − (βL + αI + µ) S = 0,
βS L − (γI + f + µ) L = 0,
f L − (m + µ + σ) T1 = 0,

γLI + αS I − (θ + z + µ + σ) I = 0,
θI − (c + µ + σ) T2 = 0,

mT1 + cT2 + zI − µR = 0.

(4.1)

Six steady states are produced by solving system Eq (4.1)
collectively. According to their biological importance, we
provide these equilibria and describe their local behavior.
The disease-free equilibrium (DFE), which is denoted as the
first equilibrium point, stated as Ω1 = ( Λ

µ
, 0, 0, 0, 0, 0), this

indicates that there is no cell population. Co-equilibrium
point, which is the second equilibrium point, is given as

Ω2 =

(
Λ

µR01

,
µ

β
(R01 − 1),

fµ
β(µ + m + σ)

(R01 − 1), 0, 0,

f m
β(µ + m + σ)

(R01 − 1)
)
.

The third equilibrium is another co-equilibrium point
presented by

Ω3 =

(
Λ

µR02

, 0, 0,
µ

α
(R02 − 1),

θµ

α(µ + c + σ)
(R02 − 1),

cθ + cz + µz + σz
α(µ + c + σ)

(R02 − 1)
)
.

Finally, the endemic equilibrium is given as

Ω4

=

(
ΛγM,

θ + µ + σ + z
γ

− αΛM,

M( f (−αγΛ − α f (θ + µ + σ + z)))
γ(µ + m + σ)

+
M f (θ + µ + σ + z)(µ(γ − α) + β(θ + µ + σ) + βz))

γ(µ + m + σ)
,

βΛM −
f + µ

γ
,

−
θM

(
µ2(γ − α) − α f 2 + f (µ(γ − 2α) + β(θ + µ + σ) + βz)

)
γ(c + µ + σ)

−
θM (β(µ(θ + µ + σ + z) − γΛ))

γ(c + µ + σ)
,−
αc f 2M(µ + σ)(−θ + m − z)
γµ(c + µ + σ)(µ + m + σ)

+
cM(θ + z)

(
µ2(γ − α) + β(µ(θ + µ + σ + z) − γΛ)

)
γµ(c + µ + σ)

−
c f M(µ + σ)(θ + z)(µ(γ − 2α) + β(θ + µ + σ) + βz)

γµ(c + µ + σ)(µ + m + σ)

−
c f mM(α(γΛ + µ(−θ + µ + σ − z)))

γµ(c + µ + σ)(µ + m + σ)

+
c f mM((µ + σ)(β(θ + µ + σ) + γµ + βz))

γµ(c + µ + σ)(µ + m + σ)

−
α f 2M(µ + σ)(m(θ + µ + σ) − z(µ + σ))

γµ(c + µ + σ)(µ + m + σ)

−
Mz(µ + σ)(µ + m + σ)

(
µ2(γ − α) + β(µ(θ + µ + σ + z) − γΛ)

)
γµ(c + µ + σ)(µ + m + σ)

−
f Mz(µ + σ)(µ + σ)(µ(γ − 2α) + β(θ + µ + σ) + βz) − f m

γµ(c + µ + σ)(µ + m + σ)

+
M(µ + σ)((θ + µ + σ)(µ(γ − α) + β(θ + µ + σ)))

γµ(c + µ + σ)(µ + m + σ)
,

−
M(µ + σ)(αγΛ + z(αµ + β(θ + µ + σ)))

γµ(c + µ + σ)(µ + m + σ)

)
,

where M =
1

µ(β + γ) − α( f + µ) + βσ + β(θ + z)
.

In the next subsection, we proceed with the evaluation
of the reproduction number so that one can have some
idea about the dynamics of the disease by using this value.
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Moreover, we show the local stability results of equilibria
that have been obtained for the system in the form of
theorems and proofs.

4.1. Basic reproduction number

The population group that the model we are considering
here assumes is heterogeneous, with non-homogeneous
individuals that have been grouped. First, we provide the
solution set as:

ψ(t) = [S (t) , L (t) ,T1 (t) , I (t) ,T2 (t) ,R (t)]T . (4.2)

then we use the next generation matrix approach described
in [58] to evaluate the system (2.1)’s fundamental
reproduction number. Following that, we define the solution
set provided by Eq (4.2) as the difference between two
matrices:

ψ(t) = F (ψ) −V(ψ),

where

F (ψ) =



0
βS L

0
(γL + αS )I

0
0


,V(ψ) =



(βL + αI + µ)S
(γI + f + µ)L

− f L + (m + µ + σ)T1

(θ + z + µ + σ)I
−θI + (c + µ + σ)T2

−mT1 − cT2 − zI + µR


.

The matrix generation approach is used to define F =[
∂Fi(Ω1)
∂t j

]
and V =

[
∂Vi(Ω1)
∂t j

]
, 1 ≤ i, j ≤ 2 for the F and

V matrices of uninfected division at the equilibrium point
Ω1. As more explicitly, they can be written in the following
forms:

F =

 βΛ

µ
0

0 αΛ
µ

 , V =

 f + µ 0
0 θ + z + µ + σ

 ,
where the matrix V is non-singular and the matrix F is
non-negative. With the use of the matrix FV−1’s spectral
radius at the equilibrium point Ω1, the disease’s fundamental
reproduction number is computed, which is indicated by two
cases namely R01 and R02 :

R01 =
βΛ

µ( f + µ)
,R02 =

αΛ

µ(θ + z + µ + σ)
,

in which
R0 = max

[
R01 ,R02

]
. (4.3)

Theorem 6. In the epidemic model, the disease-free

equilibrium point Ω1 is locally asymptotically stable (LAS)

if R0 < 1, else unstable.

Proof 6. Now, we take into consideration the following
Jakobian matrix to highlight the stability criteria at the DFE
point indicated as Ω1.

J(Ω1) =



−µ
−βΛ
µ 0 −αΛ

µ 0 0
0 (R01 − 1)( f + µ) 0 0 0 0
0 f −(m + µ + σ) 0 0 0
0 0 0 (R02 − 1)(θ + z + µ + σ) 0 0
0 0 0 θ −(c + µ + σ) 0
0 0 m z c −µ


.

The characteristic equation (CE) of matrix J(Ω1) can thus
be found as:

Ω1(λ) = (λ + µ)2(λ − (R01 − 1)( f + µ))(λ + m + µ + σ)

×(λ − (R02 − 1)(θ + z + µ + σ))(λ + c + µ + σ)

= 0,

where

λ1,2 = −µ, λ3 = (R01 − 1)( f + µ), λ4 = −(m + µ + σ),

λ5 = (R02 − 1)(θ + z + µ + σ), λ6 = −(c + µ + σ),

are the solutions of the CE. It is obvious that λ1,2,4,6 are
negative. Furthermore, we can obtain that λ3 is negative if
R01 < 1 and λ5 is negative as well if R02 < 1, which means
that if R0 = max

[
R01 ,R02

]
< 1 the DFE is LAS. The proof

is finished with this.

Theorem 7. The second equilibrium point Ω2 of the

epidemic model is locally asymptotically stable if R01 > 1,

otherwise there is at least one unbounded solution.

Proof 7. In order for the stability of Ω2(λ), we have the
following characteristic equation:

Ω2(λ) =
1

R01
2 R02 β µ

(−R02 γR01
2 µ2 + R02 γR01 µ

2

+R02 β λR01 µ + Λα βR01 − ΛR02 α β)

×(µR01
2 λ + R01 λ

2 + Λ βR01 − Λ β)(λ + µ)

×(λ + m + µ + σ)(c + λ + µ + σ)

= 0,

where

λ1 = −µ, λ2 = −(m + µ + σ), λ3 = −(c + µ + σ),
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λ4 =
γ

R01
2R02β

2
(R01 − 1) +

Λα

R01
2R02βµ

2
(

1
R01

−
1
R02

).

The remaining two roots, namely λ5 and λ6, satisfy the
following equation:

λ2 + Aλ + B = 0, (4.4)

in which A = R01µ, B =
Λβ

R01

(R01 − 1). According to the

Routh-Hurwitz stability criteria second order [59, 60], the
coefficients of the quadratic characteristic equation given in
Eq (4.4) must satisfy the following conditions if the roots of
the equation have negative real part:

A > 0, B > 0, (4.5)

which means that the following inequalities hold:

R01 > 1. (4.6)

5. Numerical results

The significance of numerical results for the TB model
we developed by taking the consciousness parameter into
account is covered in this section. In the present paper, for
the simulation, we have taken the parameter values as given
in Table 1. In Table 1, we have considered the values as a
parameter of “year”. We have utilized the parameter value
as the year in all of our simulations and graphs.

Figure 2 depicts the population dynamics in the model’s
behaviors and densities. In Figure 3, the impact of
the parameter αis depicted, which stands for the rate
of transmission of susceptible individuals to infected
compartment, on the people who have infected and latent.
Considering Figure 3, it is possible to draw the conclusion
that when the parameter rises from 0.0006 to 0.00014, when
the populations in I increases, the population of L decreases.

We have demonstrated the efficiency of the parameter β
in 4, which represents the rate of susceptible individuals to
enter the hidden TB compartment, on the latent and infected

classes. By considering Figure 4, it can be concluded that
as the parameter increases from 0.0008 to 0.0023, when the
populations in L increase, the population of I decreases.
In Figure 5, we have rededicated the consciousness effect
for the number of infected individuals with TB. According
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Figure 2. Densities of the Tuberculosis model’s
population for the assumed values.
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Figure 3. For different values of
α = 0.0006, 0.0008, 0.001, 0.0012, 0.0014,
the densities of infected (I) and latent (L) people.

to Figure 5, we have concluded that as the parameter
f increases from 0.6 to 0.85, the number of infected
individuals with TB decreases. This result is very important
in terms of determining a parameter that helps to reduce the
number of TB cases.

In Figure 6, in relation to the parameter z, we have shown
the population density of the R class. The figure makes it
evident that as the parameter’s values rise from 0.4 to 0.9,
the density of the R class rises along with it.

6. Concluding remarks

In this study, we have constructed an S LT1IT2R

model that contains an effective consciousness strategy
for the TB epidemic disease. With the help of the
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Figure 4. For different values of β =

0.0008, 0.0011, 0.0014, 0.0017, 0.002, 0.0023 , the
densities of infected (I) and latent (L) people.
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Figure 5. Population density of infected (I) class
for different values of consciousness parameter.

aforementioned model, we have highlighted the usefulness
and various facets of consciousness. We have established the
biologically possible zone, the solutions’ positivity, and their
boundlessness. The existence and uniqueness (E&U) of the
solutions are demonstrated using the Lipschitz criteria.

The effectiveness of the factors on the population
dynamics has been supplied based on the results that are
shown in the figures. The dynamics of the population’s
behaviors and densities in the model are shown in Figure
2. Figures 3 and 4 show, respectively, how the parameters
alpha and beta have an impact on latent and infected
people. In Figure 5, we have described the dynamics
of the consciousness population by taking f values into
account. According to Figure 5, we have concluded that
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Figure 6. Population density of recovered (R)
class for different values of z

as the parameter f increases from 0.6 to 0.85, the number
of infected individuals with TB virus decreases. This result
is very important in terms of determining a parameter that
helps to reduce the number of TB cases. We display the
population density of the recovered people in relation to
parameter z in Figure 6, which is the proportion of infected
individuals recovering without treatment.

The impacts of the treatment and being educated
thoughts can be highlighted in future studies by employing
appropriate control strategies. Additionally, the fractional
order can be taken into consideration when applying the
integer-order model.
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