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Abstract: This article designs a PID sliding mode controller based on new Quasi-sliding mode 

(PID-SMC-NQ) and radial basis function neural network (RBFNN) for Omni-directional mobile 

robot. This is holonomic vehicles that can perform translational and rotational motions independently 

and simultaneously. The PID-SMC is designed to ensure that the robot’s actual trajectory follows the 

desired in a finite time with the error converges to zero. To decrease chattering phenomena around 

the sliding surface, in the controller robust term, this paper uses the tanh (hyperbolic tangent) 

function, so called the new Quasi-sliding mode function, instead of the switch function. The RBFNN 

is used to approximate the nonlinear component in the PID-SMC-NQ controller. The RBFNN is 

considered as an adaptive controller. The weights of the network are trained online due to the 

feedback from output signals of the robot using the Gradient Descent algorithm. The stability of the 

system is proven by Lyapunov's theory. Simulation results in MATLAB/Simulink show the 

effectiveness of the proposed controller, the actual response of the robot converges to the reference 

with the rising time reaches 307.711 ms, 364.192 ms in the x-coordinate in the two-dimensional 

movement of the robot, the steady-state error is 0.0018 m and 0.00007 m, the overshoot is 0.13% and 

0.1% in the y-coordinate, and the chattering phenomena is reduced. 

Keywords: PID sliding mode control; new Quasi-sliding mode; radial basis function neural network; 

gradient descent; Omni-directional mobile robot; MATLAB/Simulink 
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1. Introduction 

Omni-directional mobile robots (OMRs) have been used in a wide range of fields, in the narrow 

spaces requiring high mobility in factories and hospitals [1], personal assistance rehabilitation, 

industrial applications, service robots, hobby and competition [2]. The main benefit of an 

Omni-directional motion system is that it provides three degrees of freedom (DOFs) in a ground 

plane, allowing displacements in any direction while changing its orientation [3].  

Many different approaches in the trajectory tracking control design for such models of 

Omni-directional mobile robots have been proposed, including a fuzzy controller was designed in [2]. 

After 2.23 s, the robot reached the target and stayed there the rest of the time, the maximum tracking 

error of the proposed approach was less than 1 mm. To reduce the tracking error of the robot, the PI 

controllers, as presented in [4]. A circle was assigned as the path; the motion starts from A (0,1) in 

world coordinates the motion. The commanded signal and its response were very close and the 

difference was slightly appearable. Beside, to performance evaluation of the global trajectory 

tracking control problem, the PD+ approach was developed in [5]. The value of ISI (Integral of the 

Squared Input) index of the controllers was 8705235.5, the RMSE (Root Mean Square Error) index 

for qe  and qe  was 46.41 and 6.56, respectively. To perfect in the aspects of stability control and 

theoretical analysis, the control of adaptive gain radial basis neural network (RBF) on PI dynamic 

sliding mode dynamic controller was proposed in [6]. In this experiment, the control of the proposed 

method can make the sine like curve formation motion consistent with the desired trajectory, and the 

tracking curve was smooth. However, the disturbance and tracking error in the process of robot 

motion were occur because of the great influence of friction and communication delay. To reduce the 

tracking error of the robot, an adaptive nonlinear control was designed and simulated in [7]. 

Simulation results showed that the circle trajectory of the robot reached the desired in 0.5 sec without 

overshoot, the steady-state error was negligible. To solve the constrained control problems and 

parameter uncertainties, an adaptive model predictive control (MPC) scheme with friction 

compensation was developed in [1]. Experimental results with the eight-shape trajectory showed that 

the IAExy (Integral of Absolute Error) and IAEθ of model-based adaptive MPC were, respectively, 

1.517 m and 1.2907 rad. MAExy (Maximum Absolute Error) and MAEθ of model-based adaptive 

MPC were 0.0997 m and 0.0655 rad, respectively. Experimental tests have demonstrated that the 

proposed control method can cope with parameter uncertainties, with comparison against 

model-based MPC However, the control scheme depends on the dynamic model, and parameter 

estimation errors exist.  

To reduce the tracking error and the effect of disturbance, the present study proposes a PID 

sliding mode controller based on new Quasi-sliding mode (PID-SMC-NQ) and the radial basis 

function neural network (RBFNN) to control the trajectory tracking for Omni-directional mobile 

robot. The PID-SMC-NQ is designed to ensure that the robot’s actual trajectory follows the desired 

and reduce the chattering phenomena around the sliding surface. The RBFNN is used to approximate 

the nonlinear component (Aw matrix) in the PID-SMC-NQ controller and is considered as an adaptive 

controller. The weights of the RBFNN are trained online due to the feedback from output signals of 

the robot using the Gradient Descent algorithm. 

This paper is organized in five sections: Section 2 presents the mathematical model of the robot. 

The PID sliding mode control based on new Quasi-sliding mode and the RBFNN is presented in 

Section 3. The simulation and evaluation results are presented in Section 4, and Section 5 contains 

the conclusions. 
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2. Mathematical model of the Omni-directional mobile robot  

The model of the Omni-directional mobile robot is presented as Figure 1 [8]. It is assumed that 

the absolute coordinate system Ow-XwYw is fixed on the plane and the moving coordinate system 

Om-XmYm is fixed on the center of gravity for the mobile robot.  

 

Figure 1. Model of the Omni-directional mobile robot [8]. 

The dynamic model of Omni-directional mobile robot can be represented as (1) [8]. 
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1 2 3 43sin cos , 3sin cos , 3cos sin , 3cos sin                      

where M is the mass of the robot; L is the distance from any wheel and the center of gravity of the 

robot; k is the driving gain factor; r is the radius of each wheel of robot; c is the viscid resistance 

factor of the wheel; Iw is the moment of inertia of the wheel of robot around the driving shaft and Iv is 

the moment of inertia for the robot. 

3. Design of an adaptive PID sliding mode control based on new Quasi-sliding mode and the 

RBFNN 

3.1. PID sliding mode control design based on new Quasi-sliding mode 

The structure diagram of the PID-SMC-NQ is presented as Figure 2. 

 

Figure 2. Structure diagram of the PID-SMC-NQ. 

where  
T

d d d dx y  are the desired trajectory and  
T

w wx y  are the actual trajectory 

of the robot.  

In this research, the PID-SMC-NQ is designed to control the actual trajectory of the robot tracks 

the desired in a finite time and reduce the chattering phenomena around the sliding surface. 

The error between the actual trajectory and the desired of the robot is defined as (2): 

 d e    (2) 

Taking the first and second order derivative of (2), we get (3) and (4): 

 d e    (3) 

 d e    (4) 

The PID sliding surface for the sliding mode control can be indicated using the following 

equation [9]: 

  P I Dd   S K e K e K e  (5) 

where  1 2 3, , ,P P P Pdiag K K KK  1 2 3, , ,I I I Idiag K K KK  1 2 3, ,D D D Ddiag K K KK  are 

designed positive constants. 

Taking the derivative of (5), we get (6): 

 P I D  S K e K e K e  (6) 
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Substituting (4) into (6), we get (7): 

  P I D w w f d+ +   XS K e K e K A B U D   (7) 

To decrease chattering, in the controller robust term, we use the tanh function, so called the new 

Quasi-sliding mode function, instead of the switch function [10], i.e., 

  tanh / S S   (8) 

where  1 2 3, ,diag    ,  1 2 3, ,diag     are symmetric positive definite. 

We get the PID-SMC-NQ law as (9): 

       1
tanh /PID SMC NQ D w P I D w d



       XU K B K e K e K A S    (9) 

As defined in (1), the determinant of Bw  as (10): 

   2

1 26 3 0wdet b b B  (10) 

Because of determinant of the matrix Bw is nonzero, so the inverse of matrix Bw exists, hence 

the PID-SMC-NQ law for the robot is presented as (9) exists and ensures that the actual trajectory of 

the robot converges to the desired trajectory in a finite time and reduces the chattering around the 

sliding surface. 

3.2. An adaptive PID-SMC-NQ controller based on the RBFNN Approximation 

The RBFNN is a single hidden layer neural network [11] and can be consider as a mapping: 
r sR R , which embraces three different layers: an input layer, a hidden layer and an output layer 

[12‒14]. 

Input layer: training and testing samples. 

Hidden layer: the number of hidden layer nodes depends on the requirement. Radial basis 

function, typically Gaussian function, as the activation function of hidden layer to transform the 

input information into space mapping. 

Output layer: respond to input mode. The action function of the output layer neurons is a linear 

function. And take the weighed sum of the output information of the hidden layer as the output of the 

whole neural network. 

The RBFNN has the advantages of simple structure design, easy training, fast convergence, can 

effectively fit any nonlinear function and is not easy to fall into the local optimal solution [11,14]. 

The RBFNN has many uses, including function approximation, classification, and system control. 

They have the advantage of fast learning speed and are able to avoid the problem of local minimum 

[14,15].  

The structure [5-7-1] of the RBFNN is used in this article to approximate the functions 
1,2,3i i

a


 

in the matrix Aw of the control law in (9) is illustrated in Figure 3 [13,15]. 

Aw is the matrix containing robot’s parameters such as the mass (M), the radius of the wheel (r) 

and the inertia moment (Iv). The RBFNN uses Gradient Descent algorithms to online update the 

weight values. Each RBF neural network contains 7 Gaussian functions that can be described as (11): 
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Figure 3. RBF neural network structure. 

where cij represents the coordinate value of center point of the Gaussian function of neural net j for 

the ith input, bij represents the width value of Gaussian function for neural net j for the ith input, and: 
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The outputs of the RBFNN are given by (15): 

 ˆ T

i ij ija  w h  (15) 

The performance index function of the RBFNN as (16): 

       
21

ˆ ; 1,2,3
2

i i iE t a t a t i    (16) 

According to Gradient Descent method, the weight values can be updated as (17) and (18): 

       ˆ
j i i j

j

E
w t a t a t h

w
 


    


 (17) 

           1 1 2j j j j jw t w t w t w t w t         (18) 
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where  0,1  is the learning rate and  0,1  is momentum factor. 

Hence, the approximation matrix can be calculated as (19): 

 

1 1 2 2

2 2 1 1
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w h w h

A w h w h

w h

 (19) 

Now, the PID-SMC-NQ law (9) is called the adaptive PID-SMC-NQ based on the RBFNN. So 

that, (9) can be rewritten as (20): 

       1 ˆ tanh /APID SMC NQ RBF D w P I D w d



        XU K B K e K e + K A S    (20) 

When the robot's actual trajectory deviates from the reference due to the impact of control 

conditions such as road surface friction, changing moment of inertia, etc., then the errors 
d e    

are changed. At that time, the RBFNN will be automatically updated, resulting in changing of Aw, so 

that the errors can reach the minimum values. By using the RBF neural networks in control law (20), 

the proposed controller can adapt to the conditions of the robot. 

To prove the stability, the Lyapunov function can be defined by (21): 

 21

2
V S  (21) 

Taking the derivative of (21), we get (22): 

     ˆ tanh / 0P I D w w f d+= +      XV SS S K e K e K A B U D S S    (22) 

We can conclude that 0S  at 0t   therefore, ,  0e e  at 0t  . 

4. Simulation results and evaluations 

The proposed controller simulation diagram for the robot in MATLAB/Simulink is presented as 

Figure 4a, Figure 4b presents detail diagram of the PID-SMC-NQ-RBF. 

Model parameters are used for the simulation are given in Table 1. Table 2 presents the 

proposed controller parameters. The number of neurons in hidden layer is kept as 7 for all simulation 

cases. 
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(a) Simulation diagram of the PID-SMC-NQ-RBF for the robot in MATLAB/Simulink 

 

(b) Detail diagram diagram of the PID-SMC-NQ-RBF 

Figure 4. Simulation and detail diagram of the PID-SMC-NQ-RBF for the robot. 

Table 1. Model Parameters of the Omni-directional mobile robot. 

Parameters Description Value Unit 

Iv Robot Moment of Inertia 11.25 kgm2 

M Robot mass 9.4 kg 

L Distance from any wheel and the center 

of gravity of the robot 

0.178 m 

k Driving Gain Factor 0.448  

c Viscous Friction Factor 0.1889 kgm2s-1 

Iw Moment of Inertia of Wheel 0.02108 kgm2 

r Radius of Wheel 0.0245 m 



129 

AIMS Electronics and Electrical Engineering  Volume 7, Issue 2, 121–134. 

 

Figure 5. Response of xd and xw, yd and yw. 

 

Figure 6. Tracking error of xd and xw, yd and yw. 

The responses of xd and xw, yd and yw with the Hypocycloid trajectory of the PID-SMC-NQ-RBF 

controller are presented as Figure 5, in which we can see that the actual response of the xw and yw 

converges to the reference xd and yd with the rising time reached 307.711 ms, 364.192 ms, the 

steady-state error is 0.0018 m and 0.00007 m, which is shown in Figure 6, while the overshoot is 

0.13% and 0.1%, respectively. These criteria are presented in Table 3 and compared with the 

GD-ASMC-RBF (Gradient-Adaptive Sliding Mode Control- Radial Basis Function) controller [16]. 

Table 2. The proposed controller parameters. 

Parameters Value 

KP diag(2; 2; 2) 

KI diag(0.02; 0.02; 0.02) 

KD diag(0.01; 0.01; 0.01) 

η diag(25; 25; 25) 

ε diag(0.5; 0.5; 0.5) 

c 

1.5 1 0.5 0 0.5 1 1.5

1.5 1 0.5 0 0.5 1 1.5

2* 1.5 1 0.5 0 0.5 1 1.5

1.5 1 0.5 0 0.5 1 1.5

1.5 1 0.5 0 0.5 1 1.5

   
 
  
 
   
 
   
    

 

b 0.1 

α 0.5 
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Figure 7. Sliding surface. 

Table 3. The achieved quality criteria of the PID-SMC-NQ-RBF controller. 

Quality criteria Rising time (ms) Overshoot (%) Steady state error (m) 

PID-SMC-NQ-RBF xw 307.711 0.13 0.0018 

yw 364.192 0.1 0.00007 

GD-ASMC-RBF 

[16] 

xw - 0.2 0.014 

yw - 0.14 0.016 

 

Figure 7 presents the sliding surface  1 2 3

T
S S S=S of the proposed controller. This sliding 

surface at start-up according to the sliding coefficient value. Then, S rapidly reaches the convergence 

point (stabilization point) and keeps sliding around S = 0.  

Table 4 also provides various error performance measures for each response. The different error 

measures reported in the table are expressed as (23), (24), (25), (26), (27) and (28) [17]. 

Average Absolute Deviation:  

    
1

1 N

w d

t

AAD P t P t
N 

   (23) 

Mean Square Error: 

     
2

1

1 N

w d

t

MSE P t P t
N 

   (24) 

Root Mean Square Error: 

 RMSE MSE  (25) 

Mean Percentage Error: 
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    

 1

1 N
w d

t d

P t P t
MPE

N P t


   (26) 

Mean Absolute Percentage Error: 

 
    

 1

1 N
w d

t d

P t P t
MAPE

N P t


   (27) 

Mean Relative Error: 

 
   

 1

100 N
w d

t d

P t P t
MRE

N P t


   (28) 

Table 4. Error performance measures. 

Signals xw yw 

AAD 3.6048e-07 1.4825e-07 

MSE 6.4987e-10 1.0991e-10 

RMSE 2.5493e-05 1.0484e-05 

MPE -2.5976e+09 4.2796e-07 

MAPE 2.5976e+09 4.2796e-07 

MRE -2.5976e+11 -4.2796e-05 

All the measures in Table 4 indicate that the actual trajectory in the robot's motion always 

follows the desired trajectory. The results clearly demonstrate that the Gradient Descent algorithm 

provides an accurate nonlinear predictive model. 

 

Figure 8. Control signal with the Hypocycloid 

trajectory. 

 

Figure 9. Robot trajectory for a reference path. 

The control signal with the Hypocycloid trajectory illustrated in Figure 8 shows that the 

chattering phenomenon was reduced, with the amplitude converging to zero. This result 

demonstrates the effectiveness of the PID-SMC-NQ-RBF algorithm in controlling the robot. 
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The Hypocycloid trajectory response with the PID-SMC-NQ-RBF algorithm is presented as 

Figure 9. The actual trajectory of the robot tracks to the reference in a finite time with the error 

converges to zero. 

 

Figure 10. Robot trajectory with White Noise. 

 

Figure 11. Robot trajectory when M is increased 

by 50%. 

Figure 10 and Figure 11 show the robot trajectories of the proposed controller in case of white 

noise (assuming sensor noise) acting on the system output, the value of M is increased by 50% from 

the initial value. Figure 12 and Figure 13 present the circle and eight shape trajectories of the robot 

with Iv and Iw are increased by 50% from the initial value. The actual trajectories response of the 

robot still converges to the reference trajectory in a finite time with the error converges to zero. 

However, the control signals in Figure 11 oscillate more after increasing the structural parameters of 

the robot. 

 

Figure 12. Robot circle trajectory when Iv is 

increased by 50%. 

 

Figure 13. Robot eight shape trajectory when Iw is 

increased by 50%. 

The results presented above show the effectiveness, suitability and robustness of the proposed 

control method in trajectory tracking control of the robot. 
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5. Conclusions 

This paper presents the design of the PID sliding mode controller based on new Quasi-sliding 

mode (PID-SMC-NQ) and the radial basis function neural network (RBFNN) for Omni-directional 

mobile robot. The RBFNN is used to approximate the Aw matrix in the PID-SMC-NQ controller. The 

RBFNN is considered as an adaptive controller when the robot's actual trajectory deviates from the 

reference due to the impact of control conditions such as road surface friction, changing moment of 

inertia, etc.. The weights of the network are trained online due to the feedback from output signals of 

the robot using the Gradient Descent algorithm. With this controller, the robot’s actual trajectory 

follows the desired in a finite time with the rising time reaches 307.711 ms, 364.192 ms, the 

steady-state error is 0.0018 m and 0.00007 m, while the overshoot is 0.13% and 0.1% for the xw and 

yw, respectively, and reduces the chattering phenomena around the sliding surface. The quality 

criteria to evaluate the performance of the proposed controller are presented in Table 3 and Table 4 

shows various error performance measures for each response. In the future, this research will use the 

Genetic Algorithm, or Particle Swarm Optimization, or Whale Optimization Algorithm to optimize 

the number of hidden layer nodes of the RBFNN and experiment with real models. 
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