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Abstract: In this paper, deep learning-based hand gesture recognition using surface EMG 
signals is presented. We use Principal component analysis (PCA) to reduce the data set. Here 
a threshold-based approach is also proposed to select the principal components (PCs). Then 
the Continuous wavelet transform (CWT) is carried out to prepare the time-frequency 
representation of images which is used as the input of the classifier. A very deep 
convolutional neural network (CNN) is proposed as the gesture classifier. The classifier is 
trained on 10-fold cross-validation framework and we achieve average recognition accuracy 
of 99.44%, sensitivity of 97.78% and specificity of 99.68% respectively. 
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1. INTRODUCTION 
 
For human-to-human communication hand gestures are considered one of the most important modalities. Hand 
gesture recognition becomes a particular interest in human-computer interaction (HCI) research [1]. Recognition 
of hand gestures using surface electromyographic (sEMG) signals has also been employed in a wide range of other 
applications, such as powered electric, power wheelchairs [2], upper-limb prostheses [3], and diagnoses in clinical 
applications [4]. Electromyography (EMG) is considered the best modality of the various sensory modalities that 
have recently been used to record hand gesture information. This is because EMG captures a muscle's electrical 
activity; the physical phenomenon that produces hand movements. For hand gesture recognition many applications 
use noninvasive EMG signals. But the classification of EMG for gesture recognition is challenging because of 
their similar characteristics and intensities. Many studies use machine learning to classify EMG signals for gesture 
classification but their results are not very satisfactory. The reason for insignificant results in previous studies can 
be characterized as the lack of using appropriate and sophisticated techniques. 
 
The analysis of surface EMG signals is more challenging compared to other well-studied biomedical signals [5]. 
For instance, for upper-limb myoelectric prosthesis control, many indicating issues have been presented that 
greatly influence the characteristics of the EMG signal and the performance of EMG-based pattern recognition 
systems. Very few of these challenges are the changes in the signal characteristics over time, fatigue muscle, 
electrode location shifts during data acquisition, and inter-subject variability. Muscle contraction intensity may 
vary over the same gesture which also makes EMG signal processing challenging [6]. Some studies show that a 
properly positioned smaller set of electrodes can improve or provide comparable recognition performance [7, 8]. 
Thus, there is little need to use all EMG channels to get perfect classification accuracy. However, proper 
positioning is difficult because the subject performs dynamic movements and the structure of the muscle patterns 
may vary with subjects. Therefore, there is, no consensus on the global optimum number of electrodes that can 
provide the maximum performance of gesture recognition. Even within the same experimental protocol, the 
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optimal EMG electrode sub-set is highly subject-dependent [9] and this motivated us to think about how to reduce 
the number of electrodes and not worry about the electrode position. For that, we apply principal component 
analysis (PCA) to solve both the data reduction and electrode positioning problems. 
 
Despite the fact that neural network-based machine learning algorithms have been implemented in EMG analysis 
for many decades, deep learning algorithms have also recently been applied to EMG-based gesture recognition. 
The reason for using traditional machine learning algorithms in the earlier years of the EMG-based gesture 
recognition field can be characterized as the lack of sufficient EMG data availability to train these deep neural 
networks. With the recent advancements in deep learning techniques and the availability of the shared bigger EMG 
data sets for addressing overfitting problems, the very recently developed deep learning algorithms and 
architectures have now been applied in EMG-based gesture recognition systems [10]. 
 
In machine learning and EMG-based gesture recognition technique, the raw EMG signal are segmented by the 
short window for feature extraction with the aim of improving the recognition rate. Several studies have reported 
that the quality and quantity of the manually extracted features have a great impact on the performance of EMG 
pattern recognition [6, 10-14]. The performance may be bad or good by chance. However, in deep learning 
algorithms, features are automatically created and unlike traditional machine learning algorithms explicit 
transformation of the raw EMG signals is not required. The deep learning algorithm, therefore, change the feature 
extraction approach from hand-craft feature engineering to automated feature engineering or learning. For this 
reason, in this study, we have employed a deep learning algorithm called “Inception v3”. This method has recently 
shown great performance on various image classification-based applications. Recently, in some studies, the 
manually extracted features are combined with the input data to feed into the input layer of a deep learning model 
and some benefits have been reported [15]. Here, we first convert the time domain sEMG signal into time-
frequency represented images before putting them into the input layer of the convolutional neural network. For the 
time-frequency representation of EMG signal, we have used continuous wavelet transform (CWT). 
 
In the hope of a better hand gesture recognition rate, in this paper, a very deep learning algorithm inception v3 was 
used which is mainly used in computer vision applications. Our contribution is to generate an idea for making 
input of the deep learning algorithm that can capture both temporal and spatial information with a reduced dataset. 
Principal component analysis (PCA) has been used for dimension reduction. Here we have introduced a technique 
on how to select principal components for the subsequent analysis. Later, to prepare the input image for the deep 
learning-based classifier we employed continuous wavelet analysis (CWT). Since, in practice, it is really difficult 
to obtain a high volume of EMG signal to properly train a deep learning-based model, in this work we have shown 
that using the transfer learning technique for the model’s parameter initialization and fine-tuning could be a good 
solution of model overfitting. 
 
 
2. LITERATURE REVIEWS AND MOTIVATION 
 
For prosthetic controlling and rehabilitation applications, the automatic recognition of hand gestures based on 
sEMG signals is considered a promising approach. Most of the work on sEMG-based gesture recognition is 
reported in the literature based on user-specific training of the classifiers.  However, Inter-individual hand gesture 
recognition using sEMG signals is difficult due to differences in sEMG sensor placement, the noisy nature of 
sEMG signals, and inter-individual differences in gesture performance. To address the problem associated with 
gesture recognition using sEMG, so many researches are there in the literature using various approaches. In this 
section, some previous studies and works from the literature in the context of sEMG-based gesture recognition are 
addressed. 
  
2.1. Deep learning in gesture recognition 
A study shows that despite precisely controlling for electrode placement, sEMG signals can vary considerably 
between subjects [16]. It is found that regardless of classifiers that have been trained by a subject can be applied 
to new subjects achieving somewhat better than random performances with an accuracy of 85 % over 6 gestures. 
So deep learning can therefore be expected as a sophisticated technique for leveraging information between users 
for gesture recognition. A number of research has been done to find a projection of the feature space that bridges 
the hole between an original subject used in the training phase and a new subject [17]. Some studies have also 
proposed leveraging a pre-trained model prepared using data from some subjects that removes the need to 
simultaneously work with data from multiple subjects, especially for the model training purpose [18]. However, 



Journal of Engineering Studies and Research – Volume 29 (2023) No. 2                                       9 

 
 

these techniques present important performance improvement with respect to the classification accuracies 
compared to their non-augmented versions. 
 
Recently, convolutional neural network along with a single array and matrix of electrodes [19] has been started to 
be employed for hand gesture recognition. Other studies applied deep learning algorithms along with domain 
adaptation techniques [20] for inter-session classification but did not conduct experiments for inter-subject gesture 
recognition. 
 
2.2. Fourier based features in gesture recognition 
In the last decades, very few studies [21] used Short-Time Fourier Transform (STFT) and surface EMG data for 
gesture classification. A possible reason behind this little interest in Fourier-based features is that much of the 
research on sEMG-based gesture recognition focuses on model designing using feature ensembles. A large number 
of features are generated by STFT and adding this feature to other features makes the feature volume very high. 
Calculation of the Fourier-based features is also relatively computationally expensive. All these factors made it 
challenging to integrate STFT-based with other feature types. In addition, the Short-term Fourier Transform-based 
feature has also been proven to be less accurate than Wavelet Transforms-based feature [21] for the classification 
of biomedical (sEMG) data. However, the time-frequency representation of the STFT features, called 
spectrograms, have been applied as input data for the classification of surface EMG signals with the convolutional 
neural network [19]. Another study uses continuous wavelet transform features for EMG signal analysis [22], they 
only used it for EMG collected from the lower limbs [23]. Though, in the past, for sEMG-based hand gesture 
recognition wavelet-based features have been used, some studies tried to use the features based on the Discrete 
Wavelet Transform [24] and the Wavelet Packet Transform (WPT) [21] instead of the continuous wavelet 
transform. Discrete wavelet transform and wavelet packet transform are less computationally expensive than 
continuous wavelet transforms which makes DWT and WPT usable for fast classification. But none of the studies 
presented good classification accuracies. Besides, the computational power of the system has been growing 
exponentially which also makes high computation but more accurate methods popular. 
 
However, similarly to STFT-based spectrograms, continuous wavelet transform presents an attractive time-
frequency representation that makes convolutional neural network usable for sEMG-based gesture classification 
and can now be efficiently implemented on medical devices and prosthetic systems. 
 
2.3. Motivation 
The desired control of a prosthetic hand is complex and the effective control of multiple joints in a prosthetic limb 
and finger needs much attention and sophisticated usage of EMG. The ability to estimate dexterous motor intent 
is hindered by muscle co-activation, EMG cross-talk, and limited sampling depth. The complexities of muscle co-
activation, EMG cross talk, and the contribution of deep muscle make the simple one-muscle one-function 
approach inappropriate to implement. This has motivated the use of a deep learning approach to gesture recognition 
which might be used for myoelectric control. 
 
One can achieve control of many more classes of gestures by multidimensional classifiers and using multiple EMG 
sites and effective feature extraction techniques. The spatial arrangement in the multielectrode pattern-recognition 
approach should be taken special care of while cross-talk severely compromises conventional control. If the 
interfering EMG is not measured by another electrode it may even produce additional irrelevant information. The 
existence of muscle co-activation characterizes the natural synergistic behavior of muscles during a given 
contraction by providing spatial information to a pattern classifier. Thus, we are motivated to use PCA to calculate 
the principal components of the multielectrode EMG signal that can capture the co-activation characteristics. The 
overall flowchart of the analysis is provided in Figure 1.  
 
 
3. MATERIALS AND METHODS 
 
3.1. Data 
In this work, well studied publicly available sEMG-based hand gesture recognition dataset [20] is used. The details 
data acquisition procedure is provided below. Eighteen healthy able-bodied subjects have been recruited for data 
collection. Their ages range between 23 to 26 years. They performed eight different types of gestures with the use 
of a non-invasive wearable acquisition device. Each electrode's (array of size 8 × 2) diameter is 3mm, and the 
horizontal distance between each electrode is 7.5mm, and the vertical distance is 10.05mm, shown in Figure 2(a). 
The electrode is wet and disposable, and the contact impedance is less than 3kΩ. The first acquisition module is 
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located at the height of the radio-humeral joints on the extensor digitorum communis muscle, shown in Figure 
2(b). The other modules are located clockwise, which formed an array of an 8 × 16 electrode. A band-passed filter 
is applied at 20–380Hz, and the sampling frequency is 1000Hz and sampled with a 16-bit A/C conversion. The 
signal is normalized to the range [-1 to 1], which corresponds to the actual voltage range -2.5mV to 2.5mV. An 
ARM controller is used to pack the 8 acquisition modules. The 8 performed hand gestures are 'Thumb up', 
'Extension of index and middle, flexion of the others', 'Flexion of ring and little finger, extension of the others', 
'Thumb opposing base of little finger', 'Abduction of all fingers',' Fingers flexed together in fist', 'Pointing index', 
and 'Adduction of extended fingers' and the gesture class is defined as the g1, g2, g3, g4, g5, g6, g7, and g8, 
respectively. This also provides us the opportunities to study high-density and sparse multi-channel sEMG data in 
gesture recognition. The duration of each gesture is 3-10 s and the same trial is repeated ten times. A resting posture 
of 7 s is used for gesture alteration in order to avoid fatigue. During the performance of gesture, subjects are not 
enforced a pre-defined contraction. 
 

 
Fig. 1. The basic flow diagram of the proposed gesture recognition task. 

 

 
Fig. 2. Working methods: 

a) The arrangement of the sEMG electrode arrays on the hand [20]; b) The electrode arrays with acquisition 
device wearing on right hand [20]; c) First 12 principal components of the sEMG data of a single trial. 

 
3.2. Data reduction using principal component analysis 
The Principal Component Analysis (PCA) [25] is a widely used tool for data reduction. The technique allows a 
smaller number of Principal Components (PCs) to capture a greater amount of the variance than the original 
variables, thus becoming a popular technique for data reduction. The technique helps to evoke structure for 
exploratory study without any a priori conceptions of the underlying structure. To minimize the dimensionality, 
PCA will be used to resolve the first objective of this study. 
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A covariance matrix is computed from EMG dataset, which consists of samples with variables that represent the 
channels. For extracting the number of PCs expressed corresponding to the significant eigenvalues are calculated 
from the elbow-plot of eigenvalues chosen. How many principal components account for the total variation in the 
data should be examined before selecting the PCs for the downstream analysis. One of the main objectives of using 
PCA is to replace the original features of the data with a very smaller number of principal components, however, 
it discards very little information. A major concern in selecting the number of principal components is how small 
the subset can be without serious information loss. Selecting a (cumulative) percentage of total variation to which 
one desires that the selected PCs contribute, say 80 % or 90 % is possibly the well-adopted criterion for selecting 
the number of principal components. The selected number of principal components is then determined by the 
smallest number of PCs for which the chosen threshold percentage is exceeded. This study considered at least 70 
% percent of variation accounted for the first few principal components. 
 
3.3. Scalogram using CWT 
EMG signal being analyzed in this study is time-variant and non-stationary, thus only obtaining the frequency 
information by Fourier analysis is insufficient. Moreover, Continuous wavelet transform solves the window 
length-related problem of STFT by using the variable length window function. Thus, time-frequency analysis of 
the EMG signal wavelet becomes an indispensable technique. A wavelet is defined as a small wave. The energy 
of the wavelet is concentrated in time thus providing a useful tool for the nonstationary, transient, or time-variant 
EMG signal. The wavelet has oscillating wave-like properties but still has the ability to time and frequency analysis 
of the signal simultaneously with a robust mathematical foundation. The general idea of the wavelet transformation 
is about shifting and scaling a “mother wavelet” 𝜓𝜓(𝑡𝑡)𝜖𝜖𝐿𝐿2(𝑅𝑅), considering the family of functions as: 
 
    𝜓𝜓𝑎𝑎,𝑏𝑏(𝑡𝑡) = 1

�|𝑎𝑎|
𝜓𝜓 �𝑡𝑡−𝑏𝑏

𝑎𝑎
� 𝑑𝑑𝑡𝑡             (1)

          
were 𝑎𝑎, 𝑏𝑏 𝜖𝜖 𝑅𝑅(𝑎𝑎 ≠ 0) and the equality, ∥ 𝜓𝜓𝑎𝑎,𝑏𝑏(𝑡𝑡) ∥=∥ 𝜓𝜓(𝑡𝑡) ∥ is ensured by the normalization (we assume for now 
that the parameter of the function $a$ can be positive as well as negative). 
 
3.4. Deep CNN for gesture recognition 
CNNs are deep artificial network that automatically learns hierarchies of invariant features. CNNs are invariant, 
which means that at different locations the same transformation is applied and features are treated as distinctive 
attributes. A Convolutional neural network is widely used to process data that has a known spatial relationship or 
topology like grids, in other words, it has a very regular structure. It consists of multiple hidden layers in between 
the input and output layers, where the hidden layers can be convolutional, pooled or completely connected. 
Convolution operations are performed in CNNs, especially in the convolutional layers, and there is a kernel for 
each convolution operation. The kernel or filter is a lower dimensional matrix than the original image, usually 3x3 
or 5x5 dimensional. The filter is gone over the image during the convolution operation to detect a specific character 
from the image. The filter is moved over the image with a given stride size. How many pixels the filter moves 
horizontally or vertically to the input image is defined by the stride. An output is generated in the form of a feature 
map, after the convolution is applied to the input image using a convolution filter. Because the filter is much 
smaller than the image, the size of the feature map is smaller than the input. One may use padding to maintain the 
dimensionality, that is, surround the input with padding. Two values are mostly used for padding, either with zeros 
or with edge values can be the padding. The size of the feature maps is preserved by using padding in the CNNs. 
 
We have found Inception [26] more suitable for our problem of gesture recognition. First, the Inception v3 model 
shows very good performance in image classification on the ImageNet dataset. Second, it outperformed other very 
deep learning networks like VGG16, VGG19, Resnet-50 etc. Finally, our gesture recognition task has turned into 
an image classification problem after getting the CWT of the time domain PC of the EMG and finding Inception 
v3 applicable. For this reason, in this study, we use a very special CNN, Inception v3. 
 
 
4. RESULTS AND DISCUSSION 
 
4.1. Experimental environment details 
Hand gesture recognition is performed using a surface EMG signal collected from a highly cited and well-studied 
public EMG database. The dataset is chosen so that the experimental results obtained in this study could be 
compared with the existing studies. After collecting data, it is very carefully examined to check if there are any  
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distorted signals in the dataset. But we have not found any distorted data in the dataset, which made us easy to use 
the full volume of the dataset for the model training and testing for gesture recognition. Matlab R2018b is used for 
partial data analysis, calculating the time-frequency image that is the final input of the deep learning-based model.  
 
Later on, Python is used to create, train, and test of deep learning algorithms. We use tensorflow library to build 
the deep learning model. The model training platform is built on a gaming laptop computer with Intel(R) Core 
(TM) i7-7700HQ (2.80GHz, 2808MHz, 4 Cores and 8 Logical processors) CPU, and NVIDIA GPU GeForce GTX 
1060 6GB GPU and 16GB of RAM, running on a Windows 10 64-bit system. For the deep learning model building, 
training, and testing Python 3.5, CUDA 9.0 is used.  

 
4.2. Principal components selection 
The sEMG data are separated for every trial. Principal Component Analysis (PCA) is applied to each of the trails 
of the whole data set. There are 128 channels in the array electrode grid and the sampling frequency of the signal 
is 1000 Hz. For this reason, in each trial, there are total 128 × 1000 data points. After applying PCA we get 128 
PCs. Figure 2 c) shows the plot of the first 12 PCs. However, all of the PCs do not carry very useful information 
about the original data. This fact encourages us to discard some of the principal components for the subsequent 
analysis. But now the question is how to discard the PCs that carry very insignificant information. From Figure 3 
it is observed that the first PC covers 29.3 % of the total variance of the EMG data collected from a single trial. 
The second PC covers 23.3 % of the total variance of the EMG data collected from the same trial. The third PC 
covers 19.8 % of the total variance of the EMG data. As the indices of the principal components rise the variance 
of the EMG covered by each PC decreases. From the 9 PC, the variances are about zero. This indicates these PCs 
carry very insignificant information. Figure 4 shows the cumulative variances of the EMG covered by the principal 
components. The first three principal components covered more than 70% variance of the original data. To increase 
the cumulative variance even a little amount more than 70%, it needs to add many more PCs. For this reason, we 
set the threshold 70% for selecting the number of PCs for the use of the input of the deep learning model. As a 
result, the first three PCs have been chosen for the subsequent analysis of gesture recognition. 
 

 
Fig. 3. Plotting of the variance covered (in percentage) by each of the principal components of the EMG signal. 

 

 
Fig. 4. Plotting of the cumulative variance covered (in percentage) by the principal components of the EMG 

signal. 
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4.3. Preparation of the input for the model 
After the selection of the principal components, the signal-to-image conversion method has been applied to them 
and the obtained scalograms are used to create the input tensor of the deep learning model. We apply CWT to each 
principal component individually. The time-frequency represented images of the CWT, scalogram, are stacked to 
make the tensor. Figure 5 shows the overall procedure of the tensor creation. 
 
 The tensor consists of the scalogram of selected principal components. Three principal components have been 
selected for the subsequent experiments. Thus all three principal components are to the subject of the continuous 
transform. From Figure 5 it can be seen that scalograms of different principal components have different frequency 
patterns. These scalograms are used to make the multidimensional tensor, the input of the deep learning model.  
 

 
Fig. 5. The over procedure of the input tensor preparation for the deep learning model.  

 
From Figure 5 it can be seen that the CWT is applied to the first three principal components individually. The 
obtained scalograms are stacked to create the tensor input. 
 
There are 18 subjects, each subject performs eight different gestures and 10 trials for each gesture. We prepare the 
input tensor deep learning model for each trial, so we have total 1440 tensors. After splitting the total tensors with 
10-fold cross-validation, we have total 1296 tensors in the training set and 144 tensors for validation and testing 
for each fold. 
 
4.4. Performance measurement metrics 
The accuracy of a classifier determines how accurately the model classifies the samples and in machine learning 
studies performance measurement is a crucial task. In quantitative measurement, we usually use accuracy, 
sensitivity, specificity, and f1 score. The accuracy of a classifier measures how correct the predicted values are. 
The sensitivity pattern classifier indicates how many of the correct results are produced. 
 
The f1-score provides a balanced average result. In the case of the visualization of the performance of the 
classification problem AUC (Area Under the Curve), ROC (Receiver Operating Characteristics) curve is used in 
this study. It is a very crucial model evaluation metric. In this study, a confusion matrix is also used to evaluate 
the classifier. It is a table to illustrate the performance of the classifier on the test dataset.  
 
The first step of the training of the model is to prepare the dataset for the model. All the data are split into training 
and testing/validation set by a ten-fold cross-validation method. The cross-validation technique is used to evaluate 
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the classification model by splitting the database into a training set and a test set. In 10-fold cross-validation, the 
original dataset is randomly split into 10 equal-size subsamples.  Among the 10 subsample sets, 9 subsamples sets 
are used for the training purpose and the remaining single subsample set is used for the model evaluation.  
 
In order, to make sure that each of the 10 subsamples is used exactly once as the validation set, the cross-validation 
procedure is repeated 10 times. The results for each fold are then averaged to obtain a single measurement of the 
experiments. 
 
4.5. Experimental results and gesture classification accuracies 
The Receiver Operating Characteristics (ROC) curves in Figure 6 investigate and employs the relationship between 
the sensitivity and specificity of the classifier. The curves of various classes are shown in individual colors. The 
area under curve (AUC) statistic gives an empirical measure of the classification performance of the classifier 
based on the area under a ROC curve. It evaluates the performance of the gesture recognition model on the trial-
1’ test set. Here AUC is expressed on a scale of 0 to 1.  
 
The micro-average AUC is reported as 0.98 and the macro-average AUC is also reported as 0.98. The AUCs are 
expressed as 0.94, 0.97, 0.97, 1.00, 1.00, 1.00, 1.00, and 1.00 for the gesture classes g1, g2, g3, g4, g5, g6, g7, and 
g8, respectively.  
 
The confusion matrix shown in Figure 7(a) summarizes the classification performance of the inception v3 classifier 
with respect to the fold 1 test data. It is represented by a matrix of two dimensions and indexed in one dimension 
by the true label of the gesture and in the other dimension by the label of that the classifier assigns. Here is this 
confusion matrix for an eight-class gesture recognition task, with the classes g1, g2, g3, g4, g5, g6, g7, and g8.  
 
The first row of the confusion matrix shows that 18 gestures belong to the gesture class ‘g1’ and that 16 are 
correctly classified as belonging to ‘g1’, and two are misclassified as belonging to other classes. One gesture that 
is truly belonging to ‘g1’ class is misclassified as belonging to ‘g3’ class, and another gesture that is truly belonging 
to ‘g1’ class is also misclassified as belonging to ‘g6’ class.  
 
The second row of the confusion matrix shows that 18 gestures belong to the gesture class ‘g2’ and that 17 are 
correctly classified as belonging to ‘g2’. One gesture that is truly belonging to ‘g2’ class is misclassified as 
belonging to ‘g1’ class. The third row of the confusion matrix shows that 18 gestures belong to the gesture class 
‘g3’ and that 17 are correctly classified as belonging to ‘g3’. One gesture that is truly belonging to ‘g3’ class are 
misclassified as belonging to ‘g1’ class.  
 
For all the remaining rows in the confusion matrix, the true gesture labels are classified correctly. The bar plot 
shown in Figure 7(b) represents the overall gesture classification performance of the inception v3 model in the 0 
to 1 scale with fold-1 test set. The classification accuracy is 0.99306, sensitivity is 0.97222, and specificity is 
0.99603. 
 

 
Fig. 6. Model performance evaluation of Inception v3 model for gesture recognition for ‘fold-1’ test dataset.  

The Receiver Operating Characteristics (ROC) curve of various classes is shown in individual colors. 
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a)                                            b)  

Fig. 7. a) Confusion matrix of the model performance evaluation of Inception v3 model for gesture  
recognition b) Bar plot of accuracy, sensitivity, and specificity for ‘fold-1’ test dataset. 

 
The average performance of the proposed inception-v3 based classifier for all the test folds is shown in Figure 8. 
The average is calculated across all the test results of the model. The average classification accuracy of 99.44 %, 
the sensitivity of 97.78 %, and the specificity of 99.68 % are obtained.  

 
Fig. 8 The average performance of the proposed inception-v3 based classifier. 

 
4.6. Compare performances of Inception v3 and sequential CNNs 
Four sequential CNN networks have also been implemented to compare the results of the inception v3 based model 
and the small sequential CNN. The first sequential CNN consists of 2 convolutional layers, the second sequential 
CNN consists of 3 convolutional layers, the third sequential CNN consists of 4 convolutional layers, and finally, 
the fourth sequential CNN consists of 5 convolutional layers. The gesture recognition accuracies are shown in 
Figure 9. It is observed that the classification accuracy is increased with the increase of the convolution layer. The 
Inception v3 outperformed all the sequential CNN. The first sequential CNN consists of 2 convolutional layers (2 
CONV LAYER), the second sequential CNN consists of 3 convolutional layers (3 CONV LAYER), the third 
sequential CNN consists of 4 convolutional layers (4 CONV LAYER), the fourth sequential CNN consists of 5 
convolutional layers (2 CONV LAYER), and the Inception v3 (INCEPTION V3) obtained classification accuracy 
of 17.71 %, 17.71 %, 19.79 %, 32.81%, and 99.44 %, respectively. 
 

 
Fig. 9. Performance comparison of the CNN networks for gesture classification. 
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4.7. Discussion 
In this paper, gesture recognition is performed using EMG signal, and deep network is used for analysis. Since an 
array of electrodes are used for the EMG acquisition, there are 128 channels and therefore, they produce a high 
volume of data. We apply PCA for the feature extraction and dimension reduction of the dataset. We have selected 
three PCs for the subsequent analysis. The CWT has been applied on these PCs to get the time-frequency 
representation of the signals. These images, also called scalogram, are then fed to the deep learning-based gesture 
recognition model. We use inception v3 architecture for this purpose and utilize the transfer learning technique to 
initialize the weight the network and fine-tuned it to train. We have got very good accuracy with the inception v3-
based gesture recognition model. Here we split the dataset in ten-folds and performed ten-fold cross validation. 
Lastly, we compare our results obtained with the results of the existing studies. The details comparisons are shown 
in Figure 10. Our proposed method for hand gesture recognition has reported the best performance and 
outperformed the existing studies. This system could be used in many applications where hand gestures are control 
commands and in many rehabilitation systems. 
 

 
Fig. 10. The classification performance comparison of the proposed methodology with some very recently 

published deep learning-based methods. 
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So we can conclude that our proposed method for hand gesture recognition has reported the best performance and 
outperformed the existing studies. This system could be used in many applications where hand gestures are control 
commands and in many rehabilitation systems. 
 
 
5. CONCLUSIONS 
 
The main focus of this work is electromyography-based hand gesture recognition using a deep learning algorithm. 
Hand gesture recognition has become a particular interest in research. Electromyography (EMG) has already been 
used in hand gesture recognition since EMG acquisition is easy and can be recorded both in a non-invasive or an 
invasive way. For hand gesture recognition many applications use noninvasive EMG signals. However, the 
classification of hand gestures using EMG is not easy because the time domain EMG signal has almost similar 
characteristics and the result obtained in many existing studies are not very perfect. In this paper, for obtain perfect 
classification accuracy deep Inception v3 model has been employed. In this study, our contribution is to generate 
the image input of the deep learning idea from the time-domain EMG signal that can capture both temporal and 
spatial information. In addition, to make the image of the time domain signal, it is tried to reduce the high-volume 
data coming from the array electrode. Principal component analysis (PCA) has been employed for dimension 
reduction purposes. Continuous wavelet analysis (CWT) has been employed for the signal-to-image conversion of 
the time domain principal components of the EMG signals. A classification accuracy of 99.44 % is achieved by 
using the proposed inception v3-based gesture recognition model. This result is much better than the results 
obtained using the sequential CNN consisting of a few convolutional layers. The results obtained from the 
proposed architecture have also been compared with the results of the existing studies. It has been observed that 
the gesture recognition rate obtained in this work is much better than the results of the existing studies. Thus, it 
can be concluded that the proposed hand gesture classification technique can recognize hand gestures very well 
and can be used in many EMG-based applications. 
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