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Premature Ovarian Insufficiency (POI) is a multi-factorial disorder that affects
women of reproductive age. The condition is characterized by the loss of ovarian
function before the age of 40 years and several factors have been identified to be
implicated in its pathogenesis. Remarkably though, at least 50% of women have
remaining follicles in their ovaries after the development of ovarian insufficiency.
Population data show that approximately up to 3.7% of women worldwide suffer
from POI and subsequent infertility. Currently, the treatment of POI-related
infertility involves oocyte donation. However, many women with POI desire to
conceive with their own ova. Therefore, experimental biological therapies, such as
Platelet-Rich Plasma (PRP), Exosomes (exos) therapy, In vitro Activation (IVA),
Stem Cell therapy, MicroRNAs and Mitochondrial Targeting Therapies are
experimental treatment strategies that focus on activating oogenesis and
folliculogenesis, by upregulating natural biochemical pathways (neo-
folliculogenesis) and improving ovarian microenvironment. This mini-review aims
at identifying the main advantages of these approaches and exploring whether
they can underpin existing assisted reproductive technologies.
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1. Introduction

Premature Ovarian Insufficiency (POI) is a condition characterized by the loss of ovarian

function in women before 40 years of age (1). POI occurs in the setting of ovarian follicles

dysfunction or depletion (2), leading to oligo/amenorrhea, hypergonadotropic

hypogonadism and infertility (3, 4). According to the European Society for Reproduction

and Embryology (ESHRE), the diagnostic criteria for POI include oligo/amenorrhea for at

least 4 months and follicle stimulating hormone (FSH) level >25 iu/L, in 2 occasions, at

least 4 weeks apart before the age of 40 years (4). The assessment of ovarian reserve by

biochemical indicators like antral follicle count (AFC) and anti-mullerian hormone

(AMH) serum levels (5) is not necessary in order to establish diagnosis, but might be

informative when fertility is to be sought (1). The relevant symptomatology involves

vasomotor symptoms (night sweats and hot flushes), vulvovaginal atrophy, vaginal

dryness and dyspareunia, insomnia, mood disturbances, cognitive problems such as

memory issues, fatigue, loss of libido and weight gain (1), which, undoubtedly

compromise the quality of life and sexual function of affected women (4). Furthermore,
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the condition bears long-term sequalae of decreased bone mass,

increased cardiovascular risk, and decreased life expectancy (4).

Over the last decade, various studies report that 1%–3.7% of the

female population worldwide suffers from POI (6–8). The aetiology

of the disease is multifactorial, encompassing genetic defects

(Turner’s syndrome, Fragile X messenger ribonucleoprotein 1,

premutation, galactosemia), autoimmunity, infectious diseases

(tuberculosis, mumps, human immunodeficiency virus, infection),

exposure to smoking or environmental endocrine disruptors, and

iatrogenic causes (chemotherapy, radiotherapy, pelvic surgeries,

embolism of uterine arteries); nevertheless, the aetiology remains

unknown in the vast majority (∼75%) of cases (idiopathic POI)

(1, 9).

The mainstay of POI treatment is hormone replacement

therapy (HRT) (1, 4, 10) with oestrogen and progestin in

continuous or cyclic regimens. The treatment is usually

continued until the age of normal natural menopause (1). While

HRT alleviates POI symptomatology and protects women from

long-term effects of hypoestrogenism (11, 12), it has shown little

to no effect in addressing infertility, which has been described as

the most devastating aspect of POI by patients (11). Moreover,

conventional ovarian stimulation protocols have been used for

ovulation induction in women with POI with poor outcomes (1).

Up to now, the only validated assisted reproduction technique

for these women is oocyte donation (4).

Nevertheless, women with POI have 5%−10% chance of

spontaneous pregnancy (4). This is ascribed to the maintenance of

intermittent ovarian function (2). Actually, histological data

demonstrate the presence of primordial follicles (Pfs) in 50% of

the ovaries of women with POI (13). This notion has stimulated

various attempts of ovarian rejuvenation, aiming at inducing the

differentiation of ovarian stem cells (OSCs) to oocytes,

transitioning Pfs to primary follicles, and delaying the apoptosis of

existing follicles. The current review focuses on novel biological

strategies that can be employed for the treatment of infertility in

women with POI, aiming to explore if their efficacy is superior

compared to traditional treatment, based on evidence originating

from clinical and preclinical studies. These experimental protocols

involve: (i) platelet-rich plasma (PRP), (ii) exosome therapy, (iii)

in vitro activation (IVA), (iv) stem cells therapy, (iv) microRNAs

and (v) mitochondrial targeting therapies (14).
FIGURE 1

PRISMA diagram describing the selection process for studies included.
2. Methodology

The current review has been conducted by following all PRISMA

(Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) guidelines. The authors performed a literature search in

three medical databases, Pubmed, Embase and Cochrane Library for

the last 10 years. The key-words used for the search were:

“premature ovarian insufficiency”, “POI”, “premature ovarian

failure”, “POF”, “platelet-rich plasma”, “PRP”, “in vitro activation”,

“IVA”, “stem cells”, “exosomes”, “mitochondrial replacement

therapy” and “microRNAs”. The query used in all three databases

was: (“premature ovarian insufficiency” OR “POI” OR “premature

ovarian failure” OR “PRP”) AND (“platelet-rich plasma” OR “PRP”
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OR “in vitro activation” OR “IVA” OR “stem cells” OR “exosomes”

OR “mitochondrial replacement therapy” OR “microRNAs”).

Following the snowball procedure, only papers referring to

applications in POI were selected, both original and review papers.

Based on the references included in the review papers, more original

papers were retrieved, leading to a total of forty five original papers

and twenty review papers on the topic (Figure 1).
3. Cell-Free therapies

3.1. Platelet-rich plasma (PRP)

Platelet-rich Plasma (PRP) is an autologous blood derivative,

containing greater concentration of platelets (PLTs) (3- to 5-fold)

when compared to peripheral blood (15). PRP has a 5- to 10-

fold higher concentration of growth factors (GFs) (>800 types)

than peripheral blood (16, 17). These factors, principally

subclassified as chemokines, mitogens and antigens, are released

following PRP activation by various agonists and act in a

paracrine manner, mediating tissue regeneration and homeostasis

(18, 19). The above effects are supported by induction of cell

migration, chemotaxis, angiogenesis, keeping balance between

proliferation and apoptosis, and control of inflammation and

oxidative stress (15, 19). As a matter of fact, PRP’s effects are not

specific but support the needs of each tissue in which is applied.

Owing to this adaptive capacity, PRP has been increasingly used

in a variety of clinical settings, including dentistry, sports
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https://doi.org/10.3389/frph.2023.1194575
https://www.frontiersin.org/journals/reproductive-health
https://www.frontiersin.org/


Moustaki et al. 10.3389/frph.2023.1194575
medicine, dermatology/cosmetology, ophthalmology, neurology as

well as in reproductive medicine (20).

According to preliminary data in rat models of POI,

intraperitoneal or intraovarian administration of PRP is

demonstrated to increase ovarian cortex volume, pre-antral follicle

count, and antral follicle diameter (21), while decreasing the

atretic follicle count (22). Furthermore, their litter count is

significantly increased post PRP (22). The above, favourable results

of PRP are replicated in mammals with ovarian hypofunction; in

one study, 80% of PRP-treated cows show increased progesterone

level at 4 weeks post-PRP and clinical pregnancy after artificial

insemination (AI) is achieved in all of them (23).

Over the last four years, emerging data from few clinical studies

in women with POI support the efficacy of PRP in ovarian

rejuvenation. In particular, intra-ovarian PRP administration is

shown to restore the menstrual cycle in 22%–60% of women in

cohort studies (24, 25) and up to 100% in case reports or case

series (26–28), as well as to induce spontaneous ovulation (28).

These effects are accompanied by increase in oestradiol (E2) (24)

and decrease in luteinizing hormone (LH) levels (24, 26). Apart

from hormonal recovery, PRP appears to improve ovarian reserve

parameters, such as AMH and AFC (24, 26, 27, 29); this is also

reflected at the decreased level of follicle stimulating hormone

levels (FSH) (24, 26–28). Regarding pregnancy outcomes, PRP is

shown to increase the rates of spontaneous conception to 7.4%–

10% (24, 29) in two cohort studies; nevertheless, 0% rate of

spontaneous conception is reported in another study (25).

Importantly, PRP-induced increase in AFC leads to successful

oocyte retrieval post-ovarian stimulation and allows in vitro

fertilization (IVF) procedures to take place (27–29). According to

the only relevant, prospective cohort study in 311 women, there

is a 26.4% possibility of embryo formation and a further 22.8%

possibility of pregnancy following embryo transfer (ET) (29).

Last but not least, live birth rate (LBR) ranges between 69%–

100% (24, 29) in two cohort studies, with no difference between

natural and IVF conception in one of them (24); however, it

should be highlighted that the real numbers of pregnancies

achieved in both studies are rather small (36 and 3 respectively),

especially in the one showing LBR of 100% (Table 1). Looking

for prognostic factors, residual baseline ovarian activity assessed

by AMH, AFC and FSH (24, 29), as well as short duration of

amenorrhea seem to predict a positive response. Concerning the

latter, it is worth mentioning that in the study showing 0%

spontaneous pregnancy, the mean duration of amenorrhea is 8

years (25), while in the study in which the respective rate is 10%,

the mean duration of amenorrhea is 10 months (24).

Interestingly, age does not seem to affect PRP outcomes in POI

patients (24) and this is consistent with corresponding results in

patients with poor ovarian response (POR) (39).

In all the above clinical studies, the route of intraovarian PRP

administration is transvaginal, via 17G−18G lumen needle (24–29).

The procedure is ultrasound-guided and resembles the transvaginal

paracentesis during oocyte pick up (24), performed under minimal

sedation (24–27, 29). In most studies, PRP is delivered

intramedullary, at multiple sites, apart from two studies, in

which it is also diffused in the subcortical layers (27, 29).
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The above observed improvement of ovarian function in POI in

clinical and preclinical studies by GFs contained in PRP involves

three main events. Firstly, the recruitment of uncommitted OSCs

to differentiate into de novo oocytes (de novo oogenesis) (15, 19),

secondly, the activation of dormant Pfs and support of each step

of folliculogenesis from Pf to pre-ovulatory follicle, and, thirdly,

the decrease in apoptosis (atresia) of existing follicles (18). The Pf

to primary follicle transition is mediated by platelet-derived

growth factor (PDGF), transforming growth factor beta (TGF-β),

hepatocyte growth factor (HGF), connective tissue growth factor

(CTGF) and shingosine-I-phosphate (SIP) (15, 19, 40). Further

follicular proliferation and maturation is facilitated by endothelial

growth factor (EGF), fibroblast growth factors (FGFs), growth

differentiation factor 9 (GDF-9) and bone morphogenic proteins

(BMPs) (15, 18, 19). TGF-β also participates in the crosstalk

amongst thecal, granulosa and germ cells (19), which has been

indicative of playing a crucial role in the development of the

primary oocytes and their fertilization capacity (41). Moreover,

insulin-like growth factors (IGFs) and serotonin stimulate

steroidogenesis (15, 19). Finally, vascular endothelial growth factor

(VEGF) exerts protection from apoptosis and oxidative stress and

has a pivotal role in angiogenesis (15, 19). Indeed, enhanced

vascular density, accompanied by increased expression of

angiogenesis-related transcripts, namely angiopoietin 2 (ANGPT2)

and kinase insert domain receptor (KDR), have been documented

post PRP in rat ovarian tissue ex vivo (22).

Up to now, no adverse effects of PRP have been reported in

either of the above clinical studies in POI or in similar studies in

women with POR or low ovarian reserve (LOR) (42–51).

However, it should be noted that the majority of these studies

are not controlled and have short-term follow-up (maximum 1

year). The only controlled clinical study in women with LOR,

demonstrated no difference in miscarriage and LBR between PRP

and control group (51). Beyond reproductive medicine, minor

side effects such as hyperpigmentation, local pain, irritation,

erythema and swelling around injection sites have been reported

in dermatology applications (15, 52). The most serious adverse

effect, reported so far, is one case of unilateral irreversible

blindness following periocular PRP administration due to

ophthalmic artery occlusion with concomitant brain infarction

(53). To prevent thrombotic episodes, thrombophilic disorders

and/ or use of anti-coagulants, as well as malignancy are among

the exclusion criteria of most of the conducted studies; however,

it would be prompt to consider further parameters such as

smoking, recent infection or inflammatory disease and use of

combined oral contraceptives, which might also induce a

hypercoagulable state, as contraindications. Regarding the risk of

infection, microbial growth due to contamination of dermal

microbes has been demonstrated in one study, yet without

leading to infection (54). In this study, the samples where kept at

35°C for 7 days (54), therefore it is imminent that PRP should

be prepared and administered under sterilized conditions, ideally

immediately after its preparation. To the best of our knowledge,

there is no reported case of malignancy ascribed to PRP

administration. On the contrary, its use has been proven safe in

oncological patients at 30–45 months follow-up (55, 56), while,
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TABLE 1 Clinical studies examining the effect of biological therapies in women with POI.

Platelet-Rich-Plasma (PRP)

Study Study design N Subjects Intervention Follow-up Outcomes

Sfakianoudis et al.
(2018) (27)

Case report 1 40 y, age at POI
diagnosis = 35 y,
abandoned HRT for
4 m, amenorrhea

PRP (RegenACR-C kit, concentration
9 × 105/μl, 4 ml bilaterally, TV, US
guided-intramedullary, multifocally).
Followed by natural cycle IVF-ICSI

N/A Resumption of menses at 6w,
↓ FSH, ↑ AMH,
Biochemical pregnancy resulting
into spontaneous abortion at 5w

Pantos et al.
(2019) (26)

Case series 2 27 & 40 y, amenorrhea
> 1y, previous failed IVF,
not receiving HRT

PRP (4 ml bilaterally, TV, US-guided,
intramedullary, multifocally)
Invited to conceive naturally

N/A Resumption of menses,
↓ FSH, LH
↑ AMH, AFC,
clinical pregnancy after 2 & 4 m.

Cakiroglu et al.
(2020) (29)

Prospective,
cohort study

311 POI (ESHRE 2016)a,
24–40 y, infertility
history of >1 y

PRP (T-Biotechnology Laboratory kit,
Bursa, Turkey, 2–4 ml, TV, US-guided,
at subcortical and stromal areas, at least
in one ovary), within 10 days after
completion of menstruation or
randomly.
2 mallowed for spontaneous conception.
Then, if not pregnant but had AFC ≥1
developed: COS + IVF ± ET

1 y ↑ AFC & AMH (d2–4)b, ↔ FSH,
7.4%c spontaneous pregnancy,
64.8%c had IVF, 26.4%c developed
embryos, 4%c achieved pregnancy
post ET (22.8% per ET), 8%c

cryopreserved embryos,
8%c livebirth/sustained
implantation (69% of both
spontaneous & IVF pregnancies)

Hsu et al. (2020)
(28)

Case report 1 37-y, 6m-amenorrhea,
previous POR to Gn,
asked to discontinue
HRT for 2m

GC-activated PRP (5 ml) +Gn (1 ml
consisting of 150iu FSH +75iu LH),
3 ml at each ovary, TVUS-guided, into
ovarian stroma + COS (intermittent
vaginal administration) + ICSI

N/A ↓FSH,
spontaneous ovulation, menses
resumption,
oocyte yield = 6, embryos =3, twin
pregnancy, preterm delivery (30w)
with no documented
abnormalities

Sfakianoudis et al.
(2020) (24)

Prospective,
cohort, pilot
study

30 POI (ESHRE 2016)a

presenting with
amenorrhea, <40 y, HRT
discontinued for 6m

CG-activated PRP (RegenACR-C kit,
concentration 1 × 106/μl, 4 ml,
bilaterally, multifocally), on random
time.
Invited to conceive naturally

1 y At 3 m follow-up: 60%
resumption of menses, ↓ FSH, LH
& ↑ AMH, E2, AFC (d3 or
monthly post PRP)
10% spontaneous pregnancies and
live births

Aflatoonian et al.
(2021) (25)

Prospective,
cohort study

9 POI (ESHRE 2016)a

HRT discontinued 1
month before and after
PRP

GC-activated PRP (Rooyagen,
Tehran, Iran, concentration 3-5-fold
higher than basal blood
samples,1.5 ml, multifocal,
intramedullary in each ovary) + 2nd
injection (3 ml) after 3 m in case of
no pregnancy, on d10 or randomly.
Invited to conceive naturally

1 y 22% menstruation recovery (after
2nd PRP injection),
no hormonal recovery (in 2 m),
0% spontaneous pregnancy

In vitro activation (IVA)
Kawamura et al.
(2013) (30) &
Suzuki et al.
(2015) (13)

Prospective,
cohort study

37 POI: < 40y, with
amenorrhea >4 m, FSH
>35 iu/L (initial criteria:
amenorrhea >1y, FSH >
40 iu/L)
Mean age = 37 years

Laparoscopic ovariectomy. Ovarian
cortices were dissected into strips for
vitrification. Some pieces were
examined histologically. After warming,
strips were fragmented into smaller
cubes and cultured with Akt
stimulators for 2 days. Then, ovarian
cubes were transplanted beneath the
serosa of fallopian tubes. Then ovarian
stimulation was performed (estrogen
pre-treatment, ± controlled). After
oocyte retrieval, ICSI was performed
(Kawamura protocol)

1 y 54% had residual follicles based on
histology,
24 oocytes retrieved from 6
patients,
3 pregnancies, 2 live births

Zhai et al. (2016)
(31)

Prospective,
cohort study

14 POI: < 40y, amenorrhea
≥ 1y, FSH > 35 iu/L in at
least 2 occasions, 4w
apart, E2 < 20pg/ml
With previous proof of
follicle development post
Gn stimulation

Kawamura protocol with fresh
ovarian tissue instead of frozen-
thawed ones. When follicles reached
the preovulatory stage, hCG treatment
was initiated.

1 y 50% had residual follicles based on
histology,
6 patients showed 15 follicular
development waves reaching pre-
ovulatory stage,
4 patients had successful oocyte
retrieval and developed embryos,
1 pregnancy & live birth,
3 cryopreserved embryos

Fabregues et al.
(2018) (32)

Case report 1 POI, 32y, FSH =
89.9 iu/L, AMH =
0.02 ng/ml, HRT
discontinued 1 day
before intervention

The removal of the ovarian cortex and
autotransplantation were performed
by laparoscopy in the same surgical
act. Ovarian fragments were
transplanted in contralateral ovary
and peritoneal pocket near to the
ovary. Immediately after surgery
GnRH agonist together HMG
injections were initiated.

N/A Retrieval of 2 oocytes, formation
of 2 embryos, pregnancy
(singleton)

(Continued)
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TABLE 1 Continued

Platelet-Rich-Plasma (PRP)

Study Study design N Subjects Intervention Follow-up Outcomes

Stem cell (SC) transplantation
Edessy et al.
(2014) (33)

Prospective
cohort study

10 POI: 26–33 y, FSH≥
20 iu/L, normal
karyotype

Autologous BMSCs (from iliac crest)
transplantation into ovaries
laparoscopically

6 m 10% resumption of menses,
20% focal secretory changes in
endometrium
Both results correlated with OCT4
expression and ESS ≥5

Chen et al. (2018)
(34)

Case report 1 POI: 38y, amenorrhea
for 2y

MSCs monthly, for 6 m (concentration
2 × 107/ml at first time, 1 × 107/ml at
subsequent times), IV

N/A ↑ ovarian size, endometrial
thickness & blood flow in
endometrium (TV and
transabdominal US)

Ding et al. (2018)
(35)

Blind, RCT 14, divided in 2
groups

UC-MSCs
group: 6

collagen/ UC-
MSCs group: 8

POI: 18–39 y,
amenorrhea >1y, FSH
≥40 iu/L on 2 occasions
4–6w apart, normal
sperm analysis of the
partner

UC-MSCs group: allogeneic UC-
MSCs (concentration 5 × 106/400 μl)
+ HRT (group A)
collagen/ UC-MSCs group: collagen/
UC-MSCs (allogeneic, UC-MSCs
concentration 5 × 106/400 μl, collagen
concentration 5 mg/ml) + HRT
(group B)
TVUS-guided, unilateral intraovarian
injection, up to 4 transplantations

1 y ↑ E2d, ↓ FSHd (collagen/ UC-
MSCs group),
↑ ovarian volumed (UC-MSCs
group), presence of blood flow in
some patients of both groups at
3 m, active signs of follicle-like
structures (16.7% in UC-MSCs
group, 62.5% in collagen/ UC-
MSCs group)
14.3% natural conception (equally
among groups)

Igboeli et al.
(2020) (36)

Case report (2
first cases of
ongoing clinical
trial)

2 POI: case 1: 36y,
amenorrhea for 4y and
FSH = 110 iu/L,
case 2: 42y, amenorrhea,
left ovariectomy, FSH =
155 iu/L

Autologous BMSCs (from iliac crest)
transplantation into right ovary
(4 ml) laparoscopically + 4 ml normal
saline in the left ovary (control, only
in case 1)

1 y Resumption of menses (1
menstruation in 1y),
↑ E2 by 150%, improvement in
menopausal symptoms
↑ovarian volume by 50% (vs.
control ovary)

Mashayekhi et al.
(2021) (37)

Non-randomized
clinical trial,
phase 1

9, divided in 3
groups

(according to
ADSCs
amount)

POI: 20–39y, with FSH
≥25 iu/L in 2 occasions,
4w apart, amenorrhea
>1y

Autologous ADSCs (subabdominal
fat pads) transplantation of 5 × 106,
10 × 106, or 15 × 106 in unilateral
ovary TV in 7 cases &
laparoscopically in 2 cases.

1 y Primary outcome: no SEs/
complications
Secondary outcomes:
44.4% resumption of menses,
↓ FSH <25 iu/L (44.4%) without
differences among groups,
↔ AFC, AMH

Zafardoust et al.
(2023) (38)

Prospective
cohort study

15 POI Autologous Men-MSCs 1 y 100% improvement of
menopausal symptoms,
2.6% resumption of menses,
↑AFC, E2, ↓FSH, LH, ↔ AMH

AFC, antral follicle count; ADSCs: adipose-derived stromal cells; AMH, anti-mullerian hormone; BMSCs, bone marrow-derived mesenchymal stem cells, collagen/US-

MSCs, umbilical cord mesenchymal stem cells on a collagen scaffold; COS: controlled ovarian stimulation; d, day of menstrual cycle, ESS: Edessy stem cell score,

ESHRE, European Society of Human Reproduction and Embryology; E2, oestradiol, FSH, follicle-stimulating hormone; Gn, gonadotropin; GnRH, gonadotropin

releasing hormone, HMG, human menopausal gonadotropin; HRT, hormone replacement therapy; ICSI, intracytoplasmic sperm injection; IV, intravenously, IVF, in vitro

fertilization; LH, luteinizing hormone; m, months; Men-MSCs: menstrual blood-derived mesenchymal stem cells; MSCs, mesenchymal stem cells; N/A, not applicable;

OCT4, octamer-binding transcription factor 4;POI, primary ovarian insufficiency; POR, poor ovarian response; PRP, platelet-rich plasma; RCT, randomized controlled

trial; TV, transvaginal; TVUS: transvaginal ultrasound, US, ultrasound; US-MSCs, umbilical cord mesenchymal stem cells; y, years, w, weeks.
aESHRE criteria for POI diagnosis: oligo/amenorrhea for at least 4 m and FSH > 25 iu/L in 2 occasions, 4 weeks apart, age <40 years.
bin case of absence of menstruation, menses was hormonally induced.
cpercentage over the total no. of participants.
dcompared to baseline.

Moustaki et al. 10.3389/frph.2023.1194575
surprisingly it is shown to lower the recurrence of fibrosarcoma

when applied post-surgery in an animal model (57). Last but not

least, PRP is autologous, eliminating the risks of immunogenicity.
3.2. Exosomes (exos) therapy

Exosomes (exos) are extracellular vesicles released, principally

from mesenchymal stem cells (MSCs), ranging in size from 30 nm

to 150 nm (58). By releasing non-coding RNA, mRNA, growth

factors and proteins, exos are active in influencing cellular

communication as well as the fate of recipient cells, via regulation of

proliferation and apoptosis (14, 59–62). In rodent models of POI,

the administration of exos from various human MSCs, such as bone
Frontiers in Reproductive Health 05
marrow-derived MSCs (BMSCs) (63), umbilical cord MSCs (UC-

MSCs) (64), and adipose tissue-derived MSCs (ADSCs) (65), as well

as from human embryonic stem cells (ESC) (66) and human

pluripotent stem cell–mesenchymal stem cells (hiMSC) (67) is

demonstrated to recover the oestrous cycle (63), to increase the

hormone levels, the AMH level and the number of follicles (63, 65–

67), as well as to prevent follicular atresia (63, 67) and to enhance

the fertility rate by reducing the time of impregnation (64).

As demonstrated in vitro, the main mechanism of ovarian

rejuvenation induced by exos therapy is exerted at the level of

granulosa cells, the quality of which is implicated in POI

pathogenesis. In particular, there is increased proliferation in

parallel with decreased apoptosis, being associated with

upregulation of phosphoinositide 3 kinase– protein kinase B (PI3K/
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Akt) (66) and B-cell lymphoma 2 (Bcl2) (68), alongside with

downregulation of SMAD (65) and Bcl-2 associated X protein

(Bax) (68) signalling pathways. Furthermore, various microRNAs

carried in human exos, such as miR-144-5p in BMSCs (63), miR-

126-3p in UC-MSCs (69), and miR-369-3p in amniotic fluid MSCs

(70) are shown to inhibit granulosa cell apoptosis, via various

mechanisms, including the suppression of phosphatase and tensin

(PTEN) (miR-144-5p) and YY1-associated factor 2 (YAF2)/

programmed cell death 5 (PDCD5)/tumor protein 53 (p53) (miR-

369-3p) pathways. In addition to the effect of exos therapies on

granulosa cells, the attenuation of ovarian tissue fibrosis alongside

with the enhanced differentiation of theca cells, both mediated via

the inhibition of TGF-β1/Smad3 signalling pathway has been

shown post human UC-MSCs transplantation in POI rats,

contributing to the restoration of ovarian function (71).

In conclusion, the available research data is encouraging and

many authors and researchers now recognize exos treatment as a

potential treatment for POI. Exos are considered as potentially

safer than stem cells (SCs) due to lack of tumorigenicity, low

immunogenicity, and no ethical concerns (62). However, in order

to be considered for POI patients, their efficacy and safety needs

to be assessed in human clinical trials.
4. In vitro activation (IVA)

Pfs activation mechanisms, in normal Pfs and dormant Pfs,

have been studied mainly in animal models. Only two studies

based on human cells exist. The reported studies have isolated

three main signalling pathways, involved in Pfs activation,

namely the PTEN–PI3K–Akt/transcription factor forkhead box

O-3 (FOXO3), the mammalian target of rapamycin complex 1

(mTORC1), and Hippo pathways (14) (Figure 2). To simulate

in vitro the action of the PTEN–PI3K–Akt/FOXO3 and

mTORC1 pathways, the use of Akt stimulators is required,

while ovarian fragmentation contributes to suppression of the

Hippo pathway, and concomitant activation of Pfs (30). During

Pfs activation by the PTEN–PI3K–Akt/FOXO3, the tyrosine

kinase receptor boosts PI3K activity which, in turn, activates

Akt signalling. PTEN–PI3K–Akt/FOXO3 activation induces

mTORC1 and subsequently promotes Pfs survivability (72). On

the other hand, the Hippo signalling pathway regulates the size

of organs, through the inactivation of the transcriptional PDZ-

binding motif (TAZ) signalling and the Yes-associated protein

1 (YEP). YEP and TAZ signalling, in turn, regulate the

expression of intercellular signal proteins promoting Pfs

growth (73).

In 2013, Kawamura et al. (30) combined the knowledge

regarding the activation mechanisms of Pfs and applied them to

the clinical practice of IVF techniques. Thus, in vitro activation

(IVA) procedure was performed for the first time in patients

with POI. In this first clinical study, ovarian tissue was obtained,

histological detection of residual Pfs was performed, and,

following ovarian fragmentation, tissue treatment with Akt

stimulating drugs was employed. The tissue pieces, after their

processing, were placed under the fallopian tube, via autologous
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oocyte retrieval was performed. The above-described IVA

technique was employed in two studies (13, 31) and two case

reports (32, 74). The latter were limited to ovarian fragmentation

without using Akt inducers. In total, the IVA process resulted in

6 pregnancies, of which 3 were successful live births, 2

miscarriages, and 1 ongoing pregnancy at the time of publication

(Table 1). The most important observation, based on these

studies, is that mature oocytes were retrieved only by patients

whose histological examination of the removed ovary revealed

primordial follicles.
5. Stem cell therapy

Stem cell therapies have been employed using, mainly, human

pluripotent stem cells (hPSCs) and MSCs (75). Stem cell therapy

can either be autologous, using the patient’s own SCs, or

allogeneic (SCs provided by a healthy donor). Like PRP, SCs

have been applied in a variety of human diseases, including

neurological disorders, pulmonary dysfunctions, metabolic/

endocrine-related diseases, reproductive disorders, skin burns,

cardiovascular conditions and liver disease (75, 76).

In animal models of POI, SC therapy, either autologous or

allogeneic, is shown to restore hormonal secretion (E2, FSH)

(77–82), ovarian weight/structure (77, 81, 83), follicle count (78,

79, 82–87), ovulation/oestrous cycle (78, 79, 82, 85) and

pregnancy rates (78, 82). In these studies, a wide variety of SCs

has been studied, including MSCs (77), ADMSCs (78, 84, 85),

UC-MSCs (80, 81, 88), BMSCs (89, 90), human amniotic

epithelial cells (hAECs) (83, 86, 87, 91), human amniotic

mesenchymal cells (hAMCSs) (82, 91, 92) chorionic plate-derived

mesenchymal stem cells (CP-MSCs) (79) and endometrial MSCs

(eMSCs) (93). Interestingly, hAECs therapy seems to have better

results compared to other SC therapies, because hAECs regulate

oocyte telomerase activity (91) and differentiate into granulosa

cells (87); nevertheless, no SC type is shown to differentiate into

germ cells (85, 90, 92).

Clinical data on the application of MSCs transplantation in

patients with POI are scarce, derived from case reports (34, 36)

and small-numbered clinical trials, with up to 15 participants

(Table 1). These clinical trials have used autologous BMSCs (33),

allogeneic UC-MSCs (35), adipose tissue-derived stromal cells

(ADSCs) (37) and menstrual blood-derived MSCs (Men-MSCs)

(94). According to the reported results, MSCs induce menses

resumption at 2.9%-44% (33, 37, 94) and up to 100% in one case

report (36), and also improve menopausal symptoms (94).

Further observed changes include increased level of E2 (35, 36,

94), decreased level of FSH (35, 37, 94) and LH (94), increased

ovarian volume (34–36) and ovarian blood low (35), increased

endometrial thickness and blood flow in endometrium (34), with

documented shift from endometrial atrophy to secretory

endometrium in biopsy (33). Nevertheless, SC therapy does not

appear to improve AMH and AFC (37, 94), while, in total, there

are only 2 reported cases of spontaneous pregnancies (35). In

one of these cases employing allogeneic UC-MSC
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transplantation, microsatellite loci analysis showed the foetus to be

genetically related to the mother and not to the donor. Finally,

there are no clinical studies examining the effect of SC therapy
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in relation to IVF procedures in POI patients. Except for one

case report in which MSCs were transplanted intravenously (34)

in the rest of the aforementioned studies, SCs were transferred
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directly to the ovaries of the patients with a retrograde injection

(35) or a simple injection into the parenchyma, either

transvaginally (37) or laparoscopically (33, 36, 37).

The principal mechanism of SC-mediated ovarian rejuvenation

is improvement of ovarian microenvironment, exerted by secretion

of growth factors (VEGF, IGF-1, HGF) (84, 91), transcription

factors (octamer-binding transcription factor 4, OCT4,

homeobox protein NANOG) (91) and enzymes such as heme

oxygenase 1 (88). Subsequently, there is stimulation of

intracellular pathways such as Jun N-terminal kinase (JNK)/Bcl2

(88) and Janus activated kinase (JAK)/signal transducers and

activators of transcription (STAT), enhanced Bcl2 (92), VEGF

(92), VEGF receptor 1 (VEGFR1) (86) and VEGF receptor 2

(VEGFR2) (86) expression and inhibition of Bax expression (92).

The above effects promote cell proliferation and angiogenesis,

and decrease apoptosis and inflammation (83, 84, 86). In

addition, many studies involving different SC types (BMSCs,

ADSCs, UC- MSCs, hAECs) highlight the inhibition of granulosa

cell apoptosis as an important mechanism (77, 78, 80, 83), which

could be further amplified by heat shock pre-treatment (77) or

collagen scaffold addition (78).

Men-MSCs is an extremely interesting category of SC therapy.

They constitute a stem cell population that gathers both

endometrial stromal fibroblasts and perivascular eMSCs,

anticipating a similar identity to eMSCs obtained from

endometrial biopsies (38, 95, 96). Preclinical studies investigating

human Men-MSCs transplantation in rodent models of POI shed

light into novel mechanisms of ovarian function restoration, such

as renewal of OSC pool (93), amelioration of fibrosis via

downregulation of TGF-β1/SMAD 2,4 pathway (97) and

secretion of fibroblast growth factor 2 (FGF-2) (98), upregulation

of extracellular matrix (ECM)-dependent focal adhesion kinase

(FAK)/Akt signaling pathway (99), and most importantly, their

potential to differentiate into granulosa cells (100, 101) which is

unique among MSCs. In conjunction with decreasing granulosa

cell apoptosis, the latter underpins the restoration of normal

follicle development (99) and hormonal function, which is

observed not only in preclinical studies (97, 99, 100, 102), but

also in the only, up-to-now, conducted clinical study in POI

(94). Despite the improved ovarian markers (AMH, inhibin α/β,

FSH receptor) (100, 102) and increased number of neonate

births in rodents (93, 97), the respective human study neither

shows increase in AMH nor reports clinical or biochemical

pregnancies. However, it should be noted that autologous Men-

MSCs transplantation has successfully increased pregnancy rates

and LBR in patients with POR, with a significant percentage of

them achieving natural conception (103). Considering the above

findings together with the non-invasive process of harvesting

Men-MSCs, this approach definitely deserves further evaluation

in clinical studies.

Regarding potential risks of SC therapy, there are indeed few

studies assessing safety. The primary concern is tumorigenicity,

which is higher when hPSC are used (75). However, all the

conducted clinical studies in POI have employed MSCs and no

such events have been reported. However, all these studies,

including one having safety as primary outcome (37) are not
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(33–37). On the other hand, regarding transplantation of adult

MSCs, their differentiation and proliferative capacity significantly

decrease with aging, limiting their efficacy (62) and survival,

which might be as short as 4 weeks (104). Moreover, allogeneic

transplantation carries the risk of immune rejection (62) as well

as ethical issues, like the transfer of foreign DNA into the foetus;

regarding the latter, both one study examining the

transplantation of human BMSCs in POI mouse model and the

only study using allogeneic UC-MSCs in women with POI is

reassuring, showing no human DNA transfer into mouse

foetuses (104), as well as that the human foetus is genetically

related to the mother and not the donor (35). Finally, autologous

SC transplantation carries less risk of immunogenicity and has

no ethical concerns; however, it requires two levels of

invasiveness (except for Men-MSCs). Considering all the above

and given the high cost of the procedure, the clinical application

of SC-therapy requires further validation through properly

designed controlled, long-term, clinical trials.
6. Micro-RNAs

Micro-RNAs are short, 18–24 nucleotides long, non-coding

RNAs, which regulate cell proliferation, differentiation and

apoptosis (14). Their pathogenetic role in POI has been

increasingly recognized over the last years, being involved in

steroidogenesis, granulosa cell proliferation/apoptosis, autophagy

and follicular development by regulating specific pathways, such

as the PI3K/Akt/mTOR, TGFβ, mitogen-activated protein kinase

(MAPK) and Hippo pathways (105). Many of these molecules

have shown to be either upregulated or downregulated in models

of POI and have been proposed as biomarkers (106). In

particular, miR-122-5p, miR23α, miR146α and miR27α have

been shown to induce granulosa cell apoptosis via B-cell

lymphoma 9 (BCL-9), X-linked inhibitor of apoptosis protein

(XIAP), caspase cascade pathway and SMAD5 respectively (106–

108); moreover, miR-127-5p attenuates repair capability of

granulosa cells via HMGB2 gene (109).

This understanding has stimulated research in order to

investigate potential disease-modifying role of micro-RNAs in

chemotherapy-induced mice models of POI, with so far,

promising results. For example, miR-17-5p, derived from human

UC-MSCs-exosomes, promotes the proliferation of damaged

granulosa and ovarian cells and decreases oxidative stress, via

inhibition of sirtuin 7 (SIRT7) expression (110). In addition,

miR-29α promotes the proliferation of granulosa cells and

suppresses their apoptosis, reserves the existing mature follicles

and restores ovarian function, via targeting wingless-related

integration (Wnt)/β-catenin pathway (111). Up to now, there are

no clinical data about the use of microRNAs in patients with POI.

From the applications in experimental setups in mice models of

POI, it appears that the treatment with miRNAs leads to granulosa

cells proliferation and continuous improvement of ovarian

function, however we do not yet have clinical data from the

application of such treatment in women with POI.
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7. Mitochondrial-targeting therapies

Mitochondrial dysfunction is mainly associated with ovarian

aging (112, 113). In addition, patients with idiopathic POI have

been demonstrated to have significantly less mitochondrial DNA

content (114), to bear more mitochondrial mutations (115),

especially in the respiratory chain, and to have higher reactive

oxygen species level and lower adenine triphosphate level (115), in

comparison to fertile, healthy women. These findings suggest that

mitochondrial dysfunction is implicated in pathogenesis of POI.

Mitochondrial replacement therapy has been applied in women

with low-quality oocytes of various aetiologies and not in POI

populations. Allogeneic mitochondrial replacement therapy, i.e.,

the transfer of mitochondria from a young, healthy donor to pre-

implantation embryo during IVF (116), has been banned by

FDA in 2001 due to ethical concerns regarding the risk of

heteroplasmy (113) and subsequently was made again legal in

UK in 2015 for cautiously selected cases. Since 2019, ESHRE

strongly discourages mitochondrial donation, due to lack of solid

scientific evidence proving safety and efficacy (117).

Unfortunately, the attempt to perform autologous mitochondrial

transplantation from mitochondria of OSCs to embryo during

intracytoplasmic sperm injection (ICSI), in a large-scale, triple-

blind randomized controlled trial (AUGMENT), showed no

increase in fertilization or euploidy rate, therefore the study had

to be terminated (118).

Studies with nutrients targeting mitochondrial function, such

as Q10, resveratrol and melatonin, reveal that the latter might be

effective in delaying ovarian aging, via increasing antioxidant

capacity, maintaining telomerase activity and activating sirtuin 1

(14). Finally, photobiomodulation therapy (PBMT) with low-level

laser light therapy (LLLT) is known to exert its rejuvenative

effects via targeting the chromophore cytochrome C oxidase in

mitochondrial membrane (119). In two rodent studies, PBMT is

shown to increase the number of primary and pre-antral follicle

count (120, 121), to decrease granulosa cell apoptosis and to

increase angiogenesis; however, it was not shown to increase the

number of Pfs (120).
8. What is the efficacy of biologic
therapies for POI in comparison to the
standard-practice pharmacological
(hormonal) treatments?

Women with POI have 5%–10% chance of spontaneous

conception (4), due to maintenance of intermittent ovarian

function (2). Those seeking fertility should receive a cyclic rather

than a continuous HRT regimen, in order to optimize their

chances (1). In women with untreated POI, increased level of

gonadotropins induces a maladaptive hormonal feedback, in

which the tonic rises of LH may lead to premature luteinisation

of growing antral follicles (122) and increased FSH may down-

regulate the FSH receptors in granulosa cells. Both phenomena

minimize the chances of spontaneous ovulation (11). Despite the
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gonadotropin level, a randomized, controlled, crossover study

failed to demonstrate any benefit in folliculogenesis, ovulation

and spontaneous pregnancy rate, in HRT-treated patients vs. the

non-treated (123).

In consideration of assisted reproduction techniques, there is

only one randomized, placebo-controlled study in 50 women

showing benefit in ovulation (32% vs. 0%) and pregnancy rate

(16% vs. 0%) in those treated with ethinyloestradiol (EE) before

ovulation stimulation. According to this study, lowering of FSH

<15 iu/L by HRT before starting ovarian stimulation is vital in

order to obtain successful outcomes (124). However, in another,

not-controlled study, pre-treatment with conjugated estrogens or

EE in 100 women with POI results in pregnancy rates per cycle

of 5.2%, which is identical to the rate of spontaneous pregnancy

in this population (125). Interestingly, immune-suppressing

medications such as dexamethasone (126) and azathioprine (127)

have shown to substantially increase ovulation and pregnancy

rates in IVF and to allow spontaneous pregnancy respectively,

reflecting the considerable prevalence of autoimmune aetiology in

otherwise “idiopathic” POI patients, which was confirmed in the

latter case report with azathioprine.

Unfortunately, all clinical studies assessing the efficacy of novel,

biological therapies for POI are uncontrolled, and, therefore, direct

comparisons cannot be made. Intraovarian PRP administration

leads to spontaneous conception in 7.4%–10% of women with POI

within 2–12 months in two cohort studies (24). This is non-

negligibly higher than the reported rate of spontaneous pregnancy

in this population, which is 5%–10% during their reproductive

lifespan post diagnosis of POI; however, the corresponding clinical

data are rather limited. Additionally, intraovarian PRP leads to

ovulation rate of 64.8% and embryo formation rate of 26.4%

during IVF (29), which exceed the respective rates in IVF with EE

pre-treatment; yet again, these results originate from only one

cohort study. Finally, IVA has led to embryo formation rate of

26.57% (31) and pregnancy rate of 7%–8% (13, 31), which is also

above the rate of spontaneous pregnancy in this population. In

contrast to the seemingly better efficacy of PRP and IVA against

traditional treatment, there are only 2 cases of pregnancy post SC

transplantation in the literature (35) and there is no study

assessing its efficacy in IVF procedures.
9. Conclusions and future perspectives

POI is a condition of heterogenous aetiology affecting up to

3.7% of the female population worldwide. Despite that HRT

improves its symptomatology and long-term health

consequences, it cannot treat infertility, which has been described

as the most devastating aspect of the disease. The

reconceptualization of ovarian reserve as a dynamic, rather than

static cell population, together with the observation that 50% of

POI patients maintain Pfs in their ovaries, has guided research in

investigating novel, biological strategies of ovarian rejuvenation.

These include PRP, exos therapy, IVA, SC therapy, microRNAs,

and mitochondrial targeting therapies.
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Among the above experimental methods of ovarian

rejuvenation, intraovarian PRP administration seems to be better

studied, less invasive, and more efficacious, especially considering

spontaneous conception (7.4%–10%). Furthermore, PRP and IVA

appear to be quite effective in achieving IVF conception, with

rates of 4% and 7%–8% respectively. However, IVA has not been

extensively studied. Considering that POI patients are not

suitable candidates for IVF treatment using their own oocytes,

the above data suggest that both techniques may help these

women to have genetically-related offspring. In contrast to SC-

based therapies which are expensive, PRP and IVA protocols are

low-cost approaches. Furthermore, SC transplantation has been

mainly investigated in animal models; clinical data are scarce

despite the rather high number of registered studies in

ClinicalTrials.Gov (=18 studies). Keeping in view with the

literature data in women with POI, the efficacy of SC

transplantation in achieving pregnancy is limited (0–14.3%, 2

cases in total). Autologous mitochondrial replacement therapy

has not been examined in POI patients; yet, it showed no benefit

in patients with low oocyte quality. Emerging biological

approaches such as exos and micro-RNAs appear to be safe and

have promising disease-modifying results in preclinical models,

but require further validation in clinical studies.

In conclusion, biological therapies in POI show promise but are

still in their initial experimental stage. Regarding the already

clinically applied techniques, PRP, IVA, SC transplantation

therapies, the short-term follow-up of the conducted studies does

not allow us to draw conclusions either about the duration of

ovarian rejuvenation by each method or about safety. In

addition, the comparison between studies can be problematic

because of the lack of standardization protocols regarding PRP

preparation and administration. Furthermore, the scarcity of data

in SC-transplantation makes it is difficult to develop standardized

protocols regarding which type of SC should be selected, or

which interval of SC transplantation is required. Therefore, we

need properly-designed, controlled clinical trials, in order to

assess the efficacy, safety and reproducibility of these procedures.

Finally, given that infertility is the only indication to embark on

biological therapy for POI, the assessment of successfulness

should be based on clinical fertility indices, such as achievement
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of clinical pregnancy and number of take-home babies, while

ovarian reserve indices, such as AMH and AFC, could be also

informative. The isolated improvement in hormonal levels,

although desirable, cannot prove the success of such therapies as

it can be achieved by conventional POI treatment with HRT.

According to ClinicalTrials.gov, there are 8 ongoing clinical

trials regarding PRP application, 3 regarding IVA and 5

regarding SC transplantation with their results being anticipated

in the next 2 years.

Carefully designed experimental and clinical studies will

illuminate our understanding about the safety and efficacy of

these new infertility treatments in POI.
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