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Breast cancer stands as themost prevalent malignancy globally. Despite the array

of treatment options, its mortality rate continues to rise annually. Thus,

reevaluation of factors directly linked to breast cancer emergence is

imperative, alongside the development of more effective preventive measures.

Estrogen levels, profoundly tied to reproduction, play a pivotal role in breast

cancer development. Speculation centers on the potential of breastfeeding to

mitigate cancer risk in women. However, the precise mechanism remains

elusive. Breastfeeding is a modifiable reproductive factor extensively studied.

Studies highlight a direct connection between lack of breastfeeding and breast

cancer emergence, potentially linked to DNA methyltransferase expression

alteration, aberrant methylation levels, pregnancy-associated plasma protein-

A, cellular microenvironment, and oncogenes. This study reviews recent

mechanisms underlying breastfeeding’s role in reducing breast cancer incidence.
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1 Background

Statistics from GLOBLCAN 2020 underscore breast cancer’s ascension as the world’s

most prevalent cancer type, surpassing lung cancer (1). Developed regions like Western

and Northern Europe exhibit nearly 88% higher breast cancer incidence rates than

underdeveloped counterparts (East and Central Africa). This global shift necessitates

consideration of known risk factors against the backdrop of cancer incidence rate

alterations. Notably, age emerges as a primary risk factor, with older females witnessing

the highest age-specific incidence rates. Average youthfulness in underdeveloped nations is

shaped by aging populations and a ten-year drop in life expectancy. Economic growth in
Abbreviations: Fox A1, Forkhead box protein A1; PAPP-A, Pregnancy-associated plasma protein-A; IGF-1,

Insulin-like growth factor 1; IGFBP-5, Insulin-like growth factor binding protein-5; IGF, Insulin-like growth

factor; PABC, pregnancy-associated breast cancer; STC1, Stanniocalcin-1; STC2, Stanniocalcin-2; STC,

Stanniocalcin; SIgA, Secretory IgA; LALBA, Lactalbumin Alpha; TNBC, Triple Negative Breast Cancer.
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these areas corresponds with elevated life expectancies, indicating

imminent cancer incidence rate increases (1, 2). Reproductive and

non-reproductive factors, both influenced by economic

development, comprise vital risk factors. Reduced menarche age,

delayed menopause age, fewer children, and decreased

breastfeeding escalate breast cancer risk (3). Improved human

development often accelerates menarche onset by enhancing

nutritional status, a determinant of menarche initiation age (4).

Non-reproductive risk factors include obesity, with breast cancer

risk doubling in overweight postmenopausal women. It’s projected

that increased alcohol consumption will contribute to about 4% of

diagnosed cancer cases in 2020 (5). While potential genetic or

hereditary causes like BRCA1 or BRCA2 mutations account for 5-

10% of breast cancers, eight out of nine cases lack affected female

reproductive systems (6). Moreover, variations in breastfeeding

prevalence might underlie observed differences, along with

differences in the healthcare systems levels (7). While West

African countries report 70% exclusive breastfeeding rates for five

consecutive months, European countries average 30% (8). Despite

this, even in the US, access to pumping facilities remains limited,

constraining breastfeeding duration. Breastfeeding moderately

affects breast cancer occurrence; Almasi-Hashiani et al.

determined that 27.3% of breast cancer patients developed cancer

due to inadequate breastfeeding (9). Notably, US black women

exhibit lower breastfeeding rates and nearly double the triple-

negative breast cancer (an aggressive subtype) incidence rates

compared to white women (10). A Malaysian case-control study

involving 7,663 women found that ever-breastfeeding and longer

breastfeeding durations correlated with reduced breast cancer risk

(11). The study further suggested that breastfeeding for under three

months raised breast cancer risk, while exceeding 12 months

lowered risk (12, 13). This raises speculation regarding

breastfeeding’s potential to mitigate cancer risk via (1) breast cell

differentiation, modifying them for post-production milk

production, thereby reducing breast tissue vulnerability to

carcinogenesis (estrogen), and (2) impeding ovulation by

diminishing estrogen’s mitosis-promoting effect (14). Carcinogen

secretion in breast milk and breast tissue shedding contribute to

damaged DNA cell elimination, curtailing mutation responsiveness

(15). However, the precise mechanism remains uncertain.

Understanding how breastfeeding mechanisms impact breast

cancer can identify pharmacologic preventive measures for non-

breastfeeding women, curbing breast cancer prevalence and

mortality. Additionally, these findings might inform novel

treatment approaches. Therefore, this review consolidates recent

discoveries concerning pertinent mechanisms and processes.
2 Breastfeeding and DNA methylation

DNA methylation, an epigenetic modification prevalent in

mammals, is catalyzed by DNA methyltransferase enzymes,

including DNMT1, DNMT3a, and DNMT3b (16). This alteration

affects DNA’s transcriptional participation, leading to gene

silencing and diminished transcriptional capacity. Elevated DNA
Frontiers in Oncology 02
methyltransferase content was observed in breast cancer

patients (17).

Forkhead box protein A1 (Fox A1), a transcription factor,

fosters luminal progenitor cell differentiation into mature luminal

cells during breast development while repressing the basal

phenotype (18). Highly methylated in BRCA-1related breast

cancers (19), Fox A1’s methylation possibly stems from BRCA-1

gene control over Fox A1 expression via methyltransferase

inhibition (20). Conversely, BRCA-1 gene mutation or silencing

abolishes this inhibitory effect, enabling Fox A1 hypermethylation,

fostering breast cancer (21).

Contrastingly, parous women with breastfeeding history exhibit

lower Fox A1 methylation, while non-breastfeeding induces Fox A1

hypermethylation akin to BRCA-1 mutation effects (21, 22). Two

protective breastfeeding mechanisms include pregnancy and

exosomes. Pregnancy triggers mammary epithelial cell DNA

methylation for subsequent lactation readiness (23). Prolactin,

during lactation, stimulates mammary epithelial cell milk protein

and lipid synthesis, demethylating breastfeeding-related genes (24).

Breast milk’s exosomes, small vesicles rich in various molecules,

including proteins, lipids, and microRNAs, exert significant

physiological and pathological influence (25). In breast tissue,

exosomes govern lactation and mammary gland involution (26).

Breast milk’s exosomes contain abundant mir-29s and mir-148a,

downregulating methyltransferases DNMT3/b and DNMT1 (27,

28). In vitro studies confirm epithelial cell exosome uptake and

maintenance of functionality (29). Breastfeeding’s absence

potentially reduces mammary epithelial cell exosome exposure,

increasing DNA methyltransferase expression and aberrant

methylation (Figure 1).
3 Breastfeeding and pregnancy-
associated plasma protein-A

Pregnancy-associated plasma protein-A (PAPP-A), a metzincin

(30)metalloproteinase, is overexpressed in most breast cancer

patients (31). Insulin-like growth factor 1 (IGF-1) safeguards

mammary epithelium against apoptosis (32). Insulin-like growth

factor binding protein-5 (IGFBP-5), a vital mammary gland

involution regulator, impedes IGF receptor activation by

sequestering IGF-1 (33). Conversely, PAPP-A hampers IGFBP-5

via hydrolysis, delaying breast involution and heightening

pregnancy-associated breast cancer (PABC) risk (34). Collagen

deposition elevates PAPP-A, enhancing IGFBP-5 cleavage,

reinforcing IGF signaling, intensifying collagen deposition,

thereby augmenting PABC risk (30, 34).

Moreover, PAPP-A activates collagen receptor DDR2, promoting

tumor metastasis via ERK-Snail axis activation. Lack of breastfeeding

triggers elevated collagen deposition during breast degeneration,

amplifying PAPP-A activity (31, 35). Prolonged breastfeeding

duration directly correlates with decreased PAPP-A activity during

lactation (35). Glycoproteins Stanniocalcin-1 (STC1) and

Stanniocalcin-2 (STC-2) inhibit PAPP-A, preventing PABC

development; they are present in breast milk (35). STC, abundant
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during late pregnancy and lactation, diminishes post-lactation (36).

Prolonged breastfeeding heightens STC1 and STC2 levels, inactivating

PAPP-A, averting IGFBP-5 cleavage, allowing normal involution.

Post-lactation, STC1 and STC2 levels decline, but PAPP-A activity

doesn’t recover (35). In vitro studies confirm STC2’s PAPP-proteolytic

A suppression through covalent bonding, curtailing PAPP-A-

mediated IGF signaling (37). Conversely, STC1, lacking essential

cysteine residue, binds PAPP-A with high affinity, sans covalent

bonding (38). Absence of breastfeeding may hinder STC1 and STC2

from halting PAPP-A, fostering excess PAPP-A, IGFBP-5 cleavage,

IGF signaling feedback, fostering PABC (Figure 2) (35).
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4 Breastfeeding and the cellular
microenvironment

Cellular surroundings profoundly influence growth and

development. Breast milk markedly curbs cancer cells in the

microenvironment. Throughout breastfeeding, calcium ion-rich

breast milk inhibits cell apoptosis and necrosis (39, 40). Frequent

exposure to elevated calcium ions can disrupt intercellular

connections (41). Additionally, breast milk’s Secretory IgA (SIgA)

and Lactalbumin Alpha (LALBA) compound suppress breast

cancer cell development and induce apoptosis (42).
FIGURE 2

Prolonging breastfeeding duration can reduce the activity of PAPP-A through STC and inhibit the occurrence of breast cancer.
FIGURE 1

Breastfeeding inhibits the occurrence of breast cancer by affecting the methylation of FoxA1.
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5 Breastfeeding and oncogenes

Oncogene BRCA1-IRIS, tied to breast cancer, arises from

differential BRCA1 locus utilization. IRIS mRNA and protein

exhibit significant upregulation in breast tumors (43), and normal

breast tissue (44). IRIS overexpression spurs mammary progenitor

cell growth, survival during gestational preparation for lactation

(45). However, IRIS overexpression also leads to normal mammary

epithelial cell differentiation into Triple Negative Breast Cancer

(TNBC)-like cells (46). Beyond 12 months of breastfeeding,

signaling pathways like VD/VDR/STAT3 elevate, diminishing

IRIS expression, fostering mammary epithelial terminal

differentiation (45). These cells also serve as tumor-specific

peptide-presenting cells, cleared by immune cells upon

breastfeeding cessation and involution. Inadequate breastfeeding

might result in numerous IRIS-overexpressing progenitor cells

during involution (47). Elshamy et al.’s “oncogene elimination

hypothesis” elucidates this process (48). Known oncogenes

possess normal functions at normal expression levels, sometimes

overexpressed at developmental stages for specific roles (49). Breast

cells’ initial gestational stage expression rise, sustaining survival,

proliferation readiness for subsequent lactation. These cells must

exit at breast degeneration’s onset, given inflammatory

environment during degeneration. Differentiated cells might die,

while progenitor cells thrive, turning more invasive (50). Prolonged

breastfeeding induces terminal differentiation, clearing terminally-

differentiated cells after involution onset (51). Inadequate

breastfeeding might result in immune escape of IRIS-

overexpressing progenitor cells during involution, fostering breast

cancer development (48).
6 Breastfeeding and involution

Breast tissues undergoing involution after breastfeeding differ from

those experiencing immediate involution after pregnancy without

breastfeeding (52). During mammary gland involution, a few

mammary epithelial cells revert to their pre-pregnancy state, while

most undergo programmed death (53). However, the remodeling
Frontiers in Oncology 04
process varies based on breastfeeding duration. A prospective cohort

study with mice revealed that the absence of breastfeeding leads to

abrupt breast tissue remodeling, escalating inflammatory marker

levels, and collagen deposition. In vivo mouse studies demonstrated

that this sudden breast tissue remodeling results in substantial ductal

hyperplasia, squamous metaplasia, and sustained elevation of luminal

progenitor cells. Though unverified in human studies, these changes

enhance cancer development potential (54). Following breastfeeding,

breast tissues undergo involution, accompanied by a genetic signature

expressing genes linked to apoptotic pathways like p53, c-myc, and

BCL-xl. This expression enables efficient carcinogen metabolism and

DNAdamage repair (10). Inadequate breastfeeding sustains a terminal

bud structure in breast tissue after involution, harboring numerous

epithelial cells vulnerable to carcinogen stimulation, thereby facilitating

breast cancer cell transformation (55).
7 Conclusion

Breastfeeding constitutes a positive, health-promoting behavior,

with breastfeeding duration reducing breast cancer risk. Building on

multiple breastfeeding-breast cancer associat ions , we

comprehensively outlined mechanisms (Figure 3) through which

breastfeeding averts breast cancer development. Numerous

questions remain regarding breastfeeding’s role in reducing breast

cancer risk. For instance, how much breastfeeding is required to

mitigate risk? Is three months sufficient? Is the first or last

pregnancy more pivotal, or is complete breastfeeding month

duration key to risk reduction? Addressing these queries

mandates extensive epidemiological studies providing detailed

reproductive and breastfeeding histories, coupled with laboratory

research illuminating these variables’ impact on breast cell

populations. Future population-based inquiries must consider

potential confounding effects of menarche age on breastfeeding

associations, alongside possible interactions with other lifestyle

factors such as oral contraceptive use, alcohol consumption, and

body mass index. Enhanced understanding of breastfeeding’s

impact on breast cancer mechanisms might uncover preventive

pharmaceutical options for women unable or unwilling to
FIGURE 3

The mechanisms by which breastfeeding reduces the incidence of breast cancer.
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breastfeed, curtailing cancer prevalence and its mortality, thereby

setting our research’s future trajectory.
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