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Preclinical studies performed in
appropriate models could help
identify optimal timing of
combined chemotherapy
and immunotherapy

Yani Berckmans1, Jolien Ceusters1, Ann Vankerckhoven1,
Roxanne Wouters1,2, Matteo Riva1,3 and An Coosemans1*

1Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer
Institute, KU Leuven, Leuven, Belgium, 2Oncoinvent AS, Oslo, Norway, 3Department of Neurosurgery,
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Immune checkpoint inhibitors (ICI) have been revolutionary in the field of cancer

therapy. However, their success is limited to specific indications and cancer

types. Recently, the combination treatment of ICI and chemotherapy has gained

more attention to overcome this limitation. Unfortunately, many clinical trials

testing these combinations have provided limited success. This can partly be

attributed to an inadequate choice of preclinical models and the lack of scientific

rationale to select the most effective immune-oncological combination. In this

review, we have analyzed the existing preclinical evidence on this topic, which is

only limitedly available. Furthermore, this preclinical data indicates that besides

the selection of a specific drug and dose, also the sequence or order of the

combination treatment influences the study outcome. Therefore, we conclude

that the success of clinical combination trials could be enhanced by improving

the preclinical set up, in order to identify the optimal treatment combination and

schedule to enhance the anti-tumor immunity.

KEYWORDS

immune checkpoint inhibitors, chemotherapy, preclinical models, combination
treatment, cancer therapy
1 Rise in combination therapies with immune
checkpoint inhibitors after limited effectivity
in monotherapy

In recent years, attention towards cancer immunotherapy has grown (1, 2). The goal is to

shift the balance from tumor promoting immunosuppression towards anti-tumor immune

activation, to support and promote the immune-mediated attack of cancer cells. Immune

checkpoint inhibitors (ICI) are an example of such immunotherapeutic modality aiming to
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release the tumor induced immune brakes (3). Many of these brakes,

or checkpoint molecules, have been identified, such as programmed

death ligand 1 (PD-1) or its ligand PD L1, cytotoxic T-lymphocyte

associated protein 4 (CTLA-4), T-cell immunoglobin and mucin

domain 3 (TIM 3), lymphocyte activation gene 3 (LAG-3) and others

(4). Seven such ICIs are currently approved for use in patients across

all cancer types. The first approved was the anti-CTLA-4 ipilimumab

followed by three anti-PD-1 ICI, nivolumab, cemiplimab and

pembrolizumab, and three anti-PD-L1 inhibitors, durvalumab,

avelumab and atezolizumab (4, 5). However, as the efficacy of these

ICI was mostly observed in a restricted subset of patients, their use is

limited to specific indications in cancers such as melanoma, breast

cancer, colorectal, classical Hodgkin’s lymphoma and non-small cell

lung cancer (NSCLC) (4, 6). In an estimated 60-70% of patients, they

remain ineffective (3, 6). To overcome this clinical challenge,

attention for combination therapies has grown. In 2018, the clinical

research program of the Cancer Research Institute (Anna-Maria

Kellen Clinical Accelerator, NY, USA) published an overview of

immune-oncological trials, describing the rise in combination trials

using PD-1/L1 targeting agents with other immunotherapies,

radiotherapy and chemotherapies over the past five years. From the

1105 reported combination studies, the most prevalent combinations

included anti-PD-1/L1 with either anti-CTLA-4 (n=251) or

chemotherapy (n=170) (7). An update in 2021 showed the

continued increase in the number of trials testing a combination of

anti-PD-1/L1 and chemotherapy with 145 new trials started in the

first three quarters of 2020 alone (8).
2 Rationale for combination of
chemotherapy with immune
checkpoint inhibitors

To develop combination treatments, not only oncological but also

immunological changes should be considered. Galluzzi et al. described

different immune effects induced by different types of chemotherapy

(9). In the past, some chemotherapeutics have been described as

immunosuppressive agents, which explained their use for the

treatment of severe autoimmune diseases (10). Examples of such

chemotherapeutics are cyclophosphamide and methotrexate, which

can both impair the proliferation and function of effector T-cells (10,

11). Moreover, doxorubicin has been shown to increase the expansion

of myeloid derived suppressor cells, resulting in increased

immunosuppression (11). The immense chemotherapeutically

induced release of tumor-associated antigens has also been suggested

to suppress the anti-tumor immune response. However, evidence

supporting this mechanism is currently not available (10). In

contrast, cytotoxic chemotherapies have also been reported to

promote immunogenicity. For example, one of the immune effects

reported for doxorubicin was the enhanced proliferation of tumor

targeting CD8+ T-cells, while other conventional chemotherapies

like gemcitabine and paclitaxel, were shown to decrease

immunosuppressive myeloid derived suppressor cells and regulatory

T-cells cells, respectively (9). Similar immunological effects have been

discussed in a review by Brown et al., such as the increase of antigen
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presentation through the upregulation of MHC class 1 on tumor cells

by a number of the DNA-damaging therapeutics including

gemcitabine, cyclophosphamide and oxaliplatin (12). Our group has

shown that carboplatin-paclitaxel resulted in a superior immune-

composition compared to several other chemotherapeutics in an

ovarian cancer mouse model (13), which was in line with

observations in patients (14). Another argument in favor of

combining chemotherapy and ICI therapy has been the upregulation

of co-inhibitory ligands, such as PD-L1, promoted by numerous

chemotherapeutics including paclitaxel, 5-fluorouracil and cisplatin

(15). Furthermore, certain chemotherapeutics such as doxorubicin,

oxaliplatin and cyclophosphamide could also induce immunogenic cell

death (ICD) (12, 16). All together, these immune-related effect of

chemotherapy promote the rationale for a combination with ICI

treatment to further stimulate the anti-tumor adaptive immune

response and T-cell expansion (6, 15). However, all described

immune effects can be drug, dose and time dependent, highlighting

the importance of optimal knowledge and preclinical evidence (16).
3 Combinations of immune
checkpoint inhibitors and
chemotherapy still fail in the majority
of clinical trials

Combinatorial approaches resulted in selected clinical successes

(17). In the AtezoTRIBE trial (NCT03721653), previously untreated

metastatic colorectal cancer patients showed improved median PFS

(HR 0,69; 80% CI [0,56–0,85]) with the addition of the ICI

atezolizumab to the treatment schedule consisting of chemotherapy

(FOLFOXIRI, a combination of folinic acid, fluorouracil, oxaliplatin

and irinotecan) and anti-VEGF (bevacizumab), with all treatments

being administered simultaneously using a 48h intravenous infusion

with cyclic repeat every 14 days (18). The KEYNOTE-021 trial

(NCT02039674) showed improved objective response rate (ORR)

(p=0,0016) in NSCLC patients receiving carboplatin/pemetrexed

combined with pembrolizumab compared to chemotherapy alone

(19). These findings were confirmed in the KEYNOTE-189 trial

(NCT02578680) in which overall survival (OS) (HR 0,49; 95% CI

[0,38-0,64]) and progression free survival (PFS) (HR 0,52; 95% CI

[0,43-0,64]) were significantly increased in the combination therapy-

receiving patients (20). Both KEYNOTE-021 and KEYNOTE-189

trials administered pembrolizumab simultaneously with platin-based

chemotherapy and pemetrexed for four cycles, repeated every three

weeks, as well as maintenance therapy for up to 24 months in

combination with pemetrexed (19, 20). Additionally, in patients

with metastatic triple negative breast cancer (TNBC) testing

positive for PD-L1 expression, the combination of atezolizumab

with the chemotherapeutic nab-paclitaxel showed promising results

on PFS (HR 0,62; 95% CI [0,49-0,78]) and OS (HR 0,67; 95% CI

[0,53-0,86]) (IMpassion130; NCT02425891) when administered

simultaneously through intravenous injection on day 1 and 15 of a

28-day cycle which was repeated until disease progression was

observed (21). Similar valuable outcomes were observed in the

KEYNOTE-522 trial (NCT03036488), where addition of
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pembrolizumab to neoadjuvant carboplatin paclitaxel chemotherapy

yielded a greater response compared to chemotherapy alone in early

TNBC patients (HR 0,63; 95% CI [0,43-0,93]) (22).

However, the majority of trials testing an immune-oncological

combination produced disappointing results (17). For example, in

gastroesophageal cancer patients, the combination of pembrolizumab

with chemotherapy (cisplatin and fluorouracil/capecitabine) resulted

in a nearly equal OS compared to chemotherapy alone (HR 0,85; 95%

CI [0,70-1,03]) in the phase 3 KEYNOTE-062 trial (NCT02494583)

(23). Similarly, in the KEYNOTE-361 trial (NCT02853305), no

improved PFS (HR 0,78; 95% CI [0,65-0,95]) or OS (HR 0,86; 95%

CI [0,72-1,02]) was reported after combination treatment with

pembrolizumab and chemotherapy (comprising of gemcitabine and

cisplatin/carboplatin) compared to chemotherapy alone, for the

treatment of advanced urothelial carcinoma. In this trial, the ICI

and chemotherapy were administered simultaneously through

intravenous injection on day 1 of a three- weekly cycle with a

maximum of six chemotherapy cycles and 35 cycles of

pembrolizumab (24). For ovarian cancer, three large phase 3 trials

have been published, all reporting negative results. The phase 3

JAVELIN Ovarian 200 trial (NCT02580058) reported no improved

response between groups receiving either avelumab (every two weeks,

intravenously) combined with pegylated liposomal doxorubicin

(PLD) (every four weeks, intravenously) or PLD monotherapy

(PFS: HR 0,78; CI [0,59-1,24]; OS: HR 0,89: CI [0,74-1;24]) (25,

26). Likewise, in the JAVELIN Ovarian 100 trial (NCT02718417), the

primary objectives of increasing the PFS were not met. In this study,

two combination regimens were compared to the control group

receiving carboplatin paclitaxel chemotherapy alone; chemotherapy

followed by avelumab (HR 1,43; 95% CI [1,05-1,95]) and

chemotherapy plus avelumab followed by avelumab (HR 1,14; 95%

CI [0,83-1,56]). Remarkably, both combination regimens seemed to

perform worse than chemotherapy alone (27, 28). Interim analysis of

the IMagyn050 trial (NCT03038100) in newly diagnosed ovarian

cancer patients underscored this, as no difference in PFS was seen

after addition of atezolizumab to chemotherapy (carboplatin

paclitaxel) followed by anti-VEGF (bevacizumab) (HR 0,92; 95%

CI [0,97-1,07]). All treatments were administered intravenously on

day 1 of a three- weekly cycle. Additionally, both adjuvant and

neoadjuvant schedules were included in this trial. However, no

discrepancies have been reported between the two groups (29).
4 Limited relevant preclinical research
could relate to failing clinical trials

The large number of failed clinical trials testing the combination

of ICI with chemotherapy is alarming. The question arises if this

could have been anticipated using relevant preclinical research. We

performed a PubMed literature search using the minimal search

term (chemotherapy [Title/Abstract] AND checkpoint[Title/

Abstract] NOT (Review[Publication Type]). This search resulted

in 2863 articles on November 12th 2021 of which only 92 research

articles were dedicated to preclinical testing of ICI and

chemotherapy combinations (See Supplementary Material 1).

Figure 1 gives an overview of all different cancer types used in
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these research articles. Remarkably, almost half (47.8%) of these

articles study either colorectal cancer or breast cancer, in which ICI

are already accepted for use under specific conditions. More

specifically, the U.S. Food and Drug Administration (FDA)

approved both pembrolizumab as first line treatment, as well as

the combination of ipilimumab and nivolumab in second line

treatment of metastatic colorectal cancer in specific conditions.

For breast cancer, both atezolizumab and pembrolizumab have

been approved for metastatic TNBC patients (4). Although

preclinical results are scarce for the majority of other cancer

types, clinical trials testing this immune-oncological combination

are conducted in a wide range of disease profiles.

Figures 1B, C display the different chemotherapeutics and ICI

tested in these preclinical studies, respectively. A wide variety of

chemotherapeutics have been tested, which can be explained by the

different cancer types that were studied and their standard of care in

the clinic. In contrast, only two types of ICI prevail: anti-PD-1/L1

and anti-CTLA-4 checkpoint inhibitors. Other ICI modalities are

scarcely represented in these preclinical studies. Generally, the

choice of preclinical model should be looked at critically before

each experiment. Besides the pathogenesis of the disease which

should be properly reproduced, it is equally crucial to assure that the

biological target of the tested therapy is conserved in the chosen

model (30). Therefore, when testing ICI therapy, it is most

reasonable to choose an immune competent preclinical model in

which the engagement of the ICI with its target on immune cells can

be ensured. In the majority of the 92 articles, preclinical research

was performed in syngeneic mouse models with C57BL/6 or Balb/c

background (Figure 1D). Both C57BL/6 and Balb/c are inbred

immune competent mice s t ra ins . Some inter - s t ra in

immunological differences are present, consisting in a prevailing

humoral immune response in Balb/c mice, while in C57Bl/6 murine

cellular immunity dominates (31). Additionally in other studies,

C57Bl/6 mice appeared to have a Th1 dominant immune response

in contrast to Balb/c mice where Th2 dominated the immune

response (32). Besides these discrepancies, syngeneic models are

overall characterized by a fully functioning immune system, which

is their main advantage besides their uncomplicated establishment

and fair cost. In contrast, five studies could be identified using

immunodeficient mouse strains. The use of immunodeficient

mouse strains to create models such as patient derived xenografts

(PDX) has been proven successful as a preclinical platform (33) and

has shown to accurately reflect the gene expression profile and

histology of the primary human tumor (34). However, PDX models

do not recapitulate the full physiological biology of the human

tissue due to the lack of an intact immune system making them less

suitable for testing immunotherapeutic strategies (35). Additionally,

the response to chemotherapy can also depend on the presence of a

fully functioning immune system. In a study by Kroemer and

Galluzzi et al., chemotherapy response was shown to be

suboptimal in immunodeficient mice compared to syngeneic

tumor-bearing mice. This discrepancy could be related to the lack

of immunogenic cell death and activation of the subsequent anti-

tumor immune response (36). Humanization of these mice created

a strategy to overcome the immune limitations seen in

immunodeficient xenograft models (37). Different methods for
frontiersin.org
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creating humanized mouse models exist such as transplantation of

human peripheral blood mononuclear cells or human

hematopoietic stem cells into immunodeficient mice after which

they can be inoculated using human tumor cells or patient derived

tissue (37). This offers an interesting approach to test

immunotherapies in models bearing human tumors in

combination with a humanized immune system. Multiple caveats

however still need to be overcome, such as the development of graft

versus host disease and the high cost.

While currently the syngeneic immune competent mouse

models are explored most in immune-oncology research, it can be

argued that in order to mimic heterogeneous and progressive

cancers in vivo, genetically engineered mouse models offer added

physiological relevance (37). Genetically engineered mouse models

carry altered oncogenes and/or tumor suppressor genes and can

therefore develop tumor spontaneously (38). Advantages include

the orthotopic origin of the tumor with physiological intra-tumoral

heterogeneity and an intact immune system, while the extensive

variability in tumor development, low mutational burden and the

time-consuming process are the largest disadvantages (35, 37). An

example of such an established spontaneous cancer model are KPC

mice (KrasLSL-G12D+;Trp53LSL-R172H/+;p48Cre in C57Bl/6

mice) which stochastically develop intra-epithelial neoplasms in

the pancreas (39). These types of mouse models were only present

in four out of the 92 research articles, including models for breast
Frontiers in Immunology 04
cancer, head and neck squamous cell carcinoma and lung cancer

(See Supplementary Material 1; Martinez-Usatorre et al., Sci Transl

Med, 2021; Sirait-Fischer et al., Front Oncol, 2020; Spielbauer et al.,

Otolaryngology–Head and Neck Surgery, 2018; Workenhe et al.,

Commun Biol, 2020).

Lastly, though none of the 92 articles found in our literature

search deferred from using mice, in preclinical immune-oncological

research, other species are increasingly being considered for use due

to their similar immunological, anatomical or pathological features

to humans. Syrian hamsters are viewed as ideal preclinical animal

model for cancer immunotherapy studies due to the complex tumor

microenvironment, tumor histology and cancer progression

resembling the human scenario (40). Another advantage of this

species are the cheek pouches which are considered an immune

desert due to the lack of lymphatic drainage pathways offering the

potential of long-term transplantation of foreign material, such as

patient derived tumor tissue without immune rejection (40).

Secondly, ferrets can be suitable models as they have a

particularly high cancer prevalence, which could give insights into

the biological development of cancer, and have shown useful in

immunology studies (41, 42). Higher animal models such as canines

and swine are also available. Canines can spontaneously develop

tumors, showing large homology to human cancers both genetically

and in re la t ion to the surrounding tumor immune

microenvironment (43). They are fully immune competent and
B
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FIGURE 1

Overview of 92 research papers in which a combination of immune checkpoint inhibitors and chemotherapy was tested preclinically. (A) Bar chart showing
the different cancer types studied. (B) Bar chart showing the distribution of different chemotherapies tested. (5-FU: 5-fluorouracil) (C) Bar chart showing the
distribution of different immune-checkpoint inhibitors tested. (Other: anti-B7-H3, anti-CD47, anti-CD96, anti-4-1BB, anti-40 and anti-HLA-G) (D) Bar chart
showing the background of different mouse models used. (Other: C3H, CBA/CaJ, DBA/2J, FVB, KRAS LSL- G12D+; p53-/-: LSL, 129S1/SvImJ, B10.D2, µMt)
.(E) Bar chart showing the distribution of inoculation sites in the mouse models used. (s.c.: subcutaneous, i.v.: intravenous).
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possess more comparable immune constituents to the human

immune system compared to murine models (43, 44). Swine

models can be applied in oncological research and are mostly

used to test new devices and surgical procedures (45).

Immunological applications can also be explored as swine are

genetically and immunologically relevant to humans and have

shown to respond similarly to anti-cancer drugs (46). Different

models exist such as genetically modified swine capable of

developing tumors and wild-type immune competent swine

bearing xenograft tumors (45). Lower models such as zebrafish or

Xenopus could also provide opportunities to study certain

therapeutic effects on cancer cells depending on the research

question (44). Homologous to humans, zebrafish possess two

branches in their immune system, the innate and the adaptive

component. However, one difference is the delay in adaptive

immunity development causing the zebrafish to rely solely on the

innate immunity in the first stages of their lives. This provides the

opportunity for specific studies into the innate immune system

using recently hatched (72 hours post fertilization) zebrafish which

harbor a fundamentally similar macrophage lineage to humans. At

this stage, inoculation of human cancer cells has an increased

engraftment chance due to the absence of adaptive immune cells

(47). In later stages of zebrafish development, immune-oncological

research may be limited due to their biological and anatomical

differences, such as the lack of lymph nodes, and less complex

immune system compared to humans (44).

Besides animal models, alternative methods for preclinical

research are being explored, which is increasingly promoted by

governmental and ethical services, but has proven difficult when the

immune system is involved. One hopeful approach is the use of ex

vivo, three dimensional cultures derived from human tumor tissue

called explants (48, 49). This methodology has already been

successful for multiple cancer types. Moreover, the explant

culturing method for NSLC by Karekla et al. showed reproducible

drug responses to cisplatin (49). Furthermore, these types of

cultures have the potential to provide a platform for evaluating

immunological responses to ICI therapy, as reported by Voabil and

colleagues (50).

Another point of attention when working with animal models

for the purpose of translational research is the fact that the tumor

inoculation site can impact the tumor immune environment and

subsequently the immunotherapy response (51). Most of these 92

studies use subcutaneous (s.c.) mouse models (Figure 1E).

Subcutaneously mimicking a tumor that from origin grows in

another organ is less ideal as the invasive potential of the tumor

is limited due to the presence of s.c. connective tissue, therefore

creating a different tumor microenvironment (most likely also

influencing the function/role of tissue resident immune cells)

(52). This can impact the translatability of these models for

immunotherapeutic research. For example, in preclinical

melanoma models the tumor location was shown to influence the

recruitment of tissue-specific tumor-associated macrophages (51,

52). Orthotopically inoculated tumors in immune-competent mice

can surmount some of these limitations. Overall, it seems that the

chosen model and inoculation site can impact the outcome in these

preclinical studies.
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5 The therapeutic combinatorial
schedule influences treatment
response

Our group has previously described the shift in survival in a

syngeneic orthotopic mouse model for ovarian cancer when changing

the sequence of the chemotherapy and immunotherapy combination

(53). To identify the optimal immune-oncological combination regimen,

we looked into the different administration schedules of the 92 preclinical

studies (Figure 2). In the majority (76,1%; 70/92), administration of ICI

and chemotherapy was simultaneous, mostly even started the same day

(47/92). Only 16,3% (15/92) of preclinical studies were designed with a

sequential administration of treatment, nearly all of them starting with

chemotherapy prior to ICI treatment (14/15). Only a small percentage of

studies (7,6%; 7/92) investigated multiple different administration

schedules. These seven articles will be further discussed below.

Additionally, two preclinical studies not identified through our search

strategy, but similarly looking into the impact of combination treatment

scheduling, have been added manually to the discussion below. An

overview of all nine studies can be found in Table 1.

Lesterhuis et al. studied the combination of anti-CTLA-4 and

gemcitabine chemotherapy in a s.c. mesothelioma mouse model. A

significant survival benefit was reported in mice receiving simultaneous

administration of both treatments compared to the regimen where

gemcitabine was administered either before or after anti-CTLA-4,
FIGURE 2

Pie chart on administration schedules in 92 preclinical research
articles. Studies with simultaneous treatment administration include
all studies with same start date of both therapies (47/92), studies
where immune-checkpoint inhibitor treatment started first (6/92) or
chemotherapeutic treatment started first (17/92) before
simultaneous administration of the combination treatment was
continued. Sequential treatment administration includes studies
where no overlap between both treatments occurred. Treatments
were given consecutively with either first chemotherapy (14/92) or
first immune-checkpoint inhibitor therapy (1/92). In 7 out of the 92
studies (7.6%), multiple treatment administration schedules were
tested in one preclinical experiment.
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although no (immunological) explanation was provided or discussed

(54). One other study similarly observed reduced tumor growth when

anti-PD-1 was given simultaneously with cisplatin compared to both

sequential regimens. Of note, the authors used an immunodeficient

mouse model (patient derived xenograft, NOS-SCID gamma mouse)

for lung cancer, restricting the reliability of the immune response (55).

Sequential administration of 5-fluorouracil chemotherapy followed

by anti-PD-1 appeared to be the best treatment schedule compared to

simultaneous administration of both treatments in colorectal cancer.

According to this study by Zhao et al., sequential administration of

both treatments resulted in increased frequencies of total tumor

infiltrated T-cells, as well as the increased expression of PD-L1 on

tumor cells. From this, it was suggested that the survival benefit of this

combination regimen could be related to the optimal scheduling of the

individual immunological effects (56). In accordance to this, another

study in colorectal cancer by Fu et al. reported an increased survival

when the ICI anti-PD-1/L1 was administered with a specific delay of

three days after platin-based chemotherapy compared to simultaneous

administration. However, increasing the delay to six days abrogated

this beneficial outcome. Subsequent flow cytometric analysis of tumor

infiltrating lymphocytes showed an increase of PD-1 positive T cells

three days after chemotherapy, followed by a decrease on day seven.

This immunological evidence could relate to the narrow window for
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optimal treatment scheduling (57). In contrast, in a similar s.c.

colorectal mouse model, sequential treatment with first anti-PD-L1

followed by oxaliplatin was identified as the most promising treatment

regimen compared to both simultaneous treatment or chemotherapy

followed by ICI administration (non-significant). This result could be

explained by the more pronounced influx of CD8+ T-cells observed in

this specific treatment regimen compared to other regimen in this

study (58). The discrepancy between the results of the two latter studies

could be attributed to the use of different mouse models, MC38 cells in

C57BL/6mice and CT26 cells in Balb/c mice, respectively. As described

above, the choice of the preclinical model can influence the immune

response and subsequent study outcome.

The sequential schedule in which the ICI was administered prior to

chemotherapy, was demonstrated to be superior in two studies

performed in orthotopic melanoma mouse models. Both studies

showed a rise in CD8+ T-cells with this treatment schedule (59, 60).

In the first study, the combination of anti-CTLA-4 followed by Doxil (a

liposomal doxorubicin) was superior to both simultaneous and

sequential administration in the reverse order (59). Likewise,

significant increase in survival was noted in the second melanoma

study testing the combination regimen where anti-PD-L1 was

administered before carboplatin-paclitaxel compared to simultaneous

start of both therapies (60).
TABLE 1 Overview of different combinations of chemotherapy and ICI used in nine research articles comparing multiple therapeutic regimens.

Author – Year Cancer
type

ICI Chemo-
therapy

Regimen of
administration tested

Superior regimen Limitations

Lesterhuis WJ. et al. –
2013 (54)

Meso-
thelioma

anti-
CTLA4

Gemcitabine • Simultaneous
• Sequential – first chemo
• Sequential – first ICI

Simultaneous s.c. mouse model

Martin-Ruiz A. et al.
– 2020 (55)

Lung
carcinoma

anti-
PD-1

Cisplatin • Simultaneous
• Sequential – first chemo
• Sequential – first ICI

Simultaneous Immuno-deficient
mouse model (NSG)

Zhao X. et al. – 2020
(56)

Colorectal
carcinoma

anti-
PD-1

5-fluorouracil • Simultaneous
• Sequential – first chemo

Sequential – first chemo s.c. mouse model

Fu D. et al. – 2020
(57)

Colorectal
carcinoma

anti-
PD-1/
L1

Cisplatin or
Oxaliplatin

• Simultaneous
• Sequential – first chemo, 3
days later ICI
• Sequential first – chemo, 6
days later ICI

Sequential – first chemo, 3
days later ICI

s.c. mouse model

Golchin S. et al. –
2019 (58)

Colorectal
carcinoma

anti-
PD-L1

Oxaliplatin • Simultaneous
• Sequential – first chemo
• Sequential – first ICI

Sequential – first ICI s.c. mouse model

Alimohammadi R.
et al. – 2020 (59)

Melanoma anti-
CTLA-
4

Doxel • Simultaneous
• Sequential – first chemo
• Sequential – first ICI

Sequential – first ICI /

Yan Y. et al. – 2018
(60)

Melanoma anti-
PD-1/
L1

Carboplatin +
Paclitaxel

• Simultaneous
• First ICI followed by
simultaneous ICI + chemo

First ICI followed by
simultaneous ICI + chemo

/

Coosemans et al. –
2019 (53)

Ovarian
cancer

anti-
PD-1

Carboplatin +
Paclitaxel

• Simultaneous – first ICI
followed by ICI + chemo
• Simultaneous – first chemo
followed by chemo + ICI

Simultaneous – first ICI
followed by ICI + chemo

/

Riva et al. – 2020 (61) High-Grade
Glioma

anti-
PD-1

Temozolomide • Simultaneous
• Sequential – first chemo
• Sequential – first ICI

No difference /
(ICI, immune checkpoint inhibitor; s.c., subcutaneous; NSG, NOD scid gamma).
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It is important to note that in all these research articles, mainly tumor

infiltrating effector CD8+ T-cells were evaluated. Analysis of other

therapeutically induced immune effects such as influence on the innate

immune system or the stimulation of ICD was underrepresented.

As previously mentioned, our group also tested different

immune-oncological combination regimens in a syngeneic

orthotopic ID8-fLuc ovarian cancer mouse model using a survival

analysis. The most beneficial schedule was identified as anti-PD-1

followed by simultaneous carboplatin/paclitaxel chemotherapy. Of

note, this combination did not show significant improved survival

compared to mice receiving chemotherapy alone. However, inferior

results were observed when chemotherapy was started prior to the

addition of the ICI therapy (53). Additionally, our group studied

different schedules combining (for the first time at the preclinical

level) anti-PD-1 with chemotherapy-radiotherapy in an orthotopic

high-grade glioma mouse model. However, we did not observe any

significant difference, nor in survival, nor in immune composition,

between either simultaneous or sequential administration (61).

It is clear from these nine articles (Table 1), although they have

some limitations, that the order/sequence of treatments can influence

the tumor growth and survival preclinically. On the other hand,

clinically tested treatment schedules and doses will always differ from

those given to preclinical models due to the large variability in

treatment options depending on tumor type and stage of cancer

patients, compared to animals. This is an unavoidable limitation due

to the inherent biological difference between humans and animals.

Nevertheless, the influence on the immune system can be identified

and extrapolated. For example, positive preclinical results with CTLA-4

inhibitors in mice and non-human primates resulted in the

development of the human monoclonal antibody ipilimumab and

the following clinical trial successes (62). Additionally, failing clinical

trials using combined anti-PD1 and chemotherapy for the treatment of

ovarian cancer such as JAVELIN ovarian 100 could be replicated in

preclinical studies in an orthotopic syngeneic ovarian cancer mouse

model, showing the potential translatability of rationally designed

preclinical research (28, 53). P reclinical research is therefore

indispensable to ameliorate the outcome of clinical combination

trials, in order to determine the optimal sequence for each immune-

oncological combination therapy based on their individual

immunological effects (recruitment of immune cells, induction of

ICD, etc.) and to provide relevant scientific evidence for designing

further clinical trials to increase their success rate.
6 Conclusion

To conclude, even though a large number of clinical trials testing

ICI and chemotherapy combinations have been conducted, a majority

of these trials produced disappointing results. A lack of rationally

designed preclinical research could partially explain why these trials fail

to induce synergy between therapies. Here, preclinical research articles

testing this immune-oncological combination treatments were

reviewed. Together, the articles discussed in this review show the

importance of choosing a relevant model for preclinical research in

order to increase the translatability and gather evidence for optimizing

the clinical trial design, of preclinical research using the correct
Frontiers in Immunology 07
preclinical models and of preclinical research evaluating different

treatment schedules when combining therapies. Most importantly,

combination strategies have to take into consideration the different

immunological effects and mechanisms of both the specific

chemotherapeutic and ICIs. Increasing the investment into detailed

preclinical research focused on identifying the optimal therapeutic

regimen, could drastically improve the chance for success in

subsequent clinical trials.
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