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Background: 5-Fluorouracil (5-FU) is a widely used chemotherapeutic drug in
clinical cancer treatment, including hepatocellular carcinoma (HCC). A correct
understanding of the mechanisms leading to a low or lack of sensitivity of HCC to
5-FU-based treatment is a key element in the current personalized medical
treatment.

Methods: Weighted gene co-expression network analysis (WGCNA) was used to
analyze the expression profiles of the cancer cell line from GDSC2 to identify 5-
FU-related modules and hub genes. According to hub genes, HCC was classified
and themachine learningmodel was developed by ConsensusClusterPlus and five
different machine learning algorithms. Furthermore, we performed quantitative
reverse transcription-polymerase chain reaction (qRT-PCR) analysis on the genes
in our model.

Results: A total of 19 modules of the cancer cell line were divided by WGCNA, and
the most negative correlation with 5-FU was the midnight blue module, from
which 45 hub genes were identified. HCC was divided into three subgroups (C1,
C2, and C3) with significant overall survival (OS) differences. OS of C1 was the
shortest, which was characterized by a high clinical grade and later T stage and
stage. OS of C3 was the longest. OS of C2 was between the two subtypes, and its
immune infiltration was the lowest. Five out of 45 hub genes, namely, TOMM40L,
SNRPA, ILF3,CPSF6, andNUP205, were filtered to develop a risk regressionmodel
as an independent prognostic indicator for HCC. The qRT-PCR results showed
that TOMM40L, SNRPA, ILF3, CPSF6, and NUP205 were remarkably highly
expressed in hepatocellular carcinoma.
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Conclusion: The HCC classification based on the sensitivity to 5-FUwas in line with
the prognostic differences observed in HCC and most of the genomic variation,
immune infiltration, and heterogeneity of pathological pathways. The regression
model related to 5-FU sensitivity may be of significance in individualized prognostic
monitoring of HCC.

KEYWORDS

5-fluorouracil, hepatocellular carcinoma, machine learning, genomic variation, immune
infiltration, prognosis

Introduction

Hepatocellular carcinoma (HCC) is a critical global healthcare
issue with a mortality-to-morbidity ratio as high as 91.6%
(Villarruel-Melquiades et al., 2023). Patients with HBV/HCV
infection, cirrhosis of any cause, alcoholism, non-alcoholic
steatohepatitis, or family history of HCC are considered high-risk
groups for HCC, especially among men aged over 40 years old (Xie
et al., 2023). Surgical treatment, including hepatectomy and
orthotopic liver transplantation, is widely used for tumor
eradication (Kawaguchi et al., 2016), but it is also restricted by
the applicability of patients and the availability of organs (Koza et al.,
2023). In a clinical practice, more than 60% of HCC cases are
diagnosed in the late stage, suggesting possible missed diagnostic
opportunity. At present, the best choice for advanced HCC is
systemic treatment, with sorafenib and lenvatinib as the first
choice (Yang et al., 2023). However, patients treated with drugs
will have to face the problem of drug resistance after drug treatment.
Improving the understanding of the mechanism of HCC resistance
is expected to bring further benefits to patients.

As a synthetic fluorinated pyrimidine analog, 5-fluorouracil (5-
FU) enters cells as an anti-metabolite, imitates molecules vital to cell
growth, interferes with basic biosynthetic activity by inhibiting the
effect of thymidylate synthase (TS), or mistakenly mixes its
metabolites into DNA and RNA, thereby inducing cytotoxicity
(Blondy et al., 2020; Mafi et al., 2023). Since its approval by FDA
in 1962, 5-FU has been widely applied alone or together with other
drugs in treating various cancers, such as advanced head and neck
squamous cell carcinoma (Yamauchi et al., 2023), colorectal cancer
(Wosiak et al., 2023), gastric cancer (Kang et al., 2014), and metastatic
breast cancer (Karapetis et al., 1999; Holmes et al., 2018). 5-Fu is also a
widely used chemotherapeutic drug for patients with HCC. There is
an urgent need to better improve the sensitivity of HCC to
chemotherapy (Hu et al., 2016), and an accurate understanding of
mechanisms that contribute to a lack of or a low sensitivity of HCC to
5-FU-based treatment is a critical component of the current trend of
individualized medical care. Identifying and confirming current 5-
FU-based predictive biomarkers, as well as developing novel targeted
medicines for HCC therapy, may enhance patients’ prognoses in the
future (Vodenkova et al., 2020).

In this study, genes related to 5-Fu sensitivity were screened from
large data sets for identification of HCC, in order to characterize the
heterogeneity of HCC from molecular aspects and tumor
microenvironment (TME). Genes suitable for constructing a risk
model were identified from those related to 5-Fu sensitivity, hoping
to provide a promising target for understanding 5-FU resistance
of HCC.

Materials and methods

Data source

Clinical data and RNA sequencing of HCC were downloaded
from the LIHC project of The Cancer Genome Atlas (TCGA)
database (https://cancergenome.nih.gov), and a total of
50 corresponding paracancerous tissues and 365 HCC tumor
tissues were incorporated into the analysis. A set of HCC chip
data numbered GSE14520 were collected from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
Another set of data were downloaded from the HCCDB database
(http://lifeome.net/database/hccdb/download.html), which provides
expression profiles of HCC samples. Meanwhile, pan-cancer cell line
drug sensitivity and genomic data resources were acquired from the
Genomics of Drug Sensitivity in Cancer (GDSC) database (https://
www.cancerrxgene.org/) (Yang et al., 2013).

Weighted gene co-expression network
analysis (WGCNA)

WGCNA was performed for analyzing the expression profiles of
cancer cell lines downloaded from GDSC2. Samples were clustered
and used to construct a gene co-expression network, from which
modules were identified and then related to external data. Key
drivers in the “WGCNA” package (Langfelder and Horvath,
2008) of R were analyzed based on the relationships among the
module. Under the selected parameters, the sampleTree function
provided by “WGCNA” was used to cluster the HCC cell lines and
present the outliers. The gene expression matrices of the retained
samples were extracted, and Pearson correlation was computed to
calculate the correlation between twisted genes. Under different
power values, we selected the optimal soft threshold β by analyzing
the scale independence and average connectivity of modules using
the “pickSoftThreshold” function provided by the “WGCNA”
package. The “scaleFreePlot” function was adopted to evaluate
whether the topology of the network was scale-free. The
hierarchical clustering of genes was implemented by using the
“hclust” function. The distance clustering threshold (height =
0.25, deepSplit = 3) was set by the cutreeDynamic function in
the dynamicTreeCut package, and the minimum number of
genes was 30 in each module. The automatic module merge step
was performed using the mergeCloseModules function. The
interested modules were the most relevant to 5-fluorouracil;
therefore, the IC50 value of 5-fluorouracil for module–trait
relationships was analyzed.
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Unsupervised clustering on HCC

The “limma” package (Ritchie et al., 2015) was employed to
discriminate differentially expressed genes (DEGs) meeting
FDR<0.05 and log2(Fold Change) > 1. DEGs were then
screened by overlapping analysis with gene modules
associated with 5-fluorouracil. The “ConsensusClusterPlus”
package was applied to run the consensus clustering on the
TCGA-LIHC data matrix (Wilkerson and Hayes, 2010). The
initial step was to subsample 80% items and features. Each
subsample was then partitioned into k groups. Afterward,
consensus values were calculated and stored in a consensus
matrix for each k-value. The output graphical plots included the
consensus matrix plot and the empirical cumulative
distribution function (CDF) plot.

Single-nucleotide variant (SNV) and
copy-number variant (CNV) analyses

Genomic variation analysis

Genomic variation includes small insertions or deletions
(indels), single-nucleotide variants, and CNVs. SNVs and
CNVs, all belong to the category of genomic variation. After
reading the MAF file from TCGA-LIHC, the generated MAF
object was passed to the “maftools” package (Mayakonda et al.,
2018) for SNV analysis and oncoplot drawing. GISTIC 2.0, which
calculates a statistic involving the occurrence frequency and
distortion amplitude, was employed to analyze CNV data. The
characteristic of this method is to identify the regions of the
genome, where anomalies occur more frequently than

FIGURE 1
Identification of the gene module most related to 5-fluorouracil. (A) Bar chart shows the sensitivity of 5-fluorouracil in different hepatoma cell lines.
(B)Clustering tree of cell samples fromGDSC2. (C) Average connectivity corresponding to the scale-free fitting index and each soft threshold. (D)Cluster
tree of genes in all hepatoma cell lines from GDSC2. (E) Correlation analysis of 19 clustered modules with 5-fluorouracil IC50. The upper numbers
represented correlation coefficients, and the lower numbers represented statistical p-values. (F)GOentries and KEGGpathways of gene enrichment
in the midnight blue module.
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accidentally expected and gives more weight to high-amplitude
events (high-level copy number gain or homozygous deletion)
that are unlikely to represent random distortions. For each
important region, the method defines a “peak region” with a
maximum aberration frequency and amplitude (Beroukhim et al.,
2007).

Immune cell infiltration analysis

The ESTIMATE algorithm, which leverages the properties
of the TCGA-LIHC transcriptional profiles to infer the degrees
of stromal and immune cell infiltration, was applied to
determine the ESTIMATE score (Yoshihara et al., 2013).
Different methods for assessing the level of immune
infiltration, including CIBERSORT, ssGSEA, MCPcounter,
and TIMER, were properly applied. CIBERSORT was used to
measure the intra-sample (within-leukocyte) proportions of
immune cell populations (Newman et al., 2015). Different
from CIBERSORT, MCPcounter outputs the estimated
abundance of each cell population, thereby enabling a
comparison between samples to be expressed in arbitrary
units (Becht et al., 2016). TIMER takes tissue specificity into
account when estimating immune cell populations (Li et al.,
2017), and this method helps identify associations between six
types of immune cell infiltration and clustering in the TCGA-
LIHC cohort.

Establishment of a risk stratification tool
using multiple machine learning analysis

Univariate COX regression analysis identified prognostic genes
from the intersection of DEGs and 5-fluorouracil-related gene
modules, and introduced five different machine learning algorithms
to complete the task of variable selection, including gradient boosting
machine (GBM), least absolute shrinkage and selection operator
(LASSO) regression, support vector machines (SVM), Decision
Trees, and Random Forest. The intersection of genes selected by
each machine learning algorithm was used for stepwise regression
analysis in multiple linear regression to generate a fitting regression
model to evaluate the risk of samples in different HCC cohorts.

Nomogram construction

This study integrated age, gender, T stage, stage, grade, and
RiskScore information, and performed univariate COX and
multivariate COX analyses to determine independent prognostic
factors which influenced the prognosis of HCC. Based on these
independent prognostic factors, we developed a nomogram for
predicting HCC survival. Based on the actual and predicted
survival outcomes, we developed calibration curves to validate
the predictive power of the nomogram. In addition, we also
graphed decision curves to determine the prognostic guidance
value of the nomogram and RiskScore.

FIGURE 2
HCC was classified by identifying hub genes in the midnight blue module. (A) Difference analysis of log2 (TPM+1) of TCGA-LIHC between normal
and HCC tissues. (B) The Hub gene of themidnight blue module was identified by overlap analysis of differential genes and themidnight bluemodule. (C)
CDF plot displays consensus distributions for each k-value. (D) Consensus matrix shows the clustering partition of k = 3. The blue color represented the
distance-based similarity between the samples. (E–G) Survival curves of three clusters in TCGA-LIHC, HCCB18, and GSE145203 cohorts. (H)
Expression of 43 genes is shown in the form of a heatmap.
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Cell culture and transient transfection

HCC cell lines including Hep3B2.1-7 and Huh-7 were obtained
from COBIOER (Nanjing, China). Hep3B2.1-7 and Huh-7 cells
were cultured in DMEM F12 with 10% FBS (Gibco, Thermo Fisher,
USA). Human liver epithelial cells (THLE-3) were obtained from
ATCC (Manassas, VA, USA) and stored in BEGM (Lonza,
Walkersville). Cells were grown at 37°C in a humidified
environment containing 5% CO2.

Quantitative reverse transcription
polymerase chain reaction (qRT-PCR)

TRIzol reagent (Thermo Fisher, USA) was used to extract
total RNA from the Hep3B2.1-7, Huh-7, and THLE-3 cell lines.
Using FastStart Universal SYBR Green Master (Roche,
Switzerland), quantitative reverse transcription polymerase
chain reaction (qRT-PCR) was performed on the RNA
extracted from each sample (2 μg) on a LightCycler 480 PCR
System (Roche, USA). The cDNA was utilized as a template with
a reaction volume of 20 μl (2 μl of cDNA template, 10 μl of PCR
mixture, 0.5 μl of forward and reverse primers, and an
appropriate water volume). The following procedures were

utilized for the PCR reactions: cycling conditions started
with an initial DNA denaturation phase at 95°C for 30 s,
followed by 45 cycles at 94°C for 15 s, 56°C for 30 s, and 72°C
for 20 s. Three separate analyses were performed on each
sample. Based on the 2−ΔΔCT method, data from the threshold
cycle (CT) were obtained and standardized to the levels of
GAPDH in each sample. The expression levels of mRNA
were compared to controls obtained from normal tissues.
Sequence lists of primer pairs for the target genes are
summarized in Supplementary Table S1.

Statistical analysis

All statistical analysis and verification were conducted in the
R code. A chi-squared test was adopted to detect differences in
clinical characteristics between subtypes. The survival of the
samples was presented by the Kaplan–Meier curve. Statistical
survival difference was analyzed using the log-rank test. The
time-dependent receiver operating characteristic (ROC) curve
and the area under the curve (AUC) of the risk layering tool were
generated and calculated using the timeROC package. p <
0.05 meant that the difference was statistically significant. For
the results of the statistical analyses, ns indicated no significance,

FIGURE 3
Clinical and genomic alteration features of molecular subtypes (A) Waterfall map of somatic mutation in three subtypes. (B) Manhattan plot shows
the CNV situation of each subtype at the chromosomal level. (C) Analysis and comparison of clinical features of three subtypes. The red represents the
q-arm of the chromosome, and the blue represents the p-arm of the chromosome.
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* indicated p < 0.05, ** indicated p < 0.01, *** indicated p < 0.001,
and **** indicated p < 0.0001.

Results

Identification of the gene module most
related to 5-fluorouracil

We initially examined the sensitivity of different HCC cell lines
to 5-fluorouracil. The IC50 value of 5-fluorouracil was the lowest in
Hep3B2-1-7 cells and the highest in HuH-7 cells, meaning that
Hep3B2-1-7 cells were the most sensitive to 5-fluorouracil and
HuH-7 cells had the strongest resistance to 5-fluorouracil
(Figure 1A). All cell samples from GDSC2 were clustered
(Figure 1B). The soft-threshold power satisfying the scale-free
topology of the network was 6, the corresponding R2 value was
0.86, and the average connectivity was very close to 0 (Figure 1C).
Next, all genes were clustered into 19 interacting modules
(Figure 1D). Among the 19 clustering modules, their correlations
with 5-fluorouracil resistance were analyzed. The result showed that
midnight blue was the module with the highest significant negative
correlation with 5-fluorouracil sensitivity (Figure 1E). We analyzed
GO and KEGG annotation of genes within the midnight blue
module. Biological process was annotated to regulation of mRNA
processing, regulation of mRNA polyadenylation, and positive
regulation of telomere capping in GO terms. The protein
products of these genes might be the components of the
transcription elongation factor complex, DNA polymerase III
complex (Figure 1F).

HCC was classified by identifying hub genes
in the midnight blue module

The differences between normal tissues and HCC tissues of log2
(TPM+1) of TCGA-LIHC were analyzed. A total of 2,356 genes with
log2 (Fold Change) > 1 and FDR <0.05, as well as 462 genes with log2
(Fold Change) <-1 and FDR <0.05, were identified (Figure 2A), and
35 upregulated and 8 downregulated DEGs were also detected from the
midnight blue module (Figure 2B). The samples of TCGA-LIHC were
clustered according to the expression of the aforementioned 43 genes.
The CDF plot helps in finding the k-value that reached the approximate
maximum value of 3 (Figure 2C). The consensus matrix showed the
clustering partition was k = 3 (Figure 2D). Complete separation of
survival curves and overall survival (OS) of the three clusters in the
detected TCGA-LIHC, HCCB18, and GSE145203 cohorts had
significant differences among subtypes. Specifically, C3 had the most
satisfactory survival outcome when compared with C1 and C2, while
C1 had the shortest OS (Figures 2E–G). Next, the expression of 43 genes
was also shown in a heatmap, which demonstrated thatmost geneswere
highly expressed in C1 than C3 and C2 (Figure 2H).

Clinical and genomic alteration features of
molecular subtypes

Here, in the C1, C2, and C3 subtypes, we analyzed the status of
genomic variations. The TP53 mutation rate of C1 was also
significantly higher than that of C2 and C3. The mutation rate of
CTNNB1 in C2 was the highest, which was significantly higher than
that of C1 and C3. The mutation rate of TTN in C3 was the highest,

FIGURE 4
Immune filtration mode for three clusters (A) Subtype stromal score, immune score, and ESTIMATE score obtained from running ESTIMATE. (B–E)
Enrichment differences among subtypes of immune cells judged by CIBERSORT, ssGSEA, MCPcounter, and TIMER. (F) Differences in enrichment of
pathways in clusters were archived in a heatmap.
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which was significantly higher than that of C1 and C2 (Figure 3A).
From the Manhattan plot, we observed the CNV of each subtype at
the chromosomal level, the number of high-level DNA copies
amplified, and deleted in C2 was significantly less than that in
C1 and C3 (Figure 3B). Comparison of the clinical characteristics of
the three subtypes showed that there were more male subject
samples than female subject samples in each subtype. Differences
in sex, age distribution and grade, and T stage and stage
characteristics were statistically significant among the three
subtypes. Compared with the other two clusters, C2 had the
highest proportion of male subjects and samples aged over
60 years old. C1 with the shortest OS was characterized by a high
proportion of clinical grade and later T stage and stage (Figure 3C).

Immune filtration mode for three clusters

By running ESTIMATE, the ESTIMATE score, stromal score,
and immune score of each cluster were calculated, which showed

significant differences among the three clusters, and the level was the
lowest in C2 (Figure 4A). Of the 22 immune cells provided by
CIBERSORT, 15 showed significant differences in infiltration
among three subtypes (Figure 4B). Memory cells,
immunosuppressive cells (regulatory T cells (Treg) and myeloid-
derived suppressor cells (MDSC)), and cytotoxic cells (CD8 T cells,
natural killer (NK) cells, and NK T cells) identified in 28 TIL
subpopulations showed differential infiltration among the three
subtypes, and almost all of them had the least infiltration in C2
(Figure 4C). Combining the results of MCPcounter and TIMER
analysis, the infiltration of CD4 T cell, T cells, B cells, macrophage,
neutrophils, CD8 T cells, endothelial cells, and dendritic cells, and
fibroblasts in C2 was significantly lower than that in C1 and C3
(Figures 4D, E). The differences in enrichment of pathways in
clusters were archived in a heatmap, from which we could
observe that the enrichment level of most pathways relevant to
metabolism decreased in C1, such as linoleic acid metabolism,
tyrosine metabolism, phenylalanine metabolism, and pyruvate
metabolism (Figure 4F).

FIGURE 5
Selection and verification of genes suitable for constructing a risk model in the midnight blue module. (A) Volcanic map showing univariate Cox
regression analysis for 43 genes. (B) Intersection of genes selected by LASSO regression, GBM, SVM, random forest, and decision tree. (C–E) Survival
stratification curve of the regression model in the test set TCGA-LIHC and two independent verification sets, namely, HCCDB18 and GSE14520. (F) ROC
curve of regression model in predicting 1–5 years survival of cases in TCGA-LIHC and GSE14520.
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Selection and verification of genes suitable
for constructing a risk model in the midnight
blue module

In the midnight blue module, a total of 43 genes were
identified as hub genes, and 25 HCC prognostic genes were
screened from these hub genes by univariate Cox regression
analysis (Figure 5A). Machine learning models of these genes
were established based on machine learning methods, including
LASSO regression, GBM, SVM, Random Forest, and Decision
Tree. A total of 21 genes belonged to the intersection of five
machine learning models (Figure 5B). The stepwise regression
method screened five genes from the 21 genes suitable for
constructing a risk model, including TOMM40L, SNRPA, ILF3,
CPSF6 and NUP205. The risk coefficient of each gene was obtained
frommultivariate Cox regression analysis, and a fitted regressionmodel
was generated: RiskScore = 0.293*TOMM40L+0.558*SNRPA-
0.823*ILF3+0.493*CPSF6+0.464*NUP205. Regression models were
used to calculate risk scores in the test set TCGA-LIHC and two
independent verification sets HCCDB18 and GSE14520. A significant
negative correlationwith the sampleOS in their cohorts was found, with
the patients of a high-risk score showing a shorter survival time (Figures
5C–E). Meanwhile, the regression model showed stability and

availability in predicting 1–5 year(s) OS of cases in TCGA-LIHC
and GSE14520 (Figure 5F).

Regression model was an independent
predictor of the prognosis and clinical
characteristics of HCC

The heatmap of clinical characteristics corresponding to risk
score was drawn. Differences in molecular subtypes, survival status,
T stage and stage, and grade proportion were statistically significant
between low-risk and high-risk groups. The high-risk group was
characterized by a high C1 ratio, high mortality rate, later T stage
and stage, and grade distribution, while these clinical traits in the
low-risk group were significantly weaker (Figure 6A). The actual
univariate Cox regression analysis showed that the risk score and T
stage and stage were significantly correlated with HCC prognosis.
The risk score was identified as an independent prognostic index of
HCC by Multivariate Cox regression analysis (Figures 6B, C).
Synthesizing information on T Stage, Stage, and RiskScore, we
constructed the nomogram for assessing clinical outcomes of
HCC patients at 1, 3, and 5 years (Supplementary Figure S1A).
The calibration curves showed that the predicted clinical outcomes

FIGURE 6
Regression model was an independent predictor of prognosis and clinical characteristics of HCC. (A) Heatmaps of clinical traits corresponding to
risk score. (B) Univariate Cox regression analysis of the risk score and clinical traits. (C) Multivariate Cox regression analysis of prognostic traits of HCC
based on univariate Cox regression analysis. (D)Difference in the risk score between samples stratified according to the T stage. (E)Differences in the risk
score between samples stratified by stage. (F) Correlation between the grade and the risk score of the sample.
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fit well with the actual observed clinical outcomes and that the
nomogram had a good predictive value (Supplementary Figure S1B).
In addition, the decision curve also showed that there is an excellent
applicability of the nomogram and RiskScore in assessing clinical

outcomes in HCC (Supplementary Figure S1C). The risk score of the
T3–T4 stage, stage Ⅲ–Ⅳ, and G3–G4 samples was significantly
higher than that of the T1–T2 stage, stage Ⅰ–Ⅱ, and G1–G2 samples,
respectively (Figures 6D–F).

FIGURE 7
Relationship between the risk score and immune infiltration. (A) Immune cell infiltration was evaluated according to the risk score stratification. (B)
Correlation of the ssGSEA score of the risk score and immune cells.
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Relationship between the risk score and
immune infiltration

The degree of immune cell infiltration was evaluated according to
the risk score. We detected that the cells with the most different degrees
of infiltration in the high-risk and low-risk groups were type 2 T helper
cells, central memory CD4 T cells, type 1 T helper cells, plasmacytoid
dendritic cells, effector memory CD4 T cells, activated CD4 T cells,
activated CD8 T cells, eosinophils, natural killer T cells, CD56 dim
natural killer cells, activated dendritic cells, and effector memory
CD8 T cells (Figure 7A). The ssGSEA score correlation analysis of
the risk score and immune cells showed that the degree of correlation
between the 12 cells had infiltration and risk score differences between
the high-risk and low-risk groups. The correlation between risk score
and CD56 dim natural killer cells was almost negligible, and the other
11 cells showed a significant correlation with risk score. Among them,
effector memory CD4 T cells, activated CD4 T cells, natural killer
T cells, plasmacytoid dendritic cells, type 2 T helper cells, central
memory CD4 T cells, and activated dendritic cells showed a
significant positive correlation with the risk score, while activated
CD8 T cells, effector memory CD8 T cells and type 1 T helper cells,

and eosinophils were significantly negatively correlated with the risk
sore (Figure 7B).

PCR validation of RiskScore

To verify the reliability of the RiskScore, we detected the
expression of the five genes by PCR. The results of PCR
corroborated the reliability of the RiskScore, and we found that
TOMM40L, SNRPA, ILF3, CPSF6, and NUP205 were significantly
upregulated in the HCC cell lines Hep3B2.1-7 and Huh-7 compared
to human normal liver epithelial cells THLE-3 (Figures 8A–E).

Discussion

The large-scale drug genome cell line database has in-depth multi-
group characterization and extensive pharmacological characteristics of
human cancer cell lines, and is an important tool to reveal the potential
mechanism of inducing drug sensitivity of anticancer drug compounds
(Kusch and Schuppert, 2020). This study explored how HCC

FIGURE 8
Results of qRT-PCR of the five genes that composed the RiskScore. (A) TOMM40L; (B) SNRPA; (C) ILF3; (D) CPSF6; (E) NUP205.
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heterogeneity of HCC was affected by the molecules related to 5-FU
sensitivity based on the expression profile of the cancer cell line in the
largest public resource and the sensitivity data on 5-FU, a commonly
used cancer chemotherapy drug. The WGCNA analysis identified the
midnight blue gene module with the highest correlation with 5-FU
sensitivity and 43 hub genes in the module. Three subgroups of HCC
were defined according to their expression. This classification supported
most of the genomic variation, TME, and pathological pathway
heterogeneity observed in HCC.

Currently, 5-FU was the mainstream tumor chemotherapeutic
agent (Blondy et al., 2020; Vodenkova et al., 2020). Accumulating
evidence illustrated that 5-FU exhibited cytotoxicity by binding to
DNA or RNA and modulating DNA synthesis-induced cell cycle
disruption or apoptosis (Sethy and Kundu, 2021). Cell cycle
abnormalities are typical in tumor cells, and inhibition of the
tumor cell cycle is essential for suppressing cell proliferation and
spreading, and even restoring immune cell surveillance functions
(Liu et al., 2022). Based on the results of GO and KEGG annotations,
we showed that midnight blue endogenous genes were closely
associated not only with mRNA processing, regulation of mRNA
polyadenylation, and positive regulation of the telomere capping
pathway but also with the transcription elongation factor complex,
DNA polymerase III complex synthesis. 5-FU disrupted the
homologous recombination repair process in cells, leading to
DNA damage and inhibition of proliferation in tumor cells
(Srinivas et al., 2015). The mRNA processing, regulation of
mRNA polyadenylation, and positive regulation of telomere
capping were important regulators in the cell cycle in normal
cells. The genes within the midnight blue module were
recognized as gene modules sensitive to 5-FU treatment,
suggesting the possibility that HCC might act through these
biological processes when treated with 5-FU.

In terms of survival outcomes, C3 possessed the most satisfied
survival outcome when compared with C1 and C2, and
C1 demonstrated the shortest OS. Each subgroup also showed its
own unique clinical characteristics, C2 had the highest proportion of
male subjects and samples aged over 60 years old than C1 and C3.
C1 with the shortest OS was characterized by a high proportion of
clinical grade and later T stage and stage, and most metabolic
pathways of this subtype were significantly inhibited. These bad
characteristics were also reflected in OS, and C1 had the most
unfavorable survival outcome. The gene with the highest mutation
rate was TP53 in C1, CTNNB1 in C2, and TTN in C3. This indicated
that C1 was a tumorigenesis subtype driven by TP53 mutation,
C2 was a tumorigenesis subtype driven by CTNNB1 mutation, and
C3 was a tumorigenesis subtype driven by TTN mutation.
TP53 mutations and CTNNB1 mutations were most common in
HCC. In a study by Gao et al. (2019), HCC patients characterized by
TP53 mutations had a dysregulated cell cycle and DNA damage
repair pathways, and TP53 was the gene with the highest mutation
frequency. Low TP53 levels inhibited HCC development. Significant
activation of metabolic reprogramming was demonstrated in
patients enriched with CTNNB1 mutations. This phenomenon
promoted glycolytic metabolic intensity and cell proliferation in
HCC. It was also confirmed that the frequency of the R249S
mutation in TP53 revealed the risk of HCC, and TP53 deletion
increased the viability of hepatocellular carcinoma cells and the
trend of poor prognosis (Lam et al., 2022). Interestingly, the

C3 isoform might be a TTN mutation-driven molecular subtype
that exhibited a high mutational profile. However, Kunadirek et al.
(2021) noted that TTN mutations in blood predicted unfavorable
prognostic status in HCC patients. The results of survival analysis in
this study demonstrated that the C1 subtype predicted had an
unfavorable prognosis, C2 subtype had a moderate prognosis,
and C3 subtype had the best prognosis. However, we must point
out that there were differences in sampling between them as tissue
samples in our study were different from the blood samples in
Kunadirek’s. Second, HCC was a highly heterogeneous tumor both
in terms of genomic composition and gene mutations (Jeng et al.,
2015). The research challenges posed by the heterogeneity remain
difficult to resolve. Overall, the C1 subtype in our study was enriched
with TP53 mutations, and patients enriched with TP53 mutations
tended to have unfavorable survival outcomes. Patients enriched
with CTNNB1 mutations showed significant metabolic
reprogramming activity, and inhibition of glycolytic signaling
could be considered to target the C2 subtype to improve
prognosis. Different treatment options could be considered
for patients with C1 and C2 subtypes to achieve precision cancer
treatment.

Personalized treatment for HCC patients has been increasingly
recognized and applied in the clinical field. The development of risk
models represents an important step toward personalized HCC
monitoring. Although many risk models have been published,
few are used in routine nursing to provide information for HCC
monitoring decisions (Innes and Nahon, 2023). In this study, five of
the 43 hub genes in the midnight blue module were used to develop a
risk regression model, which was independent and had strong
discriminating power for predicting HCC prognosis and
indicating clinical traits. The pathological role and regulatory
mechanism of some of them in cancerization have been
recognized. SNRPA is a shear factor associated with
microvascular invasion and promotes the metastasis of HCC by
activating the NOTCH1/Snail pathway mediated by the circSEC62/
miR-625–5p axis (Mo et al., 2023). ILF3 is overexpressed in patients
with primary colorectal cancer and promotes tumor growth by
directly regulating the mRNA stability of SGOC gene (Li et al., 2020).
CPSF6 is upregulated in HCC and induces metabolic changes in
hepatocytes through the alternative polyadenylation of NQO1 (Tan
et al., 2021). Although the potential effects of these genes on cancer
have been reported, the risk model integrating these genes was an
innovative exploration and could be used as an indicator of the
prognosis of HCC.

In summary, this study classified HCC subtypes based on the
sensitivity to 5-FU. The results supported the prognostic differences
observed in HCC and the heterogeneity of most genomic variations,
TME, and pathological pathways. This study also provided an
independent prognostic risk regression model integrated with five
5-FU-related genes, contributing to the study of individualized HCC
monitoring.
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