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The Zeno effect, in which repeated observa-
tion freezes the dynamics of a quantum system,
stands as an iconic oddity of quantum mechan-
ics. When a measurement is unable to distin-
guish between states in a subspace, the dynam-
ics within that subspace can be profoundly al-
tered, leading to non-trivial behavior. Here we
show that such a measurement can turn a non-
interacting system with only single-qubit con-
trol into a two– or multi–qubit entangling gate,
which we call a Zeno gate. The gate works by
imparting a geometric phase on the system, con-
ditioned on it lying within a particular nonlocal
subspace. We derive simple closed-form expres-
sions for the gate fidelity under a number of non-
idealities and show that the gate is viable for im-
plementation in circuit and cavity QED systems.
More specifically, we illustrate the functioning
of the gate via dispersive readout in both the
Markovian and non-Markovian readout regimes,
and derive conditions for longitudinal readout to
ideally realize the gate.

1 Introduction
The quantum Zeno effect refers to the ability of a strong
repeated measurement to freeze the dynamics of a quan-
tum system. Historically, this has been presented as an
interesting and perplexing property of quantum mea-
surements. In recent years, however, quantum Zeno
dynamics [1, 2] are increasingly considered for quan-
tum control and Hamiltonian engineering in quantum
technology [3, 4, 5, 6]. In particular, previous work
has shown that the Zeno effect can theoretically trans-
form a trivial quantum system into a universal quantum
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computer [7]. This result, however, relies on arbitrary
pulse-shaping, which makes it more similar to analog
computation and less amenable to error correction and
standard compilation methods.

In this work, we instantiate such ideas in a more
explicit model of gate-based quantum computation, in
close connection with a recent experiment [8]. In par-
ticular, we illustrate how the Zeno effect can be used
to implement two– or multi–qubit cphase gates, which
we call Zeno gates. The gate relies only on the ability
to unitarily control a single qutrit in a cavity with other
qubits, with no qubit–qubit coupling. In contrast with
many existing schemes to create entanglement via mea-
surement [9, 10, 11, 12, 13], the present scheme relies
on a measurement’s ability to divide a large system into
smaller subspaces, so as to non-locally inhibit a unitary
operation. Strong measurement of the correct subspace
turns this trivial, non-interacting system into one with
an effective entangling Hamiltonian. This kind of im-
plementation of controlled phase gates has also been
used in an existing proposal for a Zeno-based quantum
operations based on interaction free measurements [14]
as well as for gates based on Coulomb blockades [15].
However, in contrast to those realizations, our gate does
not require auxiliary qubits or qubit–qubit interactions.
We show in detail how the required Zeno measurement
can be implemented in circuit or cavity QED systems.

The Zeno gate acting on N qubits is locally equiva-
lent to a N -qubit Toffoli gate, and hence it is universal
for quantum computation when combined with single-
qubit operations [16]. The Zeno effect implies working
in the limit of infinite measurement strength: When the
measurement strength is finite the Zeno effect can fail,
which reduces the gate fidelity. We examine the behav-
ior for the N = 2 Zeno gate under finite measurement
strength in detail in this work. The Zeno gate can be
implemented via an un-monitored dissipative channel
(rather than a true measurement). We show that if
the open channel implementing the Zeno effect is mon-
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itored, the gate can be heralded, which yields a prob-
abilistic gate of higher fidelity. Despite its finite error
rate, this heralded implementation of the gate can also
be used for efficient universal computation, for instance
by growing cluster states and then performing adaptive
measurements [17, 18].

The Zeno dynamical system we consider here can
be solved numerically, or even analytically in some
cases, although the resulting expressions are cumber-
some. Therefore, we first focus on simple models that
reproduce the important features of the exact solutions
in simple closed-form expressions, before going on to
account for increasingly realistic dynamical complica-
tions. In Sec. 2, we introduce the basic scheme for the
Zeno gate and explain its operation in an ideal setting.
This section yields a simple expression for the gate uni-
tary without any need of approximations. In Sec. 3, we
analyze the effect of finite measurement rate, which is
a source of infidelity that applies to all possible imple-
mentations of the gate. We show that the infidelity can
be accurately estimated using an effective single qubit
model and also derive an analytic expression for the fi-
delity of the heralded gate. In Sec. 4, we outline how
the Zeno gate could be implemented in circuit or cavity
QED systems where the measurement is realized by a
dispersive readout. We identify regimes where the mea-
surement is accurately modeled with a Markovian ap-
proach, discuss the limitations of these regimes for the
Zeno gate, and identify sources of gate infidelity in the
dispersive measurement dynamics. In Sec. 5 we then
move beyond analytic models and perform numerical
simulation of the Zeno gate in non–Markovian regimes,
where the effective measurement strength depends on
the history and interplay of the system and cavity used
for readout. In Sec. 6 we present an alternative imple-
mentation for circuit or cavity QED systems in which
the measurement is realized by longitudinal readout,
and show that this may offer a pathway to improved
Zeno gate performance compared to that using disper-
sive readout. Conclusions are summarized in Sec. 7,
along with discussion about the outlook for further im-
proving Zeno gate performance. A number of technical
and pedagogical details are presented in the appendices.

Overall, the primary features of this work include the
placement and study of the quantum Zeno effect in real-
istic scenarios for superconducting qubits, together with
an emphasis on its use for gate–based quantum compu-
tation, in the context of a recent experiment [8]. Our
analysis characterizing the differences between heralded
(conditional) Zeno dynamics and their unheralded (un-
conditional, or purely dissipative) counterpart also add
substantively to the literature.

2 Two- and N-qubit Zeno gates
We depict the system under consideration in Fig. 1(a).
We consider one 3-level system (qutrit) and N − 1
qubits, with no direct interactions. Our computational
subspace is formed by the tensor product of the lowest
two levels of the qutrit with theN−1 qubit space, which
yields a 2N -dimensional computational space. We em-
ploy the naming convention used in superconducting
circuits, in which the energy levels are labeled |g⟩, |e⟩
and |f⟩ in order of increasing energy, and shall always
place the qutrit first, i.e., on the left, in the tensor prod-
uct state. For simplicity we start with a qutrit and a
single qubit (N = 1), as in the recent experiment of
Blumenthal et al. [8]. Our goal will be to implement
an entangling gate in the two-qubit computational sub-
space defined by the four states {|gg⟩, |ge⟩, |eg⟩, |ee⟩},
by driving the |e⟩ ↔ |f⟩ transition of the qutrit. The
system will always end in this computational subspace,
either because we drive full 2π rotations or because the
transition is blocked by the Zeno effect. We shall refer
to this computational subspace as SZ .

We first consider the ideal scenario when utilizing the
Zeno effect, in which one repeatedly applies an infinite
strength projective measurement P̂ . Here that mea-
surement interrogates whether the qutrit–qubit system
has exactly 3 excitations, i.e.,

P̂ = 1 − |fe⟩⟨fe|. (1)

This measurement does not distinguish between states
in any other excitation subspace and in particular, it
does not distinguish between states in the computa-
tional subspace SZ . In the limit of frequent measure-
ment of P̂ considered here projection prevents the sys-
tem from entering the three-excitation subspace from
the two or less excitation subspaces. We drive the
|e⟩ ↔ |f⟩ transition of the qutrit only, according to

Ĥ = i
2 Ω(|e⟩⟨f | − |f⟩⟨e|) ⊗ 1. (2)

The above operations, when applied simultaneously,
yield a unitary map that is locally equivalent to a cz
gate when applied for a duration TG = 2π/Ω. Fig. 1c
depicts the basic concept. If the system starts in
the computational subspace (orange diamond), then Ĥ
alone drives the |eg⟩ ↔ |fg⟩ and |ee⟩ ↔ |fe⟩ transi-
tions. However the latter transition is blocked by the
Zeno effect under continuous measurement of P̂ , so |ee⟩
is left untouched. As shown explicitly below, although
the |eg⟩ component of the wave function is also mapped
to itself under a full 2π rotation, it also picks up a ge-
ometric phase of π in the process [19]. This acquired
phase is analogous and equivalent to the global phase
acquired by a single qubit undergoing a 2π rotation.
Thus the net operation applies a π phase shift to the
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Figure 1: (a) Isolated spins with local drives but no spin-spin
interaction. (b) Measurement converts the application of local
drives into implementation of an entangling gate. (c) Energy
level diagram for a qutrit–qubit system, explaining the basic
principle of the Zeno gate. The computational subspace SZ is
contained in the orange diamond. The green bar contains states
in the three-excitation subspace, one of which is connected to
the computational subspace by the Hamiltonian Ĥ (acting lo-
cally on the qutrit), which induces the transitions drawn in red.
Frequent and repeated measurement of the projector P̂ blocks
population from the |fe⟩ state, as indicated by the black cross.
The combined action of Ĥ and P̂ is a unitary but non-local op-
eration on the qutrit–qubit system. Under a full 2π rotation, a
geometric phase is imparted on the |eg⟩ level, which gives rise
to an entangling gate within the computational subspace SZ .

Figure 2: We illustrate different unitary operations which may
be implemented on the |f⟩ ↔ |e⟩ qutrit transition, in order to
modify the geometric phase imparted by the Zeno gate. We
show the operation (2) in green, with other variants which
subtend different solid angles on the |f⟩ ↔ |e⟩ Bloch sphere in
different colors. The Zeno gate is in general a cphase gate,
which reduces to a cz gate in the special case (2) that will be
emphasized throughout the text for simplicity.

|eg⟩ component of the state, while leaving all other com-
ponents unchanged. This map is equivalent to a canon-
ical cz gate when conjugated by a pair of π–pulses on
the qubit before and after the gate.

The explicit form of the gate can be obtained by con-
sidering the action of Ĥ projected into the 2-excitation-
or-less subspace via measurement of P̂ : [2]

ĤZeno = P̂ ĤP̂

= i
2 Ω P̂ (|e⟩⟨f | − |f⟩⟨e|) ⊗ (|g⟩⟨g| + |e⟩⟨e|︸ ︷︷ ︸

1

)P̂

= i
2 Ω(|eg⟩⟨fg| − |fg⟩⟨eg|). (3)

This Hamiltonian drives Rabi oscillations on the |e⟩ ↔
|f⟩ levels of the qutrit conditioned on the qubit lying
in the |g⟩ state, which corresponds to the transition
diagram of Fig. 1c. Since the Hamiltonian only acts
non-trivially within a 2–qubit subspace, we can com-
pute the corresponding unitary gate operation ÛZeno =
exp(−i t ĤZeno) on the 2–qubit subspace using Euler’s
formula

ÛZeno = (1 − Π̂eg,fg) + Π̂eg,fg cos(Ωt/2) (4)
+ (|eg⟩⟨fg| − |fg⟩⟨eg|) sin(Ωt/2)

= 1 − 2 Π̂eg,fg for t = 2π/Ω,

where we have defined the operator Π̂eg,fg ≡ |eg⟩⟨eg| +
|fg⟩⟨fg| to project into the subspace affected by ĤZeno
and we have chosen t = TG for the second equality.

Eq. (4) is the unitary operator for a controlled phase
gate that applies a π phase conditioned on occupying
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the |eg⟩ level, as desired. Note that any other geometric
phase may also be attained by subtending less than a
hemisphere of the Bloch sphere when driving the |e⟩ ↔
|f⟩ transition. We illustrate this in Fig. 2. Specifically,
the generalization of (2) to

Ĥ = Ω
{

i
2 (|e⟩⟨f | − |f⟩⟨e|) sinϕ
1
2 (|e⟩ ⟨e| − |f⟩ ⟨f |) cosϕ

}
⊗ 1,

(5)

allows for an arbitrary phase θ = π (cosϕ+ 1) to be im-
parted to the |eg⟩ state, upon one period of the rotation
generated by (5). In other words, we may create evolu-
tion that is identical to a cphase gate, up to conjuga-
tion by local unitary operations [20]. The special case of
(2) generating a cz gate is recovered for ϕ = π/2. Note
that the ability to impart an arbitrary phase allows one
to generate infinitesimal gates, for example to generate
Trotterized evolution of a desired Hamiltonian.
ÛZeno additionally generalizes straightforwardly to

N − 1 qubits interacting with a single qutrit. The re-
sult of this is an N–qubit unitary gate. This composite
qutrit ⊗ (N − 1) qubit system is our multi-level “sys-
tem” and for convenience we shall also often refer to
it as a qudit. The relevant measurement operator and
Hamiltonian are now

P̂N = 1 − |fe2...eN ⟩⟨fe2...eN | (6)
ĤN = i

2 Ω(|e⟩⟨f | − |f⟩⟨e|) ⊗ 12 ⊗ ...⊗ 1N .

where we have only written the terms of P̂N that are
relevant to the dynamics. As before, we compute ĤZeno
by conjugating ĤN with P̂N . For notational compact-
ness, we write ĤZeno by specifying its action only on the
relevant subspace. For all xi ∈ {g, e} (i = 2, ..., N) we
have

ĤZeno,N |gx2...xN ⟩ = 0 (7)

ĤZeno,N |ex2...xN ⟩ =
{

0 : x2...xN = e...e
−i|fx2...xN ⟩ otherwise

ĤZeno,N |fx2...xN ⟩ =
{

0 : x2...xN = e...e
i|ex2...xN ⟩ otherwise.

Thus although ĤN acts on a 3 × 2N−1 dimensional
space, the projected Hamiltonian ĤZeno,N acts non-
trivially only on the 2N–dimensional subspace defined
by |x1 x2 ... xN ⟩. Although there is no explicit coupling
within this qubit subspace, ĤZeno,N can perform an en-
tangling operation here, because of the non-local char-
acter of P̂N . By the same calculation as for Eq. (4),
every component of the wave function of the form
|ex1...xN ⟩ except |ee...e⟩ picks up a π phase, so that
for t = 2π/Ω we have

ÛZeno,N = exp(−i ĤZeno,N t) = 1 − 2 Π̂ex1...xN ̸=ee...e.
(8)

Again, any phase between 0 and 2π may be applied by
subtending the corresponding solid angle on the Bloch
sphere of each subspace.
ÛZeno,N is locally equivalent to an N -body cphase

gate, which in turn is locally equivalent to an N–qubit
Toffoli gate [21], which together with local operations
generates a universal gate set. To implement this N -
body cphase gate, we simply apply another 2π rota-
tion of ĤN , this time without measurement. Now all
kets of the form |e x2...xN ⟩ acquire a π phase, this time
including |ee...e⟩. All phases imprinted by this second
operation cancel with those of ÛZeno,N except that on
|ee...e⟩, resulting in an N–body cphase gate. Further-
more, one may imprint an arbitrary phase on |ee...e⟩ by
subtending different solid angles on the first and second
application of ĤN . The full N–body π cphase gate be-
comes a Toffoli gate when we conjugate any single qubit
with a Hadamard gate before and after application of
the cphase gate.

In the specific examples below, we will focus primar-
ily on the two–qubit case for simplicity, with the un-
derstanding that the scheme can be scaled up straight-
forwardly. We will also often use the initial state
{ 1√

2 |e⟩ + 1√
2 |g⟩}⊗2, because ideal implementation of

the gate transforms this initially separable state into a
maximally–entangled (Bell–like) state. Evolution from
this initial state consequently offers a straightforward
way to evaluate how much of the specifically non–local
work of the ideal gate is accomplished when using a re-
alistically imperfect measurement channel to realize the
projector P̂ .

This concludes our introduction of the ideal Zeno
gate. We devote the remainder of the paper to char-
acterizing the impacts of increasingly specific experi-
mental imperfections on the Zeno gate.

3 Implementation with Finite Measure-
ment Strength
We now analyze the gate fidelity when the measure-
ments are of finite strength, rather than the limit of in-
finitely rapid projective measurements. Measurements
are always of finite strength in practice [22]; our anal-
ysis in this section is thus more realistic, without yet
focusing on the physics of a specific apparatus or imple-
mentation. Finite measurement strength implies that
our ability to “Zeno block” the unitary rotations at fre-
quency Ω will be imperfect [23, 24]. We find that the
first-order effect is leakage into the |fe⟩ level blocked
by measurement. A second-order effect appearing at
weaker measurement strengths is a decrease in the am-
plitude of |ee⟩ relative to the rest of the computational
subspace. As explained below, this damping is caused
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by information acquired by a null measurement. The
latter calculation also represents the gate fidelity when
one uses the measurement signal to herald on successful
implementation of the gate, which yields an improved
fidelity and scaling of fidelity as a function of measure-
ment rate.

The Zeno effect may be implemented either by se-
quential projective measurements or by a strong con-
tinuous measurement. Strictly speaking, our ability
to Zeno block rests on the dissipation of information
corresponding to a particular observable [25], a situa-
tion which is described by theories of open systems and
continuous measurement [26, 27]. We now reconsider
the Zeno gate from this viewpoint, which often consti-
tutes a more realistic model compared to the projective
measurements we appealed to above, while remaining
tractable. Schemes to implement non-trivial continuous
measurements have been explored extensively in circuit
QED systems [28, 29, 30, 31, 32, 33]. Continuous dissi-
pation of information pertaining to an operator P̂ , com-
bined with coherent evolution under Hamiltonian Ĥ, is
described by the master equation

dρ̂

dt
= −i[Ĥ, ρ̂] + Γ D[P̂ ]ρ̂ (9)

where Γ is the measurement rate and D[P̂ ]ρ̂ ≡ P̂ ρ̂ P̂ † −
(P̂ †P̂ ρ̂+ ρ̂ P̂ †P̂ )/2 is the standard Lindblad dissipator
that models coupling to a Markovian bath [34]. Eq. (9)
leads to mixing of the state in measured subspaces
due to averaging over all possible measurement out-
comes weighted according to their probabilities. Fur-
ther stochastic terms may be included to describe the
evolution conditioned on a particular sequence of mea-
surement outcomes [26, 27], however our ability to Zeno
block a particular transition is well–described by the av-
erage evolution (9). We will continue to refer to “Zeno
measurements” below in a general sense, even when we
use the average (i.e., Lindbladian) evolution for simplic-
ity.1

3.1 Unheralded Gate Fidelity
Eq. (9) can be solved exactly to extract a gate fi-
delity. The exact expressions are cumbersome, but
we define Ffinite Γ = ⟨ψ0|Û†

Zeno ρ̂(tfinal) ÛZeno|ψ0⟩ with
ρ(0) ≡ |ψ0⟩⟨ψ0|, which is plotted for comparison with
approximations derived below.

When the measurement rate Γ is large but finite, the
primary source of infidelity is population transfer into

1The effectiveness of (9) for describing the Zeno effect indi-
cates that the Zeno effect may be understood as a feature arising
from engineered dissipation [25], rather than measurement in the
strictest sense. In the limit of large Γ, the dynamics initialized at
an eigenstate (or eigenspace) of P̂ are pinned there independent
of whether or not we read the measurement outcome.

the |fe⟩ state. Note that if the wave function collapses
entirely to |fe⟩ due to measurement, then gate fidelity is
zero. We may consider dynamics only within the sub-
space {|ee⟩, |fe⟩} to estimate the probability of failed
Zeno blocking. Mapping this subspace to a single qubit
ρ̃, with states |0̃⟩ = |fe⟩ and |1̃⟩ = |ee⟩, the master
equation analogous to Eq. (9) is

dρ̃

dt
= −i[H̃, ρ̃] + Γ D[|0̃⟩⟨0̃|]ρ̃ with H̃ = Ω σ̃y

2 . (10)

An exact solution is readily available (see Appendix A).
If the qubit is initialized in |1̃⟩ and allowed to undergo
a full 2π rotation, requiring t = 2π/Ω, then the prob-
ability to find the qubit in the leakage state |0̃⟩ can be
shown to be approximately

P̃0 ≈ 1 − e−4πΩ/Γ

2 , (11)

where we have dropped terms of order Ω2 and terms
that are exponentially small in Γ (see Appendix A for
details). This is consistent with the known result for
blocking a superconducting qubit energy transition us-
ing the Zeno effect [35].

Eq. (11) gives the contribution to the probability of
failure of the Zeno gate due to the finite measurement
strength allowing leakage from the |ee⟩ state to a state
outside the computational basis (|fe⟩). To derive the
corresponding probability of failure for the full Zeno
gate, we simply multiply this by the probability to find
the system in |ee⟩, i.e., ρee,ee. We define the first-order
estimate of the gate fidelity F (1)

finite Γ by assuming that if
the Zeno projection succeeds in preventing a transition
to |fe⟩, then the fidelity is 1, while it is zero if the state is
projected onto the state |fe⟩, with intermediate values
deriving from partial leakage. Using the probabilities
derived above yields

F
(1)
finite Γ ≡ 1 − ρee,ee(0)P̃0 (12)

defined with resepct to a fixed initial state ρ̂(0).
Eq. (12) can be calculated using the exact, but rather

lengthy, solution for P̃0 = 1 − ρ̃11 (again given in Ap-
pendix A). We can use the approximate expression for
P̃0 given in Eq. (11) to make a simpler first-order esti-
mate of Ffinite Γ, namely

F
(1)
finite Γ ≈ 1 − ρee,ee(0)1 − e−4πΩ/Γ

2 . (13)

Both the exact form for Ffinite Γ and these first-order
estimates yield unit fidelity in the ideal Zeno limit, i.e.,
when Γ/Ω → ∞, as required.

Eqs. (12) and Eq. (13) represent the gate fidelity as a
function of the initial state. An equally useful figure of
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merit is gate fidelity averaged over all pure input states,
which we denote F̄ . In appendix B, we show that if the
initial state satisfies ρee,ee(0) = 1/4, then the average
fidelity F̄ is identically equal to Eq. (13). Thus a useful
test case for evaluation of the gate fidelity is the equal
superposition state in the computational subspace, i.e.,
(|gg⟩ + |ge⟩ + |eg⟩ + |ee⟩)/2 = { 1√

2 |e⟩ + 1√
2 |g⟩}⊗2. For

this state, Eq. (13) yields

F̄
(1)
finite Γ ≈ 1

8

(
7 + e−4πΩ/Γ

)
. (14)

Fig. 3a shows a comparison between the exact Zeno
gate fidelity (blue solid line, calculated from Eq. (9) us-
ing the exact form of P̃0 given in Appendix A) and the
average fidelity estimated using Eq. (13) (blue dashed
line), as a function of the ratio Γ/Ω. These calcula-
tions were performed with the initial equal superposi-
tion state for the reasons given above. The agreement
is good for large values of Γ/Ω, i.e., high measurement
rates. At smaller values of Γ/Ω, our assumption in
defining Eq. (12) that we have unit gate fidelity con-
ditioned on success of the Zeno measurement, breaks
down. Furthermore, even at large values of Γ/Ω, con-
vergence of this gate fidelity to unity is quite slow.

3.2 Heralded Gate Fidelity
The results above are based on the average (or uncondi-
tional) dissipative evolution, which completely neglects
knowledge of measurement outcomes specific to a given
run. We move beyond this by calculating the gate fi-
delity post–selected on realizations in which the mea-
surement outcome corresponds precisely to this exclu-
sion from |fe⟩. We find that this post–selected fidelity
converges to unity much faster than the unconditional
fidelity calculated above. This intuitively indicates that
the simpler unconditional evolution (9) may effectively
be used to lower bound the Zeno gate’s performance,
but that detection and use of the conditional evolution
or post–selection allow us to identify the best runs, in
which the fidelity is much improved. In other words,
our gate works much better if we are able to use our
measurement outcomes to restrict our attention to runs
of the experiment in which we do not detect escape
to |fe⟩. While we do not explicitly consider the ad-
ditional possibility of feedback control for continuous
error correction in the present work, it appears natural
to suppose that the Zeno gate fidelity could be further
improved via such methods.

To evaluate the fidelity with post–selection, we per-
form an unraveling of Eq. (9) and compute the result-
ing quantum trajectories. There exist many equivalent
ways to unravel Eq. (9), which represent different physi-
cal implementations of the measurement [26]. For calcu-
lational ease, we here assume a quantum jump model, in

Figure 3: Zeno gate fidelity and approximations to this as a
function of the unitless ratio Γ/Ω. The gate fidelity is calcu-
lated using the initial state (|gg⟩+|ge⟩+|eg⟩+|ee⟩)/2 (see text
for rationale for this choice). (a) Fidelities for the unheralded
(blue) and heralded (orange) gate. Solid blue and orange lines
indicate the exact results obtained by solutions of Eq. (9) and
Eq. (15) respectively, while the blue and orange dashed lines re-
spectively plot the approximate expressions F (1)

finite Γ (Eq. (13))
and Fherald (Eq. (17)). (b) Comparison of the exact fidelity
(blue line, same as in (a)) with second-order approximations to
it. The solid purple line plots F (2)

finite Γ using the exact solutions
in Eq. (18), while the dashed purple line plots Eq. (19), where
we have dropped some terms to yield a concise expression.
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which the |fe⟩ state undergoes decay to a continuum of
states that we continuously monitor. If we never regis-
ter population in these auxiliary states, then the system
evolves under the following non-Hermitian Hamiltonian

Ĥno jump = i
2 Ω(|e⟩⟨f | − |f⟩⟨e|) ⊗ 1 + i

2 Γ|fe⟩⟨fe|
(15)

Note that one propagates the post selected state un-
der Ĥno jump using only the Schrödinger equation, not
the master equation Eq. (9). One can recover Eq. (9)
by evolving the state with Eq. (15) between quantum
jumps to |fe⟩ randomly applied according to the correct
statistics, and then averaging over the resulting quan-
tum jump trajectories.

The Schrödinger equation using Eq. (15) may be
solved exactly. The solution is algebraically almost
identical to that of Eq. (10) (see Appendix A). Con-
sequently, similar simplifications may be made to this
solution by neglecting related terms. The main differ-
ence is that we solve now for a wave function instead of
a density matrix. Setting TG = 2π/Ω, we find

ψgg(t) = ψgg(0) (16)
ψge(t) = ψge(0)
ψeg(t) = −ψeg(0)
ψee(t) ≈ e−πΩ/Γψee(0)

where we have also assumed that ψfe(0) = 0, which
yields ψfe(t) = 0. One also finds a non-zero solution
for ψfe(t). However this undesired population can be
eliminated by continuing measurement for a time that
is large compared to 1/Γ, which exponentially damps
ψfe. Thus we take ψfe to be zero.

The heralded gate fidelity is simply the overlap
squared of the above state with the initial state un-
der application of an ideal gate as described in Sec. 2.
The only subtlety is that the post-selected wave func-
tion above must first be normalized, since evolution un-
der a non-Hermitian Hamiltonian does not preserve the
norm. The resulting heralded gate fidelity is

Fherald ≈ 1 − |ψee(0)|2(1 − e−πΩ/Γ)√
1 − |ψee(0)|2(1 − e−2πΩ/Γ)

, (17)

where we write ‘≈’ because we have used the approxi-
mate solutions of Eqs. (15) and (16).

We can use Eq. (17) to compute a state-averaged
fidelity F̄herald. However, due to the post-selection,
Fherald is non-linear in |ψ⟩, and thus the usual methods
of calculating the average fidelity analytically fail. In
Appendix B, we compute the average fidelity by numer-
ically integrating over the Haar measure and thereby
show that F̄herald is well approximated by the value
of Eq. (17) for the initial equal superposition state

(|gg⟩ + |ge⟩ + |eg⟩ + |ee⟩)/2, just as was the case for
the unheralded gate in (13)–(14).
Fherald plays a dual role. First, is its interpretation in

the context of a heralded implementation of the gate. In
Fig. 3a) we plot the heralded fidelity in orange, together
with the unheralded fidelity Ffinite Γ (blue solid line) and
its first order approximation F (1)

finite Γ (blue dashed line).
We see that both the exact and first order fidelities con-
verge to unity orders of magnitude more quickly with
heralding. In this setting F̄

(1)
finite Γ may be interpreted

as the success probability, or the fraction of the time
in which measurement indicates that no jump to |fe⟩
occurred.

Secondly, Eq. (17) provides a second-order correction
to the unheralded fidelity. Since Fherald explicitly re-
moves the infidelity that remains in F

(1)
finite Γ, we can

compute the total fidelity by subtracting both of the
corresponding infidelities, i.e., for finite measurement
strength and for heralding. The result is

F
(2)
finite Γ ≡ 1 − (1 − F

(1)
finite Γ) − (1 − Fherald) (18)

≈ 1 − |ψee(0)|2(1 − e−πΩ/Γ)√
1 − |ψee(0)|2(1 − e2πΩ/Γ)

+ |ψee(0)|2

2

(
1 − e−4πΩ/Γ

)
(19)

The infidelity estimated in F
(1)
finite Γ has a clear physi-

cal interpretation of leakage into the |fe⟩ state. Sim-
ilarly, the infidelity calculated in Fherald has a simple
physical explanation, namely the indirect acquisition of
information. Returning to Eq. (16), observe that the
only deviation from an ideal gate is damping of the ψee

component of the wave function. Only ψee population
can lead to population in |fe⟩, so if we do not measure
|fe⟩ population, then we can infer a lower likelihood to
find the system in |ee⟩. This damping is analogous to
the case of an atom prepared in a superposition of its
excited and ground states, which decays to its ground
state even if it does not emit a photon [36].

We plot this second order corrected fidelity against
the exact fidelity in Fig. 3b). We also include the fi-
delity calculated using the exact solutions to Eq. (9)
and Eq. (15), which are omitted in the main text for
brevity but are given in Appendix A. The three fidelity
curves agree well, indicating that by accounting for both
the infidelity due to finite measurement strength and
that due to the information gain (heralding) we have
quantified the main sources of infidelity in an intuitive,
closed-form expression.

As a final note, we remark that the full gate error in
diamond norm can be bounded as E⋄ < 38 Ω/Γ [8, 37].
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4 Implementation in Cavity QED and fi-
nite coupling effects
We continue towards more realistic measurement dy-
namics: We will presently describe how the Zeno gate
can be implemented using dispersive measurements,
which are common in superconducting qubit systems
[38, 35, 39, 28]. This measurement technique leads to
finite measurement strengths as just discussed, but also
to further dynamics which are not strictly necessary for
the Zeno gate, and are not captured by Eq. (9). In the
cavity QED implementation discussed below, we must
not only consider infidelity due to leakage through our
Zeno block, but also due to spurious damping (dephas-
ing within the computational subspace SZ) and Stark
shifts induced by measurement. In analyzing these ef-
fects, we essentially consider one way that dynamics like
Eq. (9) are realized in practice.

Dispersive readout provides a well–known way to im-
plement a measurement of excitation number; it is real-
ized by placing a qudit in a leaky cavity, as illustrated
in Fig. 4. Dispersive readout is based on a multi-level
generalization of the Rabi Hamiltonian (i.e., a trans-
verse coupling between the qudit and cavity mode)

Ĥtv = ωc â
†â+

∑
j

ωj |j⟩ ⟨j| +
∑
j ̸=ℓ

gjℓ(â+ â†) |j⟩ ⟨ℓ| .

(20)
States |j⟩ are for the qudit, while â† and â are cav-
ity photon creation and annihilation operators, respec-
tively.

By first making the rotating wave approximation,
and then the dispersive approximation (the latter as-
sumes the cavity is far-detuned from the natural transi-
tion frequencies of the system, or more specifically that
|gℓj |

√
⟨â†â⟩ + 1 ≪ |ωℓ − ωj − ωc|), one finds that (see

[28] and references therein)

Ĥdisp =
∑

j

(
ωj + λj + χj â

†â
)

|j⟩ ⟨j| , with (21a)

λj ≡
∑

ℓ

|gℓj |2

ωj − ωℓ − ωc
, and (21b)

χj ≡
∑

ℓ

(
|gℓj |2

ωj − ωℓ − ωc
− |gℓj |2

ωℓ − ωj − ωc

)
. (21c)

The state-dependent dispersive shifts χj are key to read-
out going forward. Note that because the photon num-
ber â†â is directly tied to the action of these disper-
sive frequency shifts, high photon numbers can increase
measurement strength, but eventually break the valid-
ity of the dispersive approximation. We include a coher-
ent drive ε(â ei ωε t+i ϕ + â† e−i ωε t−i ϕ) detuned from the

bare cavity frequency by ∆c
ε = ωc−ωε that supplies am-

plitude to the readout mode at rate ε, as well as Rabi
rotations Ω which can be implemented by tones on–
resonance with the qudit transitions. The full Hamilto-
nian within the dispersive approximation can then be
re-written

Ĥq–c = 1
2 Ω · σ̂ +

(
∆c

ε + χ · Π̂
)
â†â+ ε(â† eiϕ + â e−iϕ),

(22)
where we have gone into the interaction picture with the
cavity degrees of freedom rotating at ωε, and eliminated
the bare qudit terms. We have shorthanded the qudit
operators σ̂ (e.g. such that 1

2 Ω · σ̂ = 1
2 Ωjℓ |j⟩ ⟨ℓ|, or

a set of Gell–Mann matrices) and the qudit energy–
eigenstate projectors Π̂ (such that χ·Π̂ =

∑
j χj Π̂j) for

concision. The choice of driving quadrature, determined
by ϕ, has no impact on the dynamics of interest, and
will be chosen as is convenient at points below.

In order to use the above for measurement, it is nec-
essary that the cavity be driven, but also damped, such
that light exits the cavity into a readout line where it is
either dissipated or detected. We assume Lindbladian
dissipation of the cavity as per

dρ̂

dt
= −i[Ĥq–c, ρ̂] + κD[â]ρ̂, (23)

where κ is the cavity linewidth. See Fig. 4. Below
we shall discuss the non-Markovian (NM) dynamics re-
sulting from unitary qudit rotations and comparatively
slow cavity decay, which cause the cavity and qudit to
remain entangled and “remember” each other’s dynam-
ics over time. However, we do not at any point consider
the further possible effects of NM dynamics due to ex-
tended correlations between the cavity and the external
line/environment.

In our upcoming discussions, we shall weigh the im-
pact of two different timescales that affect the Zeno
gate, namely the gate time (which is set by Ω = |Ω|)
and the cavity decay rate κ. We begin by considering
measurement in the absence of coherent qudit rotations
(i.e., with Ω = 0), drawing on existing exact solutions
for this case for arbitrary κ [39].

4.1 Dispersive measurement alone
Within the context of the dispersive approximation, and
with Ω = 0, coherent cavity states will remain coherent
[39, 28, 42]. This allows us to write a joint qudit–cavity
state of the form

ρ(t) =
∑
j,ℓ

ρjℓ|j⟩⟨ℓ| ⊗ |αj(t)⟩⟨αℓ(t)|, (24)

where the sum is taken over all relevant qudit states
(j = gg, ge, eg...). The evolution of the coherent state
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Figure 4: Cavity QED implementation of the N -qubit Zeno
gate. a) Several transmons are coupled dispersively to a high-
finesse cavity with leakage rate κ. For the N − 1 transmons
acting as qubits, we only show the lowest two levels. The
Zeno measurement P̂ is implemented by the action of (22)
on the qudit–cavity system, which includes unitary rotations Ω
on the qudit, dispersive coupling between the qudit and cavity,
and a readout tone driven by a classical field of frequency ωε

close to the bare cavity resonance ωc. b) Cavity density of
states as a function of frequency, plotted for all qubit states in
the computational basis. This plot can also be interpreted as
the intracavity field as a function of drive frequency. Due to
the nature of the dispersive Hamiltonian, the effective cavity
resonances cluster in groups of equal qubit excitation number,
facilitating measurement of P̂ . c) Schematic illustrating the
leakage of the measurement tone into the external line, which
may be directly monitored, with a structure reminiscent of that
in composite quantum collision models [40, 41]. In the present
case of interest, the qudit (Q) and cavity mode (C) are isolated
together, and interact via dispersive coupling according to (22).
Their only contact with the outside world is mediated through
cavity decay into the external line (L). One can then describe
the measurement process and/or decoherence occurring via this
channel by envisaging a sequence of empty lines (i.e., temporal
line modes Lk, initialized in vacuum) that arrive and interact
with the qubit–cavity system at time k, each for a duration ∆t.

amplitudes αj(t) may be solved for using the Heisenberg
equations of motion and input-output theory to handle
the dissipator [43, 39]. This results in the equation of
motion for the field operator evolution

ȧ = i[Ĥq–c, â] − 1
2κ â = −i ε eiϕ −

(
i∆j + 1

2κ
)
â, (25a)

where ε is again the rate at which amplitude is supplied
to the measurement tone, κ is the cavity decay rate, and
∆j = ∆c

ε + χj is a detuning including the frequency
difference between the bare cavity resonance and the
drive ε as well as the level–dependent dispersive shift
χj . As with (22), we work in the frame rotating at the
frequency ωε of the drive tone. The associated coherent
state amplitudes then vary as (with ϕ = π/2)

⟨αj | ȧ |αj⟩ = α̇j = ε−
(
i∆j + 1

2κ
)
αj . (25b)

This equation admits the analytic solution

αj(t) =
(
αj(0) − 2 ε

κ+ 2i∆j

)
e

−
(

i ∆j+ 1
2 κ

)
t
+ 2 ε
κ+ 2i∆j

,

(26a)
which decays towards the steady state

ᾱj = 2ε
κ+ 2i∆j

= 2ε√
κ2 + 4∆2

j

exp
[
i arctan

(
2∆j

κ

)]
(26b)

on a timescale κ−1. It will additionally be important
to consider phase evolution φ̇ associated with each co-
herent state eiφj |αj⟩ [39, 44, 45]. This phase evolves
according to

φ̇j = −ε Re
[
e−iϕ αj

]
, (27)

such that its accumulation may be straightforwardly
computed from (26a). Note that the driving quadrature
ϕ and resonator–induced phases φ are distinct physi-
cal quantities. Taken together, these expressions lead
to qudit–cavity dynamics expressed as linear first order
differential equations. Those equations are uncoupled
for Ω = 0, but may become coupled once the Rabi drive
is turned on, which directly threatens the legitimacy of
the ansatz (24).

The resulting Lindbladian qudit–cavity dynamics are
characterized by the effective dephasing rate between
any two states

Γjℓ ≡ κ
( 1

2 |αj |2 + 1
2 |αℓ|2 − Re [αj α

∗
ℓ ]
)
, (28)

and relative phase rotations at a rate

Υjℓ = κ Im[αj α
∗
ℓ ] + ε Im [αℓ − αj ] , (29)

(summing contributions due to dissipation and (27)).
See Appendix C.3 for details. We take (28) to be an
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expression for the effective strength of the measurement
(i.e., this is the rate at which information enabling the
qudit states |j⟩ and |ℓ⟩ to be distinguished dissipates out
of the cavity, thereby becoming available to an external
observer), while (29) contains both the the AC Stark
shift and resonator–induced phase (RIP) [39, 44, 45].
The second term in Υ is itself the basis of an entangling
gate (RIP gate).

In the text below, we will often refer to a “coherent–
state analytical” (CA) model; this refers specifically to
the model just introduced, using coherent cavity states
(i.e., based on the ansatz (24)).

4.2 Measurement of a Specific Excitation Num-
ber
We can study the unconditional dynamics given by the
CA model (still with Ω = 0) to understand how to tune
a dispersive measurement for use in the Zeno gate, keep-
ing in mind that any finite efficiency detection will im-
prove performance compared to the average (uncondi-
tional or unheralded) evolution. We will emphasize the
situation of a qutrit ⊗ qubit (N = 2) for the purposes
of analysis and numerical examples in the remainder of
the manuscript.

Several parameters need to be chosen or engineered
to implement a good measurement operator P̂ for the
Zeno gate, including ωε, κ, and the dispersive shifts χj .
We wish to choose these parameters in a way that leads
to a measurement with two key properties:

1. We wish to measure the transition to |fe⟩ very
strongly. This requires that Γij be as large as pos-
sible for any transition with i = fe or j = fe.

2. We wish to maintain coherent evolution in the sub-
spaces with lower excitation number, which means
that we want Γij as small as possible for all tran-
sitions i, j ̸= fe (so that our Zeno measurement
does not accidentally decohere the computational
subspace SZ).

In combination, these properties guarantee a
dissipation or measurement that divides our
space by excitation number between {|fe⟩} and
{|fg⟩ , |ee⟩ , |eg⟩ , |ge⟩ , |gg⟩}. In other words, these
requirements ensure behavior mimicking the key
properties of the projector P̂ , thereby creating the
Zeno effect we want for our gate. We may understand
how to satisfy both properties simultaneously by
evaluating the steady state measurement strength
(i.e., by evaluating (28) for cavity states (26b)). The
steady–state measurement strength Γ̄ij for any given
transition has two peaks when plotted as a function of
drive tone frequency ωε, characterized by ∆i = 0 = ∆j ,

i.e., for ωε = ωc +χi and ωε = ωc +χj . These peaks are
Lorentzian, and the decay rate κ sets the (line)width.
It follows that in order to maximize our measurement
strength for transitions to |fe⟩, we wish drive our mea-
surement tone at the frequency ωε = ωc + χfe (i.e., we
choose ∆fe = 0). In order to also satisfy our second
condition, we require that this peak corresponding
to |fe⟩ that we select be well separated from all the
others: This can be accomplished by choosing κ smaller
(preferably by a factor of at least two or three) than
the difference ∆χ = |χfe −χj | where χj corresponds to
the nearest neighboring peak (ostensibly χee or χfg).
An example is shown in panels (a) and (b) of Fig. 5.

4.3 Timescales for the Zeno Gate
Panels (c) and (d) of Fig. 5 illustrate a consequence
imposed by the measurement regime we have just de-
scribed. Clearly large χ values are desirable to max-
imize ∆χ, but these dispersive shifts cannot be made
arbitrarily large in practice. This means that once we
have maximized ∆χ to within attainable constraints,
the linewidth κ is constrained in turn. Notice that
the solutions (26a) decay towards their steady state
value (and steady state average photon number |ᾱ|2)
at rate κ. The CA model thus tells us that while a
smaller κ value allows us to resolve a particular transi-
tion with a strong measurement rate, it also slows the
speed at which the cavity can respond to other dynam-
ics. In other words, κ−1 sets the timescale on which an
initially separable qudit–cavity state (

∑
j cj |j⟩) ⊗ |α0⟩

evolves towards an entangled steady state of the form∑
j c

′
j |j⟩ |ᾱj⟩ offering a stable measurement strength of

the qudit via the cavity pointer states. Thus, panels (c)
and (d) of Fig. 5 illustrate the trade-off between these
two features, with the cavity response clearly slower for
the smaller κ value (d) even though the eventual steady–
state measurement is stronger.2

We now begin considering Ω ̸= 0, which is the last
ingredient required for the Zeno gate. Rabi rotations
on the qudit introduce a significant element with re-
gards to the measurement itself (assuming they do not
commute with the monitored observable), in that the
qudit dynamics occurring independent of the measure-
ment tone will now generically “drag” the cavity pointer
states behind [35]. This can distort the cavity states so
as to render the ansatz (24) that is the basis of the CA
model approximate at best, and wholly invalid at worst,

2We suggest that this slowing of the cavity dynamics mov-
ing from the initial state towards a steady state may be at least
partially mitigated by shaping ε(t) instead of using a constant
value; in particular, one could drive the cavity harder at the start
of the measurement interval to overcome the slow ring–up time,
and then lower ε to the level necessary to maintain the desired
steady state cavity population.
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Figure 5: Analysis of the basic dispersive measurement require-
ments to implement an N = 2 Zeno gate, based on the CA
model. Panels (a) and (b) plot the steady–state measurement
strength as a function of the readout measurement drive fre-
quency ωε (shown in terms of the magnitude of the relative
frequency ∆ε

c = −∆c
ε = ωε − ωc), for two different values

of cavity linewidth, κ = 2 MHz in (a) and κ = 0.2 MHz in
(b). The measurement rate for transitions to/from j = fe are
plotted in red (a) or cyan (b), while transitions within SZ are
shown in black. Panels (c) and (d), plot the ring-up of the
measurement strength as a function of time, given the cavity
initially in vacuum, with κ = 2 MHz in (c) and κ = 0.2 MHz
in (d), evaluated for an initially empty cavity, i.e., with α0 = 0.
In other words, (c) uses the same κ as (a), while (d) uses the
same κ as (b); the ring-up using the “other” value is plotted
in each of panels (c) and (d) as a dashed line in its contrasting
color for easy comparison. The measurement tone is driven
at amplitude ε/2π = 1 MHz in all panels and the values of χ
employed are shown in the table below panels (c) and (d). The
specific values of χ are arbitrarily chosen, but are all of a scale
that is realistic on existing transmon systems.

depending on one’s choice of parameters. It is helpful
at this point to consider two opposing regimes:

1. In the limit κ ≫ Ω effects such as distortion of the
cavity pointer states are negligible (one can imag-
ine that the dynamics of the cavity pointer states
are rapid enough to adiabatically follow the com-
paratively slow Rabi rotations); this is the usual
Markovian regime suitable for continuous measure-
ment [46]. In this case it is adequate to simply
append the unitary rotations at rate Ω to the mea-
surement dynamics derived via the CA model, as
in (9).

2. In the opposite limit Ω ≫ κ, however, the mea-
surement strength will be severely inhibited. This
can occur for two reasons: (first) The authors of
Ref. [47] show that the cavity has no chance of act-
ing as a pointer for qudit dynamics for fast drive
Ω ≳ ∆χ2/κ. In other words, for any finite χ and κ,
sufficiently fast rotations Ω will completely inhibit
measurement because the cavity pointer states lack
the agility to resolve the qudit dynamics. We shall
refer to this below as the “decoupled regime”.3 (sec-
ond) One may alternatively reach Ω ≫ κ by mak-
ing the cavity emission very slow; this tends to in-
hibit measurement as well, simply because the limit
of vanishing κ is the limit of the system becoming
closed to the outside world.

In summary, our ability to measure the qudit via dis-
persive coupling may be severely impacted by the rela-
tionship between different timescales, including the gate
time (recall that TG = 2π/Ω). Clearly, the gate time
cannot be made arbitrarily short (we must avoid the de-
coupled regime). On the other hand, our requirement
that κ be small enough to resolve only a particular qu-
dit transition forces a choice between two options for
practical implementations of the Zeno gate.

i) A Slow Zeno Gate: We may consider quasi-
Markovian dynamics (i.e. we retain the CA model, and
use the steady state solutions (26b), so that we may pro-
ceed with analytic expressions). The drawback of such
an analysis is that it is only valid when the Zeno gate
is performed very slowly, due to the need to maintain
Ω ≪ κ ≲ ∆χ.

ii) Speeding up the Zeno Gate: If we shorten the gate
time, we must accept that Ω ∼ κ will bring some non–
Markovian effects into play and erode the validity of the
CA measurement model (i.e., the cavity will not be de-
scribable by coherent states and will retain a memory of

3Szombati et al. [47] term this the “quantum rifling” regime.
We understand their result, based around driving the system very
fast so that the field only responds to an average state rather than
following the dynamics, as a time–continuous analog of bang–
bang dynamical decoupling [48, 49].
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the qudit dynamics such that the effective measurement
strength at any given time may depend on the history
of the system over timescales of order κ−1). This means
we are forced into a transient regime between the ex-
tremes of the Markovian and decoupled regimes [50].

We briefly discuss the first approach (a slow gate) in
some detail, and then move onto full simulation (FS) of
the Zeno gate (without the assumption (24)) in order
to better understand the viability of a faster gate.

4.3.1 A Slow Markovian Zeno Gate: ∆χ ≫ κ

It is possible to make analytic statements in the regime
Ω ≪ κ ≪ ∆χ, which admits relatively high Zeno gate
fidelities. We detail the requisite calculations in Appen-
dicies C.4–C.6, and summarize the main findings here,
with reference to Fig. 6. The appeals of this regime
include 1) an analytic and Markovian description of
the qudit measurement, with 2) potentially very well–
isolated measurement of transitions to |fe⟩ only. The
measurement rates can be approximated with simple
expressions (see Appendix C.4) and the essential fea-
tures of the measurement dynamics evaluated analyti-
cally (see Appendix C.6) and then used to evaluate the
gate fidelity (see Appendix B). We reiterate that this is
however at the cost of a very slow gate. For example,
we may consult Fig. 6 and find that a heralded gate fi-
delity F̄ ≳ 0.9 in this regime requires ∆χ/κ ≳ 20 and
Γ/Ω ≳ 20. For realistic choices of other parameters,
this implies a gate time on the order of TG ≳ 20µs.

4.3.2 Towards a Fast non-Markovian Zeno Gate

Our primary objective in the next section is to inves-
tigate Zeno gate performance in non-Markovian (NM)
readout regimes, which of practical importance for a
faster Zeno gate. A few works have considered disper-
sive readout in such intermediate regimes κ ∼ Ω in de-
tail: Ref. [35] details the basis of numerical approaches,
which are tractable but lack the analytic clarity of the
simpler limiting cases above. Experimental work seek-
ing an understanding of the dynamics in the interme-
diate parameter regime has recently been carried out
by Koolstra et al. [50]. The authors of the latter work
find that measurement models derived for the Marko-
vian regime lose accuracy for Ω ≳ 1

2κ. We let this
bound orient our discussion going forward. In particu-
lar, we should expect that any attempts to implement
a Zeno gate on a timescale shorter than 4π/κ may lead
to a modified measurement strength compared with the
predictions of the CA model, due to deviations from the
ansatz (24). For the remainder of this paper we shall
qualitatively divide the non-Markovian regime κ ∼ Ω
into the “shallow non-Markovian regime” (shallow NM
regime, with Ω ≲ κ), and the “deep non-Markovian

Figure 6: Average Zeno gate fidelity in the case of a Marko-
vian cavity response for slow cavity decay κ, with a slower Rabi
drive Ω ≪ κ, shown as a function of ∆χ/κ and Γ/Ω [see (18)].
The upper panel shows unheralded gate fidelity while the lower
panel shows the improved heralded gate fidelity. Specific con-
tours corresponding to certain fidelity values are marked as fol-
lows: F̄ = 0.9 (solid magenta), F̄ = 0.94 (dotted blue), and
F̄ = 0.98 (dashed green). These two-dimensional plots are
computed using approximations for the slow Markovian regime
defined by Ω ≪ κ ≪ ∆χ, with dispersive shifts spaced equally
by ∆χ (and proportional to qudit excitation number). The
oscillations in the upper left of each panel are entirely due to
resonator–induced phase effects. The infidelity 1−F̄χ from dis-
persive effects within the two–qubit subspace SZ is combined
with F̄Herald and F̄finite Γ as in (18). Further technical details
appear in Appendices A–B and C.4–C.6, leading to (65). While
RIP effects within SZ are included in this analysis, RIP effects
outside of SZ are omitted.
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Figure 7: Schematic showing the approximate division into dif-
ferent dynamic regimes for the Zeno gate. At the extreme left is
the Markovian regime (A) which is characterized by ideal mea-
surement dynamics, and at the extreme right (D) measurement
fails entirely. If (D) is reached by making κ very small, measure-
ment fails because the system is becoming closed, whereas if it
is reached by making Ω very fast we enter the “quantum rifling”
Ω ≳ ∆χ2/κ [47] regime in which the driven qudit transitions
effectively decouple from the readout cavity. In between lies a
large transient regime that is neither ideal for measurement, nor
prohibits dispersively–mediated measurement or dissipation of
qudit information. In this work we split this intermediate regime
into two for the purposes of discussion. We consider a “shallow
non-Markovian” (shallow NM) regime (B) defined by κ/Ω ≳ 1,
and a “deep non-Markovian” (deep NM) regime (C) defined by
1 ≳ κ/Ω. These divisions are meant to be suggestive rather
than exact and may not necessarily apply or be adequate to
characterize other problems outside the scope of the present
manuscript.

regime” (deep NM regime, with Ω ≳ κ) for purposes
of discussion (see Fig. 7).

5 Numerics: Practical Implementation
of the Zeno Gate in Circuit QED
We here employ two approaches in our numerical ex-
plorations. First, we perform full simulation of the
dispersive–coupled qubit and cavity, with cavity decay
into an external line (i.e., we simulate the dynamics
under (22) and (23)). It is also useful however to in-
vestigate the dynamics of the Zeno gate using a naïve
application of the CA model. The latter entails com-
puting the equations of motion for the measurement
alone (using the coherent state ansatz (24)), and then
simply adding i[ρ̂, 1

2Ω · σ̂] to the equations of motion
after the fact. We stress that this latter approach is not
formally justifiable, and should be treated as an ad hoc
approximation of limited validity [39, 50]. However, by
comparing this naïve approach to more exact simula-
tions, we are able to better appreciate how and where
the assumptions underlying the CA model break down
as we increase Ω/κ. In practice, the schematic division
of Fig. 7 corresponds approximately to where the naïve
model reproduces qualitatively the correct dynamics (in
the shallow NM regime), versus where it ceases to do so
(in the deep NM regime).

In this section we shall consider two figures of merit
for the performance of the Zeno gate. One is the frac-
tion of the population initially in |ee⟩ that is prevented

from moving into |fe⟩ halfway through the gate. Recall
that after a duration t = TG/2 = π/Ω, with no mea-
surement all of the population initially in |ee⟩ would
rotate to |fe⟩. We always choose the initial qudit state
1
2 (|ee⟩ + |eg⟩ + |ge⟩ + |gg⟩) below, such that this figure
of merit reads

Ξ(fe) = 1 − 4 ⟨fe| ρ̂ |fe⟩ , (30)

where the factor of 4 derives from the 1/4 probability
to be initially in |ee⟩. While Ξ(fe) does not directly
reveal our effective measurement strength, we will use
it as a proxy for the effectiveness of our Zeno block-
ing; it takes on a value of 0 for no measurement, and a
value of 1 when population transfer |ee⟩ → |fe⟩ is com-
pletely inhibited. The other figure of merit we consider
is the concurrence C [51] in the two–qubit computa-
tional subspace {|ee⟩ , |eg⟩ , |ge⟩ , |gg⟩} at the end of the
Zeno gate t = TG. A value of C = 1 indicates both
that all population has returned to the computational
subspace, and that perfect two–qubit entanglement has
been created in that subspace, consistent with perfect
implementation of the gate on the chosen initial state.
Any discrepancies between the evolution and desired
gate would then be correctable after the fact by imple-
mentation of local unitaries. C = 1 indicates primarily
that the measurement has done all of the non-local evo-
lution involved in the gate, and secondarily that popu-
lation at the end of the gate time has returned to the
intended subspace.

5.1 Ideal Dispersive Readout Scenario for the
Zeno Gate
We first model dispersive measurement with a very
optimistic set of parameters to provide an idealized
reference point. Suppose that we are able to choose
χfe/2π = 15 MHz, while all other χ values are zero
(which eliminates both RIP effects and decoherence
within the computational subspace SZ). Such a choice
of parameters is clearly at odds with the actual scaling
of dispersive shifts with qudit excitation number. Simu-
lations for this idealized system with dispersive readout
are shown in Fig. 8, with Ω/κ spanning roughly 0.1 to
500.

Despite the un-realistic idealization of the dispersive
shifts implicit in this first set of simulations, a num-
ber of important qualitative features are revealed by
Fig. 8. We plot the results of a naïve application of
the CA model in the upper panels (a,b): Solid curves
with thick markers denote the results of the full CA
model, while lower–opacity dash–dotted curves show
the corresponding analysis with Υ artificially set to zero
(i.e. the dash–dotted curves illustrate dynamics due to a
measurement without phase resonator–induced effects).
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Figure 8: Figures of merit for performance of the Zeno gate under ideal implementation with dispersive measurement. The
subspace retention Ξ(fe) (30) (left panels) and concurrence C (right panels), are shown as a function of the measurement tone
driving amplitude ε, for the Zeno gate implemented over a time T = 1µs (i.e., for Ω/2π = 1 MHz). We use the idealized set
of system parameters χfe/2π = 15 MHz with all other χ = 0. The initial state is 1

2 (|e⟩ + |g⟩) ⊗ (|e⟩ + |g⟩) ⊗ |0⟩. Results are
shown for κ values ranging from the Markovian regime to the deep NM regime. Curves linking the solid symbols obtained from
naïve application of the CA model (described in Sec. 4.1) are plotted in panels (a) and (b), while corresponding curves obtained
from full simulation of (22) and (23) are shown in panels (c) and (d). The low–opacity dash-dotted curves in panels (a) and (b)
show idealized dynamics with phase rotations artificially suppressed (i.e., Υ = 0) (see text for discussion). Agreement between the
theory (top) and simulated (bottom) results is the best in the shallow NM regime, i.e. for the curves plotted with κ ≳ 1.5 MHz.
All simulations (c,d) are made via the unconditional master equation (describing an unheralded Zeno gate) using a cavity Fock
space truncated at N ≤ 50 photons.
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Thus, the difference between the solid and dash–dotted
curves allow us to determine the extent to which RIP
and AC–Stark effects are playing a role in our gate. It
is clear even upon superficial inspection that these ef-
fects play a large role at higher drive amplitudes ε, and
deeper in the NM regime: This is ostensibly due to the
cavity collecting a higher average photon number, which
exaggerates RIP contributions ε Im[αℓ − αj ]. The re-
sults of full simulations (FS) appear in the lower panels
(c,d) of Fig. 8. These FS results are the most accurate
form of analysis we perform, and the discrepancies be-
tween these curves and those from the naïve CA model
above allow us to understand the role of NM readout ef-
fects on the Zeno gate. These reveal that the CA model
is qualitatively correct in the shallow NM regime, but
that its predictions become increasingly poor as we scale
into the deep NM regime.

5.2 Realistic Zeno Gate Implementation with
Dispersive Readout
We now present results of numerical simulations for a
dispersive Zeno gate with realistic system parameters.
Figs. 9 and 10 show representative plots for two sets of
parameters, one for a faster gate time T = 1µs (Fig. 9)
and one for a slower gate time T = 10µs (Fig. 10). The
system parameters are in both cases specified as χgg =
0, χeg/2π = χge/2π = 4 MHz, χfg/2π = χee/2π =
9 MHz, and χfe/2π = 15 MHz. Note that these values
are still slightly idealized compared with those shown in
Fig. 5. However they share the most essential feature
of a large dispersive gap ∆χ/κ.

All of Figs. 8 through 10 may be read individually
in much the same way we have just analyzed Fig. 8:
Comparison of curves within the upper CA panels shows
the impact of RIP effects, while comparison of the upper
and lower panels illustrates the impact of NM effects.
We may furthermore compare the three figures to each
other, and draw some conclusions about the dispersive
Zeno gate as a whole:

1) Naïve application of the CA model, in which coher-
ent states are assumed and the non–commuting unitary
dynamics (2) are appended in an ad hoc manner, re-
mains qualitatively correct throughout the shallow NM
regime. This is consistent with the observations of [50].

2) RIP effects, evaluated by comparing the solid and
dash–dotted curves within the upper (CA) panels, are
significant in all of the figures. Fig. 8 differs from Figs. 9
and 10 in that the latter (realistically) include RIP ef-
fects within the computational subspace. Comparison
of the faster gate (Fig. 9) against the slower (Fig. 10)
reveals that the impact of RIP effects are lessened for a
slow gate using lower drive amplitude ε. Looking across
all three of our figures, we find that RIP effects play at

least as large a role in the dynamics as NM effects, for
many of the parameter ranges we consider.

3) Simulations reveal that decent gate performance is
possible deeper into the NM regime than we might have
expected: Both the CA model, and the limiting case of
the decoupled regime [47], suggest that the deep NM
regime should be quite poor for the Zeno gate.

However our simulations do not bear out the ana-
lytic prediction that the measurement ring–up time will
be prohibitively long for very small κ values. In Ap-
pendix D we speculate that this may be explained by
the Rabi drive effectively strengthening the measure-
ment and thereby speeding up of the cavity response
in certain regimes, before the Rabi rotations are fast
enough to push us into the decoupled regime.

4) While it is absolutely necessary to leave the Marko-
vian regime and to enter the shallow NM regime to op-
erate the Zeno gate for the realistic parameters of Figs. 9
and 10 over modest gate times, the gains obtained by
continuing into the deep NM regime are only marginal
(despite the unexpected benefits described in point 3).

5) Fig. 10, with the longer gate time, shows overall
better performance than Fig. 9. We find higher con-
currence generation with lower drive powers compared
with Fig. 9, which overall constitute a significant im-
provement in the Zeno gate. Thus a high fidelity Zeno
gate can be achieved with realistically non-ideal param-
eters, but our best results are still attained by running
the gate slowly. The slowness of the gate will, in prac-
tice, be limited by other coherence times of the system
that are not considered in the present simulations. It
is also evident that a longer (slower) gate requires a
smaller drive ε compared to a fast gate (compare the
range of ε in Fig. 9 against Fig. 10), suggesting that the
photon ring–up time may be a significant contributor
to the ineffectiveness of fast gates.

6) The higher fidelity gates shown throughout these
figures rely on values of ε that could result in large cav-
ity photon numbers (if |fe⟩ is populated) for smaller
values of κ. Large photon numbers can break the dis-
persive approximation, and study of measurement in
such regimes is an area of contemporary interest in the
literature [52, 53, 54, 55, 56, 57, 58]. While analysis of
the Zeno gate based on transverse coupling, beyond the
dispersive approximation, may be a fruitful direction for
future work, it remains beyond the scope of the present
manuscript.

In summary, our analysis for the Zeno gate under
dispersive readout predicts that this implementation of
the N = 2 Zeno gate can be operated at reasonably
high fidelity (i.e., achieving concurrence C ≳ 0.8), using
dispersive measurement and a realistic set of transmon
parameters, with a moderate gate duration character-
ized by TG ≳ κ−1 ≳ ∆χ−1, as opposed to the more ideal
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Figure 9: Figures of merit for performance of the Zeno gate under realistic implementation with dispersive measurement for
short gate time, T = 1µs (i.e., for Ω/2π = 1 MHz). The subspace retention Ξ(fe) (30) (left panels) and concurrence C (right
panels), are shown as a function of the measurement tone driving amplitude ε. We use dispersive shift values χfe/2π = 15 MHz,
χfg/2π = χee/2π = 9 MHz, χeg/2π = χge/2π = 4 MHz, and χgg = 0. The initial state is 1

2 (|e⟩ + |g⟩) ⊗ (|e⟩ + |g⟩) ⊗ |0⟩. Results
are shown for κ values ranging from the Markovian regime to the deep NM regime. Curves linking the solid symbols obtained from
naïve application of the CA model (described in Sec. 4.1) are plotted in panels (a) and (b), while corresponding curves obtained
from full simulation of (22) and (23) are shown in panels (c) and (d). The low–opacity dash-dotted curves in panels (a) and
(b) show idealized dynamics with phase rotations artificially suppressed (i.e., Υ = 0). All simulations (c,d) are made with the
unconditional master equation for an unheralded Zeno gate and use a cavity Fock space truncated at N ≤ 80 photons.
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Figure 10: Figures of merit for performance of the Zeno gate under realistic implementation with dispersive measurement for a
longer gate time, T = 10µs (i.e., for Ω/2π = 0.1 MHz). The subspace retention Ξ(fe) (30) (left panels) and concurrence C (right
panels), are shown as a function of the measurement tone driving amplitude ε. We use dispersive shift values χfe/2π = 15 MHz,
χfg/2π = χee/2π = 9 MHz, χeg/2π = χge/2π = 4 MHz, and χgg = 0. The initial state is 1

2 (|e⟩ + |g⟩) ⊗ (|e⟩ + |g⟩) ⊗ |0⟩. Results
are shown for κ values ranging from the Markovian regime to the deep NM regime. Curves linking the solid symbols obtained
from naïve application of the CA model (described in Sec. 4.1) are plotted in panels (a) and (b), while corresponding curves
obtained from full simulation of (22) and (23) are shown in panels (c) and (d). The low–opacity dash-dotted curves in panels (a)
and (b) show idealized dynamics with phase rotations artificially suppressed (i.e., Υ = 0). All simulations (c,d) are made via the
unconditional master equation, and the points plotted have converged within a cavity Fock space truncated at N ≤ 60 photons.
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separation of timescales TG ≫ κ−1 ≫ ∆χ−1. Moder-
ate measurement tone amplitudes are adequate, and a
slower gate is desirable to the extent that is allowed
by the transmon coherence times. Finally, we empha-
size that all the results in this section were developed
using the unconditional (unheralded) system evolution.
This should be understood as a baseline from which we
can only improve by making use of the finite–efficiency
detection for heralding, as discussed in Sec. 4.3.

6 Zeno Gate via Longitudinal readout
We briefly explore here an alternative to dispersive mea-
surement that could be investigated in depth for future
realizations of the Zeno gate. There has been consider-
able interest in engineering “longitudinal” couplings of
the form

Ĥlon = ωc â
†â+

∑
j

{
ωj + gj(â† + â)

}
|j⟩ ⟨j| (31)

for readout, in place of the transverse coupling (20)
(see [28] for an overview). This coupling also leads to
a description of readout in terms of coherent pointer
states with a measurement strength (28), with pointer
state distance now entirely determined by the rela-
tive values of gj for different states. (For further de-
tails, see Appendix C.) This implies that if the gj

can be precisely engineered independent of one another
in practice, then longitudinal readout offers the pos-
sibility of realizing dynamics closer to those of (9).
Examples of longitudinal readout design include more
elaborate circuits in the spirit of [59], and sideband–
based single–quadrature measurements [60, 32, 61]. If
an intrinsically–degenerate measurement can be real-
ized by these or other methods, it would mitigate de-
coherence of the computational subspace SZ without
constraining κ as was necessary in the dispersive case
above.

Fig. 11 summarizes the performance of the longitu-
dinal Zeno gate idealized in the same spirit as the dis-
persive analysis of Fig. 8. The ideal longitudinal read-
out conditions maximize the coupling gap ∆gfe,j , while
minimizing the coupling gap ∆gj,ℓ for j, ℓ ̸= fe. Under
these idealized conditions we see that the Zeno gate per-
formance is much cleaner than even the idealized version
of dispersive measurement in Fig. 8. The curves in pan-
els (a) and (b) of Fig. 8 provide a sense of the parameter
ranges that would be required for implementation of a
longitudinal Zeno gate. The coupling parameters are
chosen such that gfe = |g| and gj = −|g| for j ̸= fe,
so as to eliminate both decoherence in the computa-
tional subspace SZ and the undesirable relative phase
dynamics, as discussed in detail in Appendix C. The

longitudinal Zeno gate implemented with this parame-
ter set is relatively rapid, with a gate time TG = 100 ns
which is partly responsible for the relatively demanding
parameters quoted in Fig. 11. However we note that
the cavity decay rates κ for which this gate is expected
to perform well are much higher than the corresponding
values under dispersive readout (Fig. 8). Indeed, they
are so rapid that issues of non-Markovianity and cavity
memory are completely irrelevant (with κ on the order
of GHz, the gate time would need to be on the order of
ns, rather that µs to create any such issue).

In short, longitudinal readout may offer a route to es-
cape some of the punishing timescale tradeoffs that are
fundamental to realizing the Zeno gate with dispersive
readout (if the gj can be engineered degenerately so
as to directly define SZ , while providing a strong Zeno
block against leakage out of SZ). We therefore sug-
gest that further development of this and other readout
methods may enable improved Zeno gate performance.
We also point out that Fig. 11 may be viewed as ideal
behavior for a Zeno gate, and used as a reference against
which to compare the qualitative behavior in the disper-
sive figures preceding it.

7 Discussion & Conclusions
We have derived a multi-qubit entangling gate based
on the Zeno effect and studied its performance under a
variety of models and assumptions, both idealized and
realistic. The gate can ideally entangle an arbitrary
number of qubits, and effectively implements a cphase
or n–cphase gate. The operation of the Zeno gate is
furthermore locally equivalent to a cnot or Toffoli gate.
Both the N = 2 and higher order Zeno gates make
use of a single local Rabi rotation applied to a qutrit,
and then uses the Zeno effect to transform this trivial
Hamiltonian into a universal gate that can in principle
be used for quantum computation.

We have shown that analysis of generic non-projective
measurement required to implement the Zeno gate pro-
vides concise, closed–form expressions encapsulating
both leakage through the Zeno blocking, and dephas-
ing due to both ideal and non-ideal measurement. Our
analysis of the effect of finite strength non-ideal Zeno
measurements also characterizes the fidelity of a her-
alded gate, which is found to have greatly improved
fidelity over that obtainable without detection.

We have then investigated two specific implementa-
tions of the Zeno gate, using measurement protocols
grounded in circuit QED. Specifically, we have empha-
sized detailed numerical analysis for a Zeno gate im-
plemented by dispersive readout, studying both ideal-
ized and more realistic system parameters, in differ-
ent dynamical regimes and for a range of gate times.
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Figure 11: Figures of merit for performance of the Zeno gate under ideal implementation with longitudinal measurement. The
subspace retention Ξ(fe) (30) (left panels) and concurrence C (right panels), are shown as a function of the measurement tone
driving amplitude ε, for the Zeno gate implemented over a time TG = 100 ns (i.e., for Ω/2π = 10 MHz). The initial state is
1
2 (|e⟩ + |g⟩) ⊗ (|e⟩ + |g⟩) ⊗ |0⟩. The cavity resonance is set at ωc/2π = 1 GHz and the system-cavity coupling terms are gfe = |g|
and gj = −|g| for j ̸= fe, which eliminates both decoherence in the computational subspace SZ and any relative phase dynamics
(see Appendix C).

We have quantified the impacts of non-Markovian read-
out effects for realistic parameters in regimes where
the cavity memory is non-negligible, illustrating the
impact of these effects and their interaction with res-
onator induced phase effects. Our analysis of disper-
sive readout assumes that the dispersive approxima-
tion remains appropriate: High cavity photon numbers,
however, can stress the validity of the dispersive ap-
proximation, and lead to a wide variety of complex ef-
fects that are detrimental to readout, which in practice
means that ε/κ cannot be made arbitrarily large. Fur-
ther discussion pertinent to this point may be found in
e.g. Refs. [52, 53, 54, 55, 56, 57, 58].

We expect that several realistic avenues exist for im-
proved gate operation. We have demonstrated reason-
able fidelities under unconditional Lindbladian dynam-
ics, and argue that these may be regarded as a lower
bound upon which one can improve with finite efficiency
measurements and post–selection. Additional improve-
ments could be considered in future work, including
shaping the measurement tone ε(t) to minimize the im-
pact of a slow ring–up for the readout resonator, or
shaping the Rabi drive Ω(t) so that the unitary rotation
is slower while the measurement rings up and maintains
a steady Γ/Ω throughout the evolution. Another option
is to better control the phase rotations Υ (containing
resonator–induced and AC Stark effects). These also
impact entanglement generation, and could either be
suppressed to create a pure Zeno gate, or accepted and
used in a hybrid between the Zeno and RIP [44, 45] gate.
The former improvements of shaping the measurement

and Rabi drives may be accomplished with additional
cavity drive(s) [8], and/or further unitary controls ap-
plied to specific qudit transitions. Such phase control
could be done on average (unconditionally), or better,
be implemented as feedback based on finite–efficiency
readout, in which case the gate time might also be ad-
justed based on knowledge of run–specific phase noise.
This is related to a third potential improvement: It
should be possible to enhance the heralded gate fidelity
by making use of quantum feedback [62] more generally,
e.g., by varying Ω according to the measurement signal.
Such feedback is known to be optimal in similar contexts
of measurement-based entanglement generation [10, 11].
Recent progress on dispersive readout in the shallow
non-Markovian regime [50] required for a moderately
fast Zeno gate suggests that such a feedback–assisted
Zeno gate might be feasible in practice. Fourth and last,
the most severe restrictions on timescales required for
Markovian readout and high gate fidelities that we have
discussed for dispersive measurement would be signifi-
cantly relaxed in an implementation using longitudinal
readout instead. We have demonstrated that there ex-
ist idealized parameter regimes for which longitudinal
readout could, in principle, yield a gate that is both
faster and more accurate than the dispersive modeling
we have performed.

Implementations of the Zeno gate using more qubits
and/or the improvements detailed above constitute a
promising avenue for future research and development
of this method. Our analysis of the Zeno gate under dis-
persive readout in this work but one example. In princi-

Accepted in Quantum 2023-08-16, click title to verify. Published under CC-BY 4.0. 19



ple one could perform a similar analysis for a broad va-
riety of readout techniques to understand how to bring
the Zeno gate to many different experimental platforms.

Finally, we look beyond the Zeno gate proposed in
this work, which uses a qutrit and N − 1 qubits to per-
form an n–cphase gate, to take note of similar concepts
in use in other areas of the literature. We have already
remarked that there is some connection between the
dynamics of the Zeno gate and blockade methods [15].
There is also a connection between our Zeno gate and
the use of dissipation engineering to stabilize cat qubits
or GKP qubits [5, 6, 63, 64, 65, 66, 67, 68]. There,
the stability of e.g., the cat codespace within a bosonic
mode is enforced by an engineered two–photon dissi-
pation. In the present manuscript we defined a Zeno
gate that would pull us out of the computational sub-
space SZ without dissipation / measurement, but which
then becomes a desirable operation when strong dissipa-
tive confinement to SZ is added. Similarly, operations
on a dissipative cat qubit rely on slow operations that
would push the bosonic cavity mode out of the desired
qubit codespace, but using a strong and specifically–
engineered dissipation channel stabilizes these opera-
tions to the desired subspace. Thus, while qubits en-
coded in bosonic modes are a quite different physical
system than the one we consider here, the Zeno effect
can play a similar role in those systems as well. More
broadly, this again suggests that it would be quite in-
teresting to explore Zeno gates across a wider variety of
architectures.
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A Exact and approximate expressions
for the effective single-qubit Zeno fidelity
The effective single qubit master equation Eq. (10) is a
set of linear, first-order differential equations. As ρ̃(0)
is real, symmetric, and of unit trace, and H̃ is purely
imaginary, the master equation reduces to a set of two
coupled equation in two real variables, which may be
solved exactly by diagonalization. The exact solution
for ρ̃11(t) given the initial condition ρ̃11(0) = |1⟩⟨1| is

ρ̃11(t = 2π/Ω) =1
2

[
1 + e−πΓ/2Ω cosh

(
πA

2Ω

)
(32)

+ Γ
A
e−πΓ/2Ω sinh

(
πA

2Ω

)]
A ≡

√
Γ2 − 16Ω2.

To derive an approximate expression that is much sim-
pler, we use the fact that Ω ≪ Γ to expand A ≈
Γ − 8Ω2/Γ, which yields

ρ̃11 ≈ 1
2 (33)

+ e−πΓ/2Ω

4

[
eπΓ/2Ωe−4πΩ/Γ + e−πΓ/2Ωe4πΩ/Γ

]
+ Γ

4
e−πΓ/2Ω

Γ − 8Ω2/Γ

[
eπΓ/2Ωe−4πΩ/Γ − e−πΓ/2Ωe4πΩ/Γ

]
Dropping the 8Ω2/Γ term in the denominator and all
terms that are exponentially small in Γ yields the ex-
pression used in the main text

P̃0 = 1 − ρ̃11 ≈ 1 − e−4πΩ/Γ

2 (34)

The above approximation works very well. Further-
more, the difference between this expression and the
exact expression (1 − ρ̃11 using Eq. (32)) is negligible.

A similar calculation was performed to derive Fherald.
There, we used an approximate solution to Eq. (15).
The exact solution is

ψee(t) = e−πΓ/2Ω
[
cosh

(
πB

2Ω

)
+ Γ
B

sinh
(
πB

2Ω

)]
(35)

B ≡
√

Γ2 − 4Ω2

The simplifications leading to Eq. (16) are almost iden-
tical to those done above.
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B Agreement between Bell state fidelity
and average fidelity
To compute average fidelities, one wishes to integrate∫
F (|ψ⟩)dψ using the Haar measure [69]. Using the fact

that the Cartesian product of n Gaussians is spherically
symmetric, one can construct a Haar-uniform integral
as ∫

F (ψ1, ψ2, ...ψd)dψ (36)

= 1
N

∫
F

(
a1 + ib1

r
,
a2 + ib2

r
, ...

ad + ibd

r

)
× e−r2 ∏

i

daidbi

r =
(∑

i

a2
i + b2

i

)1/2

where N is a normalization factor.
We begin with the quantities in Sec. 3. The expres-

sions for F (1)
finite Γ and Fherald only depend on |ψee|, which

yields highly symmetric integrals. The Haar measure
over a two-qubit Hilbert space has the symmetry of a
7-sphere, which is broken into the symmetry of a 1-
sphere (circle) and a 5-sphere by the |ψee| dependence
of F . Thus we first analytically integrate over these
spheres using a higher dimensional analog of cylindrical
coordinates, leaving nontrivial integrals only over the
remaining two radial coordinates

N =
∫
e−r2

d8r = π4 (37)

m =
√
a2

ee + b2
ee

n =
√
a2

eg + b2
eg + a2

eg + a2
eg + a2

gg + b2
gg

F̄ = 1
N

∫
F
(m
r

)
e−r2

mdθ dmn5 dΩ5 dn

= (2π)(π3)
N

∫
F
(m
r

)
e−r2

mn5 dmdn.

We have integrated out the angular coordinates dθ and
dΩ5 over the 1- and 5-spheres respectively in the last
line. If F (|ψee|) is linear in |ψee|2, as is the case for
F

(1)
finite Γ, the final integral is easily performed, and the

result is to replace |ψee|2 with 1/4. Thus F (1)
finite Γ(ψ) =

F̄
(1)
finite Γ for any state with |ψee|2 = 1/4.
The corresponding integral for Fherald is non-trivial,

so we evaluate it numerically. We plot the numerically
computed F̄herald against Fherald(|ψ0⟩) in Fig. 12, with
|ψ0⟩ = (|gg⟩ + |ge⟩ + |eg⟩ + |ee⟩)/2. We use the exact
solution for ψee, Eq. (35) for both computations. The
curves overlap almost perfectly, indicating that the an-

Figure 12: Average heralded gate fidelity as computed numeri-
cally versus the heralded gate fidelity when applied to the spe-
cific state |ψ0⟩.

alytically tractable Fherald(|ψ0⟩) serves as a good proxy
for F̄herald.

To derive the average gate fidelity Fχ due to finite
χ/κ, we use equation (17) of reference [70], which com-
putes the average fidelity between an ideal unitary op-
eration Û ρ̂ Û† and the output of some quantum channel
E(ρ̂)

F̄ (E , U) =
∑

i Tr[Û Û†
i Û

†E(Ûi)] + d2

d2(d+ 1) (38)

where Ûi is matrix basis satisfying Tr[UiU
†
j ] = δi,jd

and d is the Hilbert space dimension. This is used
to create Fig. 6, in conjunction with a steady–state
approximation of the measurement described in Ap-
pendix C.6. Specifically, we compute F̄χ (a measure
of the fidelity that is retained despite RIP and decoher-
ence effects within the two–qubit subspace) by setting
Û = Î and using the two-qubit Pauli basis σ̂k ⊗ σ̂l with
{k, l} = 0, x, y, z. We apply Eq. (63b) as E . The result
simplifies to Eq. (64).

C Measurement Model Details

For the sake of completeness and pedagogy, we pro-
vide an overview of dispersive measurement, motivat-
ing the main quantities used to describe this measure-
ment process the main text. The results and approaches
outlined here are well–developed in the literature, and
for further reading on the subject one may consult
e.g. [28, 35, 38, 39, 42, 43, 71]. We will here restrict
discussion to measurement of a two–level system except
where necessary.
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C.1 The Dispersive Hamiltonian
Dispersive measurement is based on the Jaynes–
Cummings Hamiltonian

ĤJC = 1
2 ωq σ̂z + ωc â

†â+ g
(
â σ̂+ + â† σ̂−

)
, (39)

which is derived from the Rabi Hamiltonian (describing
dipole coupling of a qubit to a quantized field mode)
via the rotating wave approximation. We define the
qubit–cavity detuning ∆q

c ≡ ωq −ωc, and move towards
the dispersive regime defined by ∆q

c ≫ g. One may
then make a further approximation (for example, via
second–order perturbation theory), to obtain the dis-
persive Hamiltonian

Ĥdisp = ωq

2 σ̂z +
(
ωc + g2

∆q
c
σ̂z

)
â†â. (40)

We define the dispersive shift χ ≡ g2/∆q
c , where in the

notation of the main text, we have χe = χ/2 and χg =
−χ/2. The dispersive interaction indicates that the field
will experience an effective frequency shift depending on
σ̂z of the qubit; our aim here is to explain in detail how
this can be leveraged to realize optical readout of the
qubit’s σ̂z observable.

C.2 A Driven and Decaying Cavity
Let us suppose that the cavity mode described by â
above leaks into an external line b̂ at a rate κ. That
line will carry information to a detector in the ideal
case, and we will say that information that has entered
the line but is not detected has dissipated. It is impor-
tant to appreciate that the cavity decay rate κ func-
tions as a gatekeeper, fundamentally limiting the rate
at which information shared between the qubit and in-
ternal mode â becomes knowable from outside. Implicit
in this description is the notion that our quantum sys-
tem comprises both the qubit and internal cavity mode,
which are completely isolated from the external world
except for the coherent field input and decay into the
line. This picture motivates us to use a Markovian de-
scription of the dissipation of the composite qubit ⊗
cavity system, even if the dynamics may manifest as
non-Markovian when we try to describe the qubit by
itself. To this end, we may picture the situation us-
ing the structure typical of a composite collision model
[40, 41], illustrated in Fig. 4c. At successive timesteps,
the joint qubit–cavity system “collides” with a fresh tem-
poral mode in an external line via cavity decay. Direct
detection / monitoring of the line is assumed possible,
but direct detection of the cavity is not, such that in-
formation becomes detectable only after decaying out
of the cavity.

We may model the cavity decay into the line over a
time interval ∆t as a unitary beamsplitter relation

â →
√
e−κ ∆t â+

√
1 − e−κ ∆t b̂k, (41)

where the operator b̂k represents the line mode at the
timestep indexed by k. The evolution of the internal
cavity mode due to decay can equivalently be formu-
lated as

ȧ = − 1
2κ â. (42)

Dispersive measurement requires that the cavity mode
be supplied with some input amplitude as well. We
may consequently supplement the equation (42) (first)
with an input ε â† ei ωε t+i ϕ + ε â e−i ωε t−iϕ, and (sec-
ond) with the effect of the qubit on the cavity mode as
per ȧ = −i[â, Ĥdisp]. Combining these elements of the
input/output picture yields [39, 43]

ȧ = ε−
(
i∆j + 1

2κ
)
â, (43)

where we have written the equation in the frame ro-
tating at the input tone frequency ωε, and we define
∆j ≡ ωc − ωε + χj as in the main text. The block–
diagonal structure of the dispersive Hamiltonian allows
us to solve the equation in each subspace j, and use
them together as implied by Eq. (24). We have again
implicitly chosen a phase on ε that corresponds to driv-
ing along the P̂ quadrature (ϕ = π/2, in the notation
of the main text).

While many analyses stop here, we find that it is
important in our present case to discuss Eq. (27) in
greater detail. This will be clearest if we consider a
qubit–cavity state ζ eiφe |e, αe⟩ +υ eiφg |g, αg⟩. We may
generally consider the jth subspace, where the element
eiφj |j, αj⟩ of the joint state evolves under

Ĥj = ∆j â
†â+ i ε â† − i ε â. (44)

We consider the short time evolution
Ûj(dt) eiφj |j, αj⟩ =

e−i Ĥj dt eiφj |j, αj⟩ ≈ eiφj e−i ∆j â†â dt D̂(ε dt) |j, αj⟩ ,
(45a)

where D̂(β) = eβ â†−β∗ â is the displacement opera-
tor, which we have separated from the other term (a
phase rotation) only because higher–order terms in the
Baker–Campbell–Hausdorff expansion scale to O(dt2)
and higher. Continuing, we may write Ûj(dt) eiφj |j, αj⟩

≈ eiφj+ε dt (α∗
j −αj)/2 e−i ∆j â†â dt D̂(αj + ε dt) |j, 0⟩

= eiφj−i ε dt(i α∗
j −i αj)/2 ∣∣j, (αj + ε dt)e−i ∆j dt

〉
≈ eiφj−i ε dt Im[αj ] |j, αj + dt(ε− i∆j αj)⟩ .

(45b)
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The external phase factor shows us that φ̇j =
−ε Im[αj ], while we may trivially recover (43) by look-
ing at the coherent state evolution within the ket, and
then incorporating damping. Assembling the calcula-
tions and arguments above, we have a time–continuum
picture of the cavity dynamics under dispersive cou-
pling, within each subspace defined by the qubit states.

C.3 Qubit Decoherence and Measurement
We next use the expressions above to write a family
of Kraus–like operators which could be used to express
the conditional (or un-conditional) evolution of the joint
qubit–cavity state. The approach below is most similar
to those of Refs. [12, 36, 39, 42]. Following the intuition
above, we write a qubit–cavity state of the form

|ψk⟩ = ζk e
i φ(k)

e

∣∣∣e, α(k)
e

〉
+ υk e

i φ(k)
g

∣∣∣g, α(k)
g

〉
; (46)

having already described the evolution of α and φ
above, our priority is now to understand the evolution
of ζ and υ. Suppose that the initial qubit–cavity–line
state reads |ψk⟩⊗|0⟩ (recalling Fig. 4), and then evolves
to

ζk e
i φe

∣∣∣e,√e−κ ∆t α(k)
e

〉
⊗
∣∣∣√1 − e−κ ∆t α(k)

e

〉
+ υk e

i φg

∣∣∣g,√e−κ ∆t α(k)
g

〉
⊗
∣∣∣√1 − e−κ ∆t α(k)

g

〉
,

(47)

as per (41) after decay into the line. We may introduce
some idea of a final line state |Lk⟩ corresponding to a
possible detector outcome, and rearrange the above into
a state update

⟨Lk|

 ∣∣∣√1 − e−κ ∆t α
(k)
e

〉
0

0
∣∣∣√1 − e−κ ∆t α

(k)
g

〉 
︸ ︷︷ ︸

M̂

|ψk⟩ .

(48)
We have now identified a Kraus–like operator M̂ which
can be used to update the coefficients in (46) given that
a detector at the end of the line obtains an outcome in
timestep k corresponding to |Lk⟩.

The vector of ζ, υ can be generalized to a density
matrix ρ (i.e., (46) is more generally written as (24));
this ρ is expressible as a 2 × 2 matrix due to the special
form of the joint qubit–cavity state we have been able to
assume. This means that as long as the only dynamics
we consider are those due to measurement or dissipation
via the dispersive channel described, the problem is not
formally more complex than that of a qubit alone. Dis-
persive measurement is usually performed with homo-
dyne (one quadrature) or heterodyne (two quadrature)
detection at the end of the line. We do not need to

consider the conditional evolution from either of these
cases in detail however, and the interested reader should
refer to e.g. [42, 71] for details. Here it will be adequate
to consider the case where the line simply dissipates
permanently, without detection, into the external envi-
ronment. Any basis could be chosen to trace over all
possible |Lk⟩; we will use the Fock basis for simplicity.
To O(∆t), there are only two possible Fock–basis out-
comes to a given timestep: Either zero photons emerge
from the line (|Lk⟩ = |0⟩), as per

M̂0 =
(

⟨0|
√
κ∆t αe⟩ 0
0 ⟨0|

√
κ∆t αg⟩

)
≈ Î2 + ∆t

(
− 1

2κ |αe|2 0
0 − 1

2κ |αg|2
)

︸ ︷︷ ︸
Ẑ

,
(49a)

or a single photon is detected (|Lk⟩ = |1⟩), as per

M̂1 =
(

⟨1|
√
κ∆t αe⟩ 0
0 ⟨1|

√
κ∆t αg⟩

)
≈

√
∆t
( √

καe 0
0

√
καg

)
︸ ︷︷ ︸

Ŝ

.
(49b)

Given ρ(t) = ρk, the unconditional state update to ρ(t+
∆t) = ρk+1 may be written4

ρk+1 = i∆t[ρk, Ĥφ]+M̂0 ρk M̂†
0 +M̂1 ρk M̂†

1 +O(∆t2),
(50)

or equivalently

ρ̇ = ρk+1 − ρk

∆t = i[ρ, Ĥφ] + Ẑ ρ+ ρ Ẑ† + Ŝ ρ Ŝ†. (51)

We have included the resonator–induced phase (RIP, see
[44, 45]) with the diagonal Hamiltonian Ĥφ with ma-
trix elements Hφ,jj = φ̇j . It is, at this point, straight-
forward to recognize that Ŝ could be expressed in the
form Ŝ = L̂, where Ljj =

√
καj is a diagonal matrix

with complex entries, and that Ẑ = − 1
2 L̂

†L̂ in that nota-
tion. Therefore, (51) is just a Lindblad Master Equation
(ME). This L̂ generalizes the basic form

√
Γ σ̂z implied

by (9), for the joint qubit–cavity state.
By comparing (51) to the Lindblad ME for the σ̂z

channel of a qubit (i.e., L̂ =
√

Γ σ̂z), we may ob-
tain a straightforward expression for the measurement

4Note that the effective non-Hermitian Hamiltonian (15) de-
scribing the jumpless case may instead be derived from an ex-
pression like

ρk+1 =
M̂0 ρk M̂†

0

tr
(

M̂0 ρk M̂†
0
) ,

which is the state update conditioned on the outcome 0.

Accepted in Quantum 2023-08-16, click title to verify. Published under CC-BY 4.0. 23



strength (decoherence rate) as a function of αe and αg.
The dynamics (51) can be re-written in Bloch coordi-
nates (again, generalizing ζ and υ) via q̇ = tr(σ̂q ρ̇) for
q = x, y, z, and read

ẋ = −Γx+ Υ y, ẏ = −Γ y − Υx, ż = 0, (52a)

where we have defined the measurement strength (de-
phasing rate)

Γ ≡ 1
2κ |αe − αg|2 = κ

( 1
2 |αe|2 + 1

2 |αg|2 − Re[αe α
∗
g]
)
,

(52b)
and the average phase rotation rate (AC Stark shift and
RIP)

Υ = κ Im[αe α
∗
g] + ε Im[αg − αe]. (52c)

These expressions have been derived in past investiga-
tions of the present problem [39], and clearly illustrate
that a measure of the distance (52b) is the defining fea-
ture making information about |e⟩ versus |g⟩ available
to the external world via the dispersive interaction. The
expressions (28) and (29) in the main text are straight-
forward generalizations of the quantities we have just
derived. The effective damping and rotation rates of
the density matrix may be further modified if one traces
out the cavity as well as the line [39] in the NM case.

C.4 Two Dispersive Markovian Regimes
C.4.1 The Fast Markovian Regime

The Markovian regime is typically defined by κ being
the fastest timescale directly involved in the measure-
ment process. Suppose we measure “continuously” in
such a way as to obtain a measurement outcome every
∆t, due to some detector integration over that same in-
terval. We may more precisely point to a hierarchy of
timescales associated with this Markovian regime, that
make it ideal for measurement: First, we suppose that
∆t ≳ κ−1 (so that the cavity has time to approximately
reach its steady state within every measurement inter-
val). If we add unitary rotations, we must secondly
suppose that κ ≫ Ω (so that the cavity is able to quasi-
adiabatically follow qubit dynamics on timescales of in-
terest). Implicit above is the notion that ∆tΩ ≪ 1.

The measurement strength (52b) reads

Γ̄ = 8κ ε2 (χe − χg)2

(κ2 + 4∆2
e)(κ2 + 4∆2

g) = 32κ ε2 χ2

(κ2 + 4∆2
e)(κ2 + 4∆2

g) ,

(53)

if we assume the cavity has reached its steady state
(26b) within the measurement interval. In the limit
κ ≫ ∆j , it is possible to rewrite this as

Γ̄ ≈ 32 ε2 χ2

κ3 ≈ 8χ2

κ
⟨n⟩, (54)

where the last form is in agreement with the initial
derivations of dispersive readout by Blais et al. [38], and
where ⟨n⟩ is the average photon number in the cavity.
This last expression (54) is typically used in the Marko-
vian regime. It offers clear intuition about the essential
dependence of the measurement strength on the disper-
sive shift, cavity decay rate, and photon number popu-
lating the measurement tone, in the regime best suited
to straightforward continuous measurement of the qubit
[35, 46].

C.4.2 The Slow Markovian Regime

The usual fast Markovian regime above is but one
steady state approximation we can make however. For
the Zeno gate, it is helpful to also investigate a slow
limit, defined instead by the hierarchy Ω ≪ κ ≪ ∆χ.
We call this a slow limit, because it is difficult in prac-
tice to make the relative dispersive shifts ∆χ arbitrarily
large; consequently, κ is limited, and any unitary dy-
namics at rate Ω must in turn be slower, such that the
hierarchy of timescales above implies a very long gate
time TG = 2π/Ω.

Let us briefly look at this limit in the context of a
qutrit, where we will have some χf , χe, and χg. The
steady state measurement strength reads

Γ̄ij =
8κ ε2 ∆χ2

ij

(κ2 + 4∆2
i )(κ2 + 4∆2

j ) (55)

for ∆j = ∆c
ε + χj and ∆χij ≡ χi − χj . Now suppose

that in analogy with the main text, we choose our Zeno
tone frequency such that ∆f = 0, with the intent that
Γ̄fe ∼ Γ̄fg ≫ Γ̄eg. It follows from that choice of ωε that
∆e → ∆χfe and ∆g → ∆χfg. Putting these results into
the expressions for the steady–state measurement rate
for each of three qutrit transitions, and approximating
for κ ≪ ∆χ, we find

Γ̄eg =
8κ ε2 ∆χ2

eg

(κ2 + 4∆χ2
fe)(κ2 + 4∆χ2

fg) ≈ κ ε2

2
∆χ2

eg

∆χ2
fe∆χ2

fg

(56a)
for the case where ωε is not resonant with either state’s
dispersive shift, and

Γ̄fe =
8κ ε2 ∆χ2

fe

κ2(κ2 + 4∆χ2
fe) ≈ 2 ε2

κ

≈
8κ ε2 ∆χ2

fg

κ2(κ2 + 4∆χ2
fg) = Γ̄fg

(56b)

for transitions to |f⟩, which differ due to the resonance
∆ε

c = χf . These expressions correspond to the regime
of a Markovian but very slow Zeno gate. The especially
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desirable property of the expressions above is that

Γ̄Zeno ∼ O

(
ε2

κ

)
≫ Γ̄SZ

∼ O

(
κ ε2

∆χ2

)
(57)

(where the Zeno subscript refers to transitions we wish
to block, and SZ refers to the computational sub-
space which we wish to leave alone). The validity of
these approximations is based on TG κ/2π ≫ 1 (where
TG = 2π/Ω is the gate time). Note that the restric-
tions on cavity photon number necessary to the disper-
sive regime prevents us from making ε arbitrarily large.
Generalization of these expressions to larger systems is
quite simple.

Using the same approach as above, we may also write
approximate expressions for the AC–Stark and RIP ro-

tations to leading order, obtaining

Ῡeg ≈ − ε2 ∆χeg

∆χfg∆χfe
, (58a)

Ῡfe ≈ − 3 ε2

∆χfe
, Ῡfg ≈ − 3 ε2

∆χfg
. (58b)

C.5 Towards the Zeno Gate: Analytic Treatment
of Qutrit Measurement
We first introduce some notations and conventions for
our discussion of qutrit states and measurement, and
then proceed move towards the ∆χ ≫ κ limit.

We choose to parameterize the state of a qutrit ⊗
cavity via the generalized Gell–Mann matrices

σ̂1 = |f⟩ ⟨f | − |e⟩ ⟨e| =

 1 0 0
0 −1 0
0 0 0

 , σ̂2 = 1√
3

 1 0 0
0 1 0
0 0 −2

 , (59a)

σ̂3 =

 0 1 0
1 0 0
0 0 0

 , σ̂4 =

 0 0 1
0 0 0
1 0 0

 , σ̂5 =

 0 0 0
0 0 1
0 1 0

 , (59b)

σ̂6 =

 0 −i 0
i 0 0
0 0 0

 , σ̂7 =

 0 0 −i
0 0 0
i 0 0

 , σ̂8 =

 0 0 0
0 0 −i
0 i 0

 . (59c)

It follows that the qutrit density matrix can be expressed via these matrices and the corresponding coordinates, as
per

ρ = 1
3 Î3 + 1

2 q · σ̂, (60)

where we have defined the Bloch–like coordinates q = tr(σ̂q ρ). If we naïvely supplement the dynamics given by the
Lindblad ME with Rabi rotations between the |e⟩ and |f⟩ levels, as per ĤR = 1

2 Ω σ̂6, then we obtain the dynamical
equation

ρ̇ = i[ρ, ĤR + Ĥφ]+Ẑ ρ+ ρ Ẑ† + Ŝ ρ Ŝ†

for Ẑ = −κ

2

 |αf |2 0 0
0 |αe|2 0
0 0 |αg|2

 and Ŝ =
√
κ

 αf 0 0
0 αe 0
0 0 αg

 ,
(61a)

which can equivalently be written in terms of the coordinates just defined:

q̇1 = −Ω q3, q̇2 = 0, (61b)

q̇3 = Ω q1 − Γfe q3 + Υfe q6, q̇4 = − 1
2 Ω q5 − Γfg q4 + Υfg q7, q̇5 = 1

2 Ω q4 − Γeg q5 + Υeg q8, (61c)

q̇6 = −Γfe q6 − Υfe q3, q̇7 = − 1
2 Ω q8 − Γfg q7 − Υfg q4, q̇8 = 1

2 Ω q7 − Γeg q8 − Υeg q5. (61d)

Note that we have again collected the resonator–
induced phase rotations φ̇j = −ε Im[αj ] into a Hamil-
tonian term Ĥφ = −ε

∑
j Im[αj ] Π̂j (this is essentially a

phase gate in the joint qutrit–cavity space). We remind
the reader that the expressions immediately above are

written under the assumption that q parameterizes a
joint qutrit–cavity state of the form (24), such that the
line is traced out but the cavity is not. Then Γ and Υ
have the same definitions as in (52b) and (52c), with the
indices denoting the pair of levels associated with the
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coefficient. We reiterate that any allusions to a naïve
application of the CA, as used in e.g. Figs. 8–10(a,b), re-
fer the same process leading to (61), and that the naïve
part comes from appending i[ρ, ĤR] to the equation of
motion for measurement only without further account-
ing for how those unitary dynamics and measurement
process impact each other. Notice that while the Rabi
drive directly causes rotations q1 ↔ q3 at frequency Ω,
Ω also indirectly generates dynamics elsewhere; analogs
of the latter types of terms are important in the Zeno
gate of the main text operating in a larger space. The
rotations Υ, on the other hand, constitute an extra com-
plication that is particular to the physical implementa-
tion under consideration.

We may look at the qutrit equations of motion ex-
plicitly in the Ω ≪ κ ≪ ∆χ regime. Recall that we
computed approximate expressions for Γ and Υ in (56)
and (58), respectively. Combining these with our pre-
vious expressions, we may understand the main aspects
of the dynamics by focusing on the evolution of the real
parts of the coherences:

q̇3 ≈ Ω q1 − ε2
(

2 q3

κ
+ 3 q6

∆χfe

)
, (62a)

q̇4 ≈ − 1
2 Ω q5 − ε2

(
2 q4

κ
+ 3 q7

∆χfg

)
, (62b)

q̇5 ≈ 1
2 Ω q4 − ε2 ∆χeg

∆χfe∆χfg

(
κ∆χeg

2 ∆χfe∆χfg
q5 + q8

)
.

(62c)
While (57) ensures that coherences connecting to |f⟩
(q3 and q4) damp much faster than those which do not
(i.e., q5), there is one moderately inconvenient feature
apparent in these dynamics: While (62a) and (62b) ex-
hibit faster damping than AC–Stark / RIP rotations
(κ−1 ≫ ∆χ−1, which is good), (62c) illustrates that
the AC–Stark / RIP effects are not mitigated within
the computational subspace to the same degree that
the damping is. Practical implementations of the Zeno
gate may consequently require either extra controls to
mitigate phase rotations (see Ref. [8] for an example of
this), or may account for RIP dynamics and use them
alongside the Zeno dynamics emphasized here to achieve
useful non-local operations. For the Zeno gate, the best
dynamics we could wish for above are those which are
recovered in the limit ∆χeg → 0 (i.e., ∆χSZ

→ 0),
which we have used as an idealized reference point in
Fig. 8. We finally remark that ε2 scales against all the
terms of interest above in the same way, and conse-
quently has a double–edged effect: Both desired and
undesired damping, and AC–Stark rotations, are ampli-
fied with larger ε, so that both our Zeno blocking and
sources of gate infidelity grow together with increased
tone power.

C.6 Analysis: Zeno gate with large dispersive
shifts
We continue by using the approximations we have just
introduced to make analytic statements about the Zeno
gate fidelity in the ∆χ ≫ κ limit. Generalizing to
a qutrit ⊗ N–qubit system, we may note that under
the cavity steady–state assumptions detailed above, we
have qudit evolution

ρ̇jℓ = 1
2 (i Ῡjℓ − Γ̄jℓ)ρjℓ for j ̸= ℓ, ρ̇jj = 0. (63a)

Consequently, all of the evolution is damping of coher-
ences (dephasing), and rotations (due to ĤR and the
AC Stark effect), such that

ρjℓ(t) = ρjℓ(0) e(i Ῡjℓ t−Γ̄jℓ t)/2 (63b)

(where Υjj and Γjj are zero by definition). We may
use solutions of this form to compute the heralded and
un-heralded Zeno gate fidelities in the slow Markovian
regime, used to create Fig. 6. We reiterate that the
above neglects the action of ĤR, which does not com-
mute with the action of Eq. (63b), but that the ad-hoc
addition of ĤR is the least problematic in the Marko-
vian regime we explicitly consider here [50]. We add the
unitary rotations at frequency Ω in this way, and then
compare the approximate dynamics above against the
ideal dynamics ÛZeno (4) to compute the fidelity.

To relate the subsequent expression to the results of
the previous section, we substitute t = 2π/Ω and ε2 =
Γκ/2 [recall (56b)]. The resulting expressions now only
depend on the unitless ratios ∆χ/κ ≡ X and Γ/Ω ≡
Y , which are the relevant physical quantities for the
gate fidelity. Computing the average gate fidelity [70]
in Appendix B (due to decoherence and phase shifts
within the two–qubit computational subspace SZ), we
find

F̄χ = 1
2 + 1

10 exp
[
− π Y

9X2

]
cos
[
π Y

3X

]
+ 1

5 exp
[
− π Y

16X2

]
cos
[
π Y

4X

]
+ 1

5 exp
[
− π Y

144X2

]
cos
[
π Y

12X

]
.

(64)

Examining the above expression in isolation, one would
conclude they ought to maximize χ/κ and minimize
Γ/Ω. However from Sec. 3, we know that it is also
preferable to maximize Γ/Ω to suppress leakage through
the Zeno block, implying a trade-off between a large
measurement rate and spurious dephasing and Stark
shifts. In Fig. 6, we plot the infidelity due to Eq. (64),
with the additional subtraction of the infidelities calcu-
lated in Sec. 3. Fig. 6 illustrates these ideas, where we
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plot

F̄χ − (1 −Ffinite Γ) − (1 −Fherald) ≈ F̄χ ·Ffinite Γ ·Fherald
(65a)

for the un-heralded case, and

F̄χ − (1 − Fherald) ≈ F̄χ · Fherald (65b)

for the heralded case. This figure allows to 1) ascer-
tain the degree of improvement in the heralded case
as compared with the un-heralded one, and 2) quickly
locate the parameter choices with the best trade-off be-
tween the different sources of infidelity in the expres-
sions above. This also 3) unifies the different fidelity
expressions derived at different points in the text to the
extent possible.

C.7 Comparison to Longitudinal Readout
Suppose that in place of the approximate (39), derived
from “transverse” dipole coupling between qubit and
field, we instead had system with a “longitudinal” cou-
pling [28]

ĤL = 1
2 ωq σ̂z + ωc â

†â+ gz(â+ â†)σ̂z. (66)

The ansatz (46) remains appropriate to describe mea-
surement based on this qubit–field interaction alone,
and the cavity evolution is now characterized by

ȧ = −i[â, ĤL] − 1
2 κ â = gz σ̂z −

(
i ωc + 1

2 κ
)
â, (67a)

or equivalently

α̇± = −
(
i ωc + 1

2 κ
)
α± ∓ i gz (67b)

with solutions

α±(t) =
(
α±(0) ∓ 2i gz

κ+ 2i ωc

)
e

−
(

i ωc+ 1
2 κ

)
t
∓ 2i gz

κ+ 2i ωc
,

(67c)
where + is for |e⟩ and − is for |g⟩.

A major difference between the dispersive and longi-
tudinal solutions is that the latter does not imply the
same tradeoffs for timescales in the measurement dy-
namics. Let us reconsider Markovian qutrit measure-
ment for longitudinal coupling, following the same pro-
cess employed in Eqs. (55)–(56). Notice that κ still
sets the rate at which the cavity approaches a steady
state, and that Ω ≪ κ should still be a suitable cri-
terion for approximately Markovian and coherent state
dynamics. However, to make approximations similar to
those in Eqs. (55)–(56), we now require the hierarchy
Ω ≪ κ ≪ ωc instead of Ω ≪ κ ≪ ∆χ, where ωc is
the bare cavity frequency. As ωc can be on the order
of GHz in experiments, we find that our restrictions on

κ and the gate time are much more relaxed for longitu-
dinal coupling compared with the dispersive case. The
steady state measurement strength here reads

Γ̄jℓ =
2κ∆g2

jℓ

κ2 + 4ω2
c

≈
κ∆g2

jℓ

2ω2
c

, (68)

where the latter approximation is based on κ ≪ ωc.
Notice that in practice, we do not want to go deep into
this regime if we want a strong measurement rate; the
expressions above suggest that for a strong Zeno gate
measurement we want a very quickly–decaying cavity,
as modest a cavity resonance frequency as possible, and
the largest ∆gjℓ we can manage. The relative measure-
ment strengths between different transitions |j⟩ ↔ |ℓ⟩
are now entirely determined by the differences between
coupling terms ∆g2

jℓ. With the longitudinal approach,
one’s ability to engineer suitable gj is thus the limiting
factor for both the Zeno blocking capability and sub-
space decoherence. If those gj can be engineered pre-
cisely and freely, then the longitudinal scheme leaves
considerable latitude to choose a gate time that op-
timizes tradeoffs between Zeno blocking and subspace
decoherence.

Another significant difference between the longitu-
dinal and dispersive solutions is that it possible to
have Υ = 0. This is a benefit in many measure-
ment contexts (see [28] and references therein), includ-
ing ours: The phase rotations from Υ ̸= 0 interfere
with our ideal Zeno gate dynamics, and consequently
suppressing them would simplify practical implemen-
tation of the scheme considerably. Recall that there
are two terms which may contribute to Υ (in direct
analogy with (45)). If all the gj are real, then co-
herent states are always displaced along a line in the
quadrature plane; without relative rotations we have
κ Im[ᾱjᾱ

∗
ℓ ] = 0, thereby eliminating one contribution

to Υjℓ. In analogy with the RIP gate [44, 45], we
still have a second relative phase contribution; consid-
ering again superpositions of terms eiφj |j, αj⟩, we find
phase accumulation between different subspaces at rate
Υjℓ = φ̇j −φ̇ℓ = gℓ Re[αℓ]−gj Re[αj ] (assuming real g).
This may be obtained via the same logic as in Eq. (45).
With relaxed contraints on κ, we may again look at
the steady–state solutions in the fast Markovian regime,
and find

Ῡjℓ =
4ωc(g2

j − g2
ℓ )

κ2 + 4ω2
c

≈
g2

j − g2
ℓ

ωc
. (69)

This implies that a fast gate is possible with longitu-
dinal readout, but that phase rotations are likely to
remain a problem unless a specific situation can be
engineered: We may have Γ̄jℓ ≫ 0 and Ῡjℓ = 0 if
gj = −gℓ. Fig. 11 is based on this assumption, demon-
strating ideal Zeno gate performance for large gfe = |g|,
gj = −|g| ∀ j ̸= fe, and suitable choices of κ.
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Figure 13: We plot the Husimi–Q (70) functions of the readout resonator (with X ∈ [−8, 8] on x–axes and P ∈ [−8, 8] on the
y-axes for all panels). We use ε/2π = 2 MHz, with dispersive shifts χ/2π = ±2 MHz (with + for |e⟩ and − for |g⟩), initialize
the qubit in (|e⟩ + |g⟩)/

√
2, and trace out the qubit state to generate a plot after T = 5µs. The readout tone of amplitude ε is

driven at the natural cavity frequency (i.e., the dispersive shifts are distributed about it symmetrically) for simplicity. The Rabi
drive Ω is varied as we move from left to right as Ω = 0 (far left column), Ω/2π = 5 MHz (center left column), Ω/2π = 50 MHz
(center right column), and Ω/2π = 500 MHz (far right column). Similarly, we scale the cavity decay rate from top to bottom as
κ = 10 MHz (top row), κ = 1 MHz (center row), and κ = 0.1 MHz (bottom row). Essentially this puts the “most Markovian”
dynamics in the top left, and “least Markovian” dynamics in the bottom right. The left column shows the case where the analytic
measurement model (52) is exact, and we essentially scale from this towards the decoupled dynamics [47] as we move right; this
no–measurement limit (defined by Ω ≳ ∆χ2/κ) is attained for the top right panel only. Distortion of the initially–coherent cavity
pointer states becomes increasingly clear as the cavity slows (i.e., towards the bottom right). Reading down the far left column, we
see the weakening of the measurement due to increasingly slow cavity ring–up (recall Fig. 5(c,d)). The most important takeaway
from these figures, with respect to interpreting the dynamics of the main text, is that in any given row, turning up the Rabi rotation
rate (i.e., scanning left to right) leads to an increase in the pointer state distance, and hence a strengthening of a measurement
compared to the analytic model, before the rotations get too fast and qubit information is effectively wiped from the cavity. Such
effects are wholly absent from the analytic measurement model. This apparent effect may explain the discrepancy between the
analytic model (i.e., using the measurement strength as computed based dynamics shown in the left column) versus simulation,
apparent in Figs. 8–10. For example, the decrease in measurement strength (pointer state distance) in reading down the far left
column is notably not apparent reading down the center left column. This indicates that the introduction of Ω, which acts only on
the qubit, can indirectly lead to the appearance of a new timescale in the cavity evolution — an effect which is completely absent
from naïve use of the CA model with non-negligible Ω.
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D Numerical Investigations Beyond the
Markovian Regime

We here supplement the arguments of the main text
by generating a few additional figures characterizing
aspects of the dispersive measurement dynamics per-
tinent to the Zeno gate. As in the main text, numer-
ics are based on the dispersive Hamiltonian (22) and
Lindbladian dissipation of the cavity into an external
line or waveguide (23), the latter of which could be
monitored. We implement these models using QuTip’s
mesolve function.

We here explicitly consider the cavity dynamics which
are an intrinsic part of the dispersive measurement pro-
cess. We will be able to see the main features of interest
focusing on a two–level system. We use the Husimi–Q
functions

Q(α) = 1
π ⟨α| trqubit(ρ̂) |α⟩ with α = X + iP (70)

to represent the cavity state, with the qubit degree of
freedom traced out.

Fig. 13 confirms that we can expect the coherent–
state structure of the analytic measurement model to
be only moderately distorted in the shallow NM regime.
Note that Ω = 0 is used in the left column of Fig. 13,
reproducing the analytic measurement model exactly.
Several effects not accounted for in the analytic model
are apparent is we introduce Ω and move into the NM
regime, however: In particular, we observe (first) effec-
tive increases in the distance between phase space fea-
tures (which correlates with an effective measurement
rate) with growing Rabi drive Ω, before (second) Ω gets
so large that the qubit and cavity essentially become
decoupled [47]. Third, distortions of the coherent state
pointers assumed in our analytic measurement models
become apparent, especially for slower κ.

We highlight these features in specific panels of
Fig. 13. Decoupling (“quantum rifling” [47]) appears in
the top right panel. Drive–induced enhancement of the
cavity dynamics are moderately apparent for smaller Ω
in the top row however, and are extremely apparent
in the middle row: Even when κ is too slow to allow
substantial cavity dynamics over a given time interval,
a larger Ω can actually generate some cavity dynam-
ics on a faster timescale. This potentially explains why
our simulations in the main text do not show a steep
drop in measurement strength for very slow κ, despite
the very slow measurement ring–up time predicted by
the CA model (recall the behavior in Fig. 5). This ef-
fect is apparent in third row as well, where it occurs
in conjunction with more exaggerated distortion of the
initially coherent states.
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