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The widespread adoption of mobile technologies offers an opportunity for a new
approach to post-discharge care for patients with heart failure (HF). By enabling
non-invasive remote monitoring and two-way, real-time communication between
the clinic and home-based patients, as well as a host of other capabilities, mobile
technologies have a potential to significantly improve remote patient care. This
literature review summarizes clinical evidence related to virtual healthcare (VHC),
defined as a care team+connected devices + a digital solution in post-release care
of patients with HF. Searches were conducted on Embase (06/12/2020). A total of
171 studies were included for data extraction and evidence synthesis: 96 studies
related to VHC efficacy, and 75 studies related to AI in HF. In addition, 15
publications were included from the search on studies scaling up VHC solutions in
HF within the real-world setting. The most successful VHC interventions, as
measured by the number of reported significant results, were those targeting
reduction in rehospitalization rates. In terms of relative success rate, the two most
effective interventions targeted patient self-care and all-cause hospital visits in their
primary endpoint. Among the three categories of VHC identified in this review
(telemonitoring, remote patient management, and patient self-empowerment) the
integrated approach in remote patient management solutions performs the best in
decreasing HF patients’ re-admission rates and overall hospital visits. Given the
increased amount of data generated by VHC technologies, artificial intelligence (AI)
is being investigated as a tool to aid decision making in the context of primary
diagnostics, identifying disease phenotypes, and predicting treatment outcomes.
Currently, most AI algorithms are developed using data gathered in clinic and only
a few studies deploy AI in the context of VHC. Most successes have been reported
in predicting HF outcomes. Since the field of VHC in HF is relatively new and still in
flux, this is not a typical systematic review capturing all published studies within this
domain. Although the standard methodology for this type of reviews was followed,
the nature of this review is qualitative. The main objective was to summarize the
most promising results and identify potential research directions.
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1. Introduction

Heart failure (HF) represents a growing social burden that significantly impacts the quality

of life of individual patients and imposes escalating costs on healthcare systems (1). Recent

data in the US show that an estimated 6.2 million people have HF, but the projections are

worrisome since it is expected that by 2030 more than 8 million people will have this
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condition (2). The rise in HF incidence is not a problem unique to

the US; globally, the absolute number of HF cases increased by 91%

between 1990 and 2017 and reached 64.3 million (3).

Although the introduction of new drugs and devices led to

significant progress in the treatment of HF in recent years, the

mortality in HF patients remains high, reaching up to 65% at 5

years after diagnosis (4, 5). One reason for this is that only a

small proportion of patients with HF achieve optimal doses of

recommended HF therapy (6), and treatment adherence remains a

persistent challenge in this population (7). In addition, HF

typically evolves by bouts of hemodynamic deterioration, triggered

by a vast number of factors leading to frequent and high-mortality

hospitalizations (8). Therefore, the traditional in-clinic monitoring

of HF patients is often inadequate to capture early signs of

deterioration in time. Given that the earliest detectable changes in

physiological measurements might occur prior to the onset of

symptoms (6), timely detection of impending crisis is crucial to

avoid hospitalization and premature death.

The widespread adoption of mobile technologies offers an

opportunity for implementing solutions that can capture the

early signs of cardiac decompression and provide timely

intervention. Non-invasive remote monitoring and two-way, real-

time communication between the clinic and home-based patients

(9, 10), are already being tested in pilot trials in the HF population.

In the literature, these solutions are alternately referred to as

telehealth, telemedicine, eHealth, mHealth, and several other

creative names, reflecting lack of consensus on a proper

terminology in the field. This review will adopt the term “virtual

healthcare” (VHC), broadly defined as the remote delivery of

healthcare via connected devices, mobile phones or tablets, and

related internet technologies. The efficacy of VHC interventions

is still in the early stages of investigations, with several studies

reporting encouraging results in HF populations (11, 12),

although questions regarding the comparative effectiveness of

specific devices remain open (13).

While defining the objectives of this review, the authors noted

that one neglected research topic is the challenge related to

upscaling of the results of small-size clinical trials into real-world

settings. In contrast to established procedures of real-world drug

and medical device development, approval, and distribution,

widespread utilization of VHC solutions poses additional

challenges. The logistics of VHC deployment among the patients

and caregivers require a much more active role of patients as

well as an increased level of cooperation and shared decision

making among healthcare professionals. In addition, the large

amount of data gathered by mobile devices necessitate new

approaches to data acquisition, storage, and analysis. Here, the

adaptation of artificial intelligence algorithms (AI) will be

necessary not only to process the real-time data inflow but also

to aid in advanced diagnostics, personalization, and decision-

making. These issues are largely neglected in existing clinical

trials, where the focus is mainly on the comparative efficacy and

utility of VHC interventions.

This review surveys the current state of VHC in HF with a

focus on the practical aspect of VHC implementations and its

challenges in real-world situations, summarizing existing
Frontiers in Cardiovascular Medicine 02
evidence on methodology, efficacy, and integration into routine

clinical settings.
2. Materials and methods

Standard methodology for conducting and reporting

systematic reviews recommended by the Cochrane

Collaboration’s Handbook for Systematic Reviews of

Interventions was adapted to conduct a literature review (14).

The review surveyed VHC solutions in patients with HF with

the research objective to describe and characterize the landscape

of evidence of the past 5 years (2015–2020) of the approved

and in-development virtual or mobile healthcare solutions,

defined as a care team + connected devices + a digital solution

(e.g., a smartphone app and/or wearable devices). The results

were then summarized in a narrative form.

Using predefined search strategies, Embase was searched via

the Ovid platform from inception until December 6th, 2020

(Supplementary Table S1). All abstracts identified by the search

were reviewed by a single reviewer according to predefined,

PICOS-framed eligibility criteria (Supplementary Table S2). All

studies identified as eligible during title/abstract screening were

then screened at the full-text stage by two reviewers. A Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) diagram was generated for complete transparency and

reproducibility of the search and screening process (15).

A standardized data extraction table was generated to define

the study characteristics, patient characteristics, intervention

characteristics, and outcomes that were extracted from eligible

studies. Quality control procedures were undertaken during data

extraction to verify the accuracy and completeness of each

collected data point.

An additional search targeting studies with keywords related to

scaling up VHC solutions in HF within the real-world setting was

performed on September 27th, 2021 to supplement the evidence

base (Supplementary Table S3). The need for additional search

arose post hoc after summarizing the main body of evidence.

Evidence from this search was incorporated narratively into the results.

One of the results of reviewing the included studies and

observing shared methodological patterns was identification of

three distinct paradigms of VHC interventions. These three

paradigms were distinguished by the clinical objectives targeted

by the VHC interventions:

○ Telemonitoring: remote monitoring of cardiac and extra-

cardiac variables with regular uploading and evaluation of the

data at the centre in order to detect early signs of cardiac

decompensation.

○ Remote patient management (RPM): an integrated healthcare

solution that includes telemonitoring as its part, but it also

provides a service platform for real-time interactive patient-

clinician communications.

○ Self-care: solutions that empower patients in their independent

decision-making process of sustaining health through disease

education, symptom monitoring, treatment-seeking, and

evaluating the effects of treatment.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1231000
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 1 The number of included studies of each respective study type in
the efficacy evidence base.

Study type Number of included studies
Interventional studies (total): 62

Randomized controlled trials (RCT) 37

Prospective, non-randomized trials 7

Single-arm trials 17

Pooled comparative studies 1

Observational studies (total): 34

Prospective 10

Retrospective 15

Cross-sectional 9

Lee et al. 10.3389/fcvm.2023.1231000
The post hoc rationale for this classification and examples of each

category are below:

• The telemonitoring studies used as a part of the intervention a

device or a mobile app measuring clinical variable(s) with

regularly scheduled automatic data uploads. Data uploads did

not require the patient’s involvement, and data evaluation was

performed by medical staff at the health centre. A typical

example is a study evaluating the efficacy of a device for

remote monitoring of lung fluid by measuring dielectric

properties of tissues (16). Measurements were transmitted via

a cellular data link to a secured server for review by a health

care professional using a dedicated web-based electronic data

capture and viewing system.

• The RPM studies included, in addition to telemonitoring, direct

regular interactive communication between the patient and the

healthcare centre. The main purpose was to establish regular

human-to-human contact and to offer medical advice,

answering patients’ questions, and provide encouragement. The

communications channels usually included videoconferencing,

phone calls, or dedicated websites.

• The self-care interventions were usually stand-alone apps (17) or self-

contained devices such as an accelerometer (18) providing patients

feedback and information about their condition and advice for

behavioural changes to improve their health and well-being.

The AI in the context of this review is defined as machine-based

data processing to achieve objectives that typically require human

cognitive function (19). The studies reporting on the use of AI in

HF can be broadly classified into three groups based on the

purpose of the algorithms:

• Primary diagnostics: the algorithms are used to identify patients

with HF among a wider population of patients either in primary

care (20) or among hospitalized patients (21).

• Phenotype identification: the algorithms are used to identify

different phenotypes within the primary diagnosis of HF by

evaluating the associations of a variety of clinical parameters

with pre-specified subgroups of patients (22–25). The word

“phenotype” in the studies was used in broad sense and the

identified phenotypes did not always correspond to traditional

clinical phenotypes as understood by cardiologists. This was

especially true for unsupervised learning algorithms (26–28)

where the data set was comprised of large number of

extracted features and the algorithm was trying to find clusters

in hyperdimensional feature space. The resulting clusters were

then interpreted post hoc by the researchers.

• Outcome prediction: this was the largest set of studies, where the

algorithms were used to predict outcomes such as mortality and

hospitalization risks (29–31), re-admission (32–34), tissue

remodelling (35, 36), and a variety of other clinical outcomes

(22, 37–39).

3. Results

A PRISMA flow diagram of the study selection procedure is

presented in Supplementary Figure S1. A total of 171 studies
Frontiers in Cardiovascular Medicine 03
were included for data extraction and evidence synthesis: 96

studies related to VHC efficacy, and 75 studies related to AI in

HF. In addition, 15 publications were included from the search

on studies scaling up VHC solutions in HF within the real-world

setting (PRISMA flow diagram in Supplementary Figure S2).

Below is the summary of the results for the efficacy data set of

VHC in HF. Table 1 shows the distribution of the study types for

the 96 included studies.

The population sizes ranged from 10 patients (40, 41) to

3,449 patients in one study retrospectively analysing adherence

to a telehealth program in US Veteran Administration centres

(42). The mean population size in the included studies was 311

patients, and the median was 110 patients. This discrepancy is

caused by the one outlier study, including 3,449 patients. The

summary of study characteristics and population characteristics

can be seen in supplementary materials (Supplementary

Figures S3, S4).

The inclusion criteria for patient enrolment in most of the

studies were based on the New York Heart Association

(NYHA) functional classification (43). Seventy out of the 96

included studies used this classification for patient inclusion.

Twenty-one of the 96 included studies enrolled only patients

with reduced ejection fraction defined as less or equal to 40%.

Forty studies enrolled a mixture of patients with both reduced

and preserved ejection fractions. Thirty-five studies did not

include information about ejection fraction (EF) status among

the patients. Nineteen studies reported average EF of the

enrolled population ranging from the minimum average EF

of 21.5% (44) to maximum of 58% (45) with overall mean

of 34.1%. Four studies enrolled patients with wearable

cardioverter defibrillators which were used for remote data

acquisition (44, 46–48).

The three VHC categories (telemonitoring, RPM, self-care)

were used to compare clinical efficacy of the interventions.

Table 2 shows the total number of studies and the number of

RCTs within each of these categories. Both the telemonitoring

and remote care studies used some form of remote data capture

and upload. The types of patient data captured varied across the

studies. The most commonly monitored data were self-reported

patient symptoms (40, 49, 74, 75, 124), physical activity

measured by accelerometers (18, 46, 125–127), body weight,

blood pressure, and heart rate (50, 76–79), data transmitted by

cardioverter defibrillators (44, 46–48, 76), and others.
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TABLE 2 The number of studies in the VHC intervention categories.

Intervention category Number of studies (all) Number of studies (RCTs)
Telemonitoring 30 (16, 44, 46–73) 14 (46, 49, 50, 52, 54–56, 59–61, 65, 70–72)

RPM 53 (41, 42, 45, 74–122) 21 (45, 74, 75, 80–82, 86, 88, 91–93, 97, 98, 102, 107, 112, 113, 115–117, 123)

Self-care 13 (17, 18, 40, 124–133) 2 (130, 133)

Lee et al. 10.3389/fcvm.2023.1231000
3.1. Outcomes targeted by VHC
interventions

There were 27 distinct primary outcomes reported across all

included studies. The top ten most reported primary outcomes,

together with the number of studies reporting significant results

in the respective primary outcome, are summarized in Table 3.

The data for all included studies, as well as the subset of data

pertaining only to RCTs, are shown.

Medication adherence was generally reported as patients

following the prescription schedule for drug taking for a

significant fraction (usually >80%) of the study duration.

Quality of life was measured using HF-specific questionnaires

such as The Minnesota Living with Heart Failure Questionnaire

or Kansans City Cardiomyopathy Questionnaire. Depression

was evaluated using 9-item Patient Health Questionnaire. Self-

care is a growing area of interest in all chronic diseases, and it

was defined (with a few variations) as a process of maintaining

health through health-promoting practices and by managing

illness (e.g., by exercising, weight monitoring, taking

medication, and seeking a health care provider when symptoms

are deteriorating).

In the “Other” category, the most reported primary

outcome was based on the series of publications related to

the TIM-HF and TIM-HF2 trials (80–83). The primary

outcome in this series was “the percentage of days lost due

to unplanned cardiovascular hospital admissions and all-

cause mortality”. In addition, the category “Other” also

includes outcomes such as “cardiac acoustic biomarkers”

(47), composite outcomes (51–54, 125), non-fatal HF episode

(45), general health status (55, 74), functional capacity (128),

and other unique endpoints.
TABLE 3 Summary of primary outcomes reported across the included studie

Primary outcome Number of studies
reporting the outcome

N
signi

Mortality (49, 50, 63, 64, 71, 102, 116) 7

Re-hospitalization (16, 57, 58, 65, 67, 72,
87–90, 105, 108, 109, 127, 129)

15

ER visits (99, 112, 123) 3

Hospital visits (all-cause) (48, 60, 94–96) 5

Medication adherence (42, 61, 76, 77, 104,
106, 117, 126, 132, 134, 134)

12

Quality of life (70, 73, 110, 113, 114) 5

Depression (82, 107) 2

Self-care (59, 91–93, 111, 129, 130) 7

Patient experience (17, 18, 40, 56, 62, 63, 68,
78, 84–86, 103, 119, 120, 122, 124, 130)

17

Other (44–47, 51–55, 66, 74, 75, 80, 81, 83,
98, 100, 101, 115, 121, 125, 128, 131)

23
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The most frequently investigated primary outcome across all

studies was the patient experience, loosely defined as “usability”

(56, 84), “satisfaction/acceptability” (85, 124), “goal attainment or

life satisfaction” (17), and variations thereof. However, most of

these studies were non-comparative by design and therefore they

described the outcome in a single arm. The two RCTs

investigating patient experience (56, 86) reported high levels of

patient satisfaction in both arms (with and without VHC), with

no significant differences observed. The majority of the studies

used the RPM paradigm (9/17, 53%), followed by telemonitoring

(4/17, 23.5%), and self-care (4/17, 23.5%).
3.2. VHC interventions efficacy

The most successful VHC interventions, as measured by the

number of reported significant results, were those targeting

reduction in rehospitalization rates. Eight (16, 57, 58, 87–90,

127) out of 15 (53%) studies reported significant reduction in

rates of rehospitalizations, including one RCT (88). The majority

of the interventions targeting rehospitalization rates used RPM

approach (8/15, 53%), followed by telemonitoring (6/15, 40%),

and self-care (1/15, 7%).

In terms of relative success rate, the two most effective

interventions targeted patient self-care and all-cause hospital

visits in their primary endpoint. Six (59, 91–93, 129, 130) out of

seven (85.7%) studies targeting improved self-care reported

significant results. Interestingly, even for self-care primary

endpoints, the most common intervention paradigm was RPM

(4/7, 57.2%), followed by self-care paradigm (2/7, 28.5%) and

telemonitoring (1/7, 14.3%). Four (60, 94–96) out of five (80%)

studies reported significant improvements in reducing all-cause
s.

umber of
ficant results

Number of RCTs
reporting the outcome

Number of significant
results (RCTs only)

2 5 0

8 3 1

1 2 1

4 1 1

3 4 2

2 2 2

1 2 1

6 5 5

0 2 0

14 11 6
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hospital visits in the HF population. Three out of the five studies

(60%) in this category used the RPM paradigm, and two (40%)

used telemonitoring.

Patient adherence as the primary endpoint was investigated in

12 studies, four of which were RCTs (61, 84, 133, 134). Two of the

four RCTs reported significant improvement due to the VHC

intervention (133, 134). In both cases the remote care model of

intervention was used, with healthcare professionals aiding

patients in adopting the technologies into their everyday

routines. Both studies noted increased self-awareness of patients

when managing their condition.
3.3. Artificial intelligence in HF

The total of 75 studies reporting on the AI algorithms in HF

were included in the evidence base. Table 4 shows the distribution

of the studies across the three categories described in the Methods

section, together with the validation status. Most studies used

internal validation of the algorithms either by splitting data into a

training set and validation set and re-sampling the sets 5–10 times

for cross-validation (30, 135–137) or leave-one-out (76, 138, 139)

method. The data used for training and validation of the

algorithms came from a variety of sources such as clinical trial

database (30, 138), electronic health records (34, 140–142), or

internal institutional databases (143, 144).

Currently, the majority of AI studies are using data gathered by

routine in-clinic laboratory procedures such as patient

characteristics (37), cardiovascular MRI (145), ECG (146) and

others. The outputs of the algorithms can be classified into three

general domains (see the Methods section):

• Primary diagnostics algorithms are being developed with the

purpose to use readily available clinical data to identify

patients with heart failure while in the hospital. Input data are

gathered from electronic health records (20, 21, 141) or

internal hospital databases (147, 148). Outputs of the

algorithms are aimed at helping clinicians in correct diagnosis

of HF in patients admitted for a variety of cardiac conditions.

• Phenotype identification algorithms are used to identify sub-

groups of HF patients either using a pre-defined classification

or using clustering methods to discover hidden groupings

within the data sets. In the first case, algorithms are

identifying phenotypes such as HF patients with cardiac

amyloidosis relying on routinely determined laboratory

parameters (22), diagnosing PLN p.Arg14del cardiomyopathy

using ECG (23), or identifying responders to cardiac

resynchronization therapy using 2D echocardiography data
TABLE 4 Distribution of studies on AI in HF and their validation status.

Category Total number of
studies

Number of validated
studies

Primary diagnostics 10 9

Phenotype
identification

14 8

Outcome prediction 51 47
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(24). Novel sub-groups discovered in studies using clustering

algorithms included three distinct phenotypes in patients with

HFpEF that may respond differently to treatments or

interventions (26), six HFpEF phenotypes, for which

significant differences in the prevalence of concomitant atrial

fibrillation, anaemia and kidney disease were observed (27),

and four subgroups in patients with hypertrophic

cardiomyopathy with distinct ECG features leading to a novel

risk stratification (28).

• Outcome prediction was the largest group of studies. The

outcomes of interest varied across the studies but most of the

algorithms focused on predicting treatment responses in terms

of mortality (30, 31), re-hospitalization (149, 150), adverse

events (39) and other related outcomes.

Out of the 75 papers on AI in HF, only eight were set in the context

of VHC where the data was acquired remotely:

• Primary diagnostics was the goal of one study (151) that

investigated whether wristband data can be used to predict a

diagnosis of HF in a cohort of 97 monitored cardiac

inpatients. The AI algorithm performed best when the

wearable data was combined with demographics, medical

history, and vital signs. The achieved discrimination defined

by the test area under the curve (AUC) was 0.87 with the

specificity of 72% and sensitivity of 90% (151).

• Phenotype identification was investigated in one study (152).

The study explored the use of unsupervised machine learning

to identify subgroups of patients with HF who used telehealth

services in the home health setting. The study identified

patterns of association between (1) mental health status,

pulmonary disorders, and obesity and (2) healthcare

utilization for patients with heart failure who used telehealth

in the home health setting (152).

• Outcome prediction was investigated in the remaining six

studies (76, 149, 150, 153–155). Two studies used

retrospective data sets to predict clinical outcomes: one study

analysed data from the Telemonitoring to Improve Heart

Failure Outcomes trial to predict readmissions in patients

with HF (149), and one study developed a model for

cardiomyopathy prediction (154). Four clinical trials in this

group incorporated AI and VHC prospectively into the study

design. One study (150) examined the performance of a

personalized analytical platform using continuous data

streams to predict rehospitalization after HF admission

(LINK-HF study). Participants were monitored for up to 3

months using a disposable multisensor patch placed on the

chest that recorded physiological data. Data were uploaded

continuously via smartphone to a cloud analytics platform.

Machine learning was used to design a prognostic algorithm

to detect HF exacerbation. The cloud-based analytics

platform used a general machine learning method of

similarity-based modelling to analyse collected data. The

algorithm used a 1-minute trim-mean (10%) heart rate,

respiratory rate, a cumulative gross activity, and posture as

inputs. The platform was able to detect precursors of

hospitalization for HF exacerbation with 76%–88% sensitivity
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and 85% specificity. The median time between initial alert and

readmission was 6.5 (4.2–13.7) days (150). One study

developed and validated an algorithm to predict the

occurrence of ventricular tachyarrhythmia in HF patients

with implantable-cardioverter defibrillator (153). The

algorithm used heart rate variability data and machine

learning to automatically predict ventricular arrhythmia. The

algorithm achieved performance quantified by AUC of 0.81

for 5-minute prediction and mean AUC of 0.87–0.88 for 10 s

prediction (153). One study (76) investigated whether certain

user characteristics (i.e., personal and clinical variables)

predict the use of remote monitoring systems (RMS) using

advanced machine learning software algorithms in patients

with HF. The data support that RMS use was higher in

patients who did not receive care from a healthcare provider

with HF specialty. The study findings also showed that

participants who had an internal cardioverter defibrillator

were more likely to use the RMS (76). One study (155)

tested a telephone intervention algorithm for monitoring

ventricular assist devices (VAD) in outpatients with HF. A

structured inquiry was used to gather information on pump

parameters, vitals, and symptoms which was then

electronically categorized by an algorithm into five levels of

severity. Propensity-adjusted 2-year survival (89% vs. 57%,

P = 0.027) was significantly higher for the telephone

intervention group compared to standard of care group (155).

3.4. Real-world scalability of VHC in HF

The challenges of scaling up VHC solutions to real-world

implementation have been mostly neglected in the pilot clinical

trials and only addressed in a handful of studies. Hovland-

Tanneryd et al. (94) published their experience of validation of a

home-based tool for HF patients, previously tested in an RCT, in

a cohort in a primary care setting in a clinical controlled trial.

The aim was to compare the RCT findings to the more

pragmatic design of a validation project in primary care. Data

from both trials were analysed with respect to HF-related in-

hospital days, self-care behaviour, and system adherence during a

6-month intervention. The results in both settings were similar

in terms of the risk ratio of in-hospital days (RCT RR = 0.72,

Clinic RR = 0.67), and the pooled data set showed improvement

in self-care by 27%, with median adherence of 94% (94).

Several studies focused on patient experience and barriers to

acceptance in a wider population of HF patients (156–160). The

most common themes explored were regimen complexity,

forgetfulness, difficulty coping with side effects (159),

convenience (157), trust, perceived risk (160), and added

responsibility for nurses and caregivers (158). Elderly patients

with HF face additional barriers to adopting VHC. A study by

Cajita et al. found that older adults do not base their intention to

use mHealth solely on perceived ease of use and perceived

usefulness. Instead, the following themes emerged from the

content analysis: facilitators included previous experience with

mobile technology, willingness to learn mHealth, ease of use,
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presence of useful features, adequate training, free equipment,

and doctor’s recommendation (156).

The emergence of COVID-19 accelerated the adoption of VHC

in the real-world management of HF patients (161, 162). It also

revealed the challenges of transitioning the care delivery and

administrative organization to conform to a new healthcare

environment while still providing high-quality care. Sayer et al.

(163) described the experience of a large tertiary HF program in

widespread adoption of telehealth, restructuring outpatient care,

initiating a shared clinic model, and introducing a

comprehensive remote monitoring program to manage patients

with HF and heart transplants. The transition employed a high-

intensity telehealth approach, centralized monitoring and

intervention program, and the development of video conference-

based support groups. It also required a collaborative approach,

with contributions from dedicated teams of inpatient clinicians,

outpatient clinicians, and administrative staff (163).
4. Discussion

The technologies used in VHC solutions are relatively new, and

consequently, their fit into the existing models of HF patient care is

still being explored in a variety of settings. When considering the

results reported in the reviewed studies, the challenge is in

translating them into the real-world clinical practice.

Unfortunately, few studies addressed the issue of scalability of

the VHC solutions and potential issues that may impede their

acceptance. In order to carefully assess the available pathways

towards the wide deployment of VHC in HF populations one

need to start by looking at what works in the context of clinical

trials and then try to identify potential roadblocks in the scaling-

up those solutions.

From the standpoint of treatment efficacy, the RPM approach

seems to be most effective among the three intervention categories

(Figure 1). When looking at the endpoints where VHC showed the

most success (rehospitalization, self-care, all-cause hospital visits),

the majority of interventions used RPM paradigm. The multi-

component intervention included telemonitoring devices with the

daily upload of clinical measurements as well as communications

with patients’ general physician and cardiologist (80, 81). A

similar approach integrating automated data monitoring with

personalized communications was found in a majority of the

studies (see Table 2). The RPM intervention could be as simple

as a tool to encourage HF patients to work collaboratively with

their clinicians to “make one positive change” in medication

regimen (97), or a fully integrated system including a

multidisciplinary care team consisting of a nurse coordinator,

cardiologist, psychiatrist, and primary care physician, home

telemonitoring, patient self-management support, and screening

and treatment for comorbid depression (74). RPM was also used

to interactively guide physical exercise in HF patients (94, 98) or

to organize post-discharge remote visits and consultations (45).

The telemonitoring paradigm relies mostly on automatic data

upload with limited patient involvement. Direct medical

intervention is only triggered when the uploaded data cross
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FIGURE 1

Summary view of the virtual healthcare intervention paradigm in heart failure patients.
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predefined threshold signalling and impending crisis. The data

upload can contain clinical variables such as lung fluid measures

(16), medication taking (60, 62), vital signs (including, in some

cases ECG) (50–52, 63, 64, 99), and self-reporting (55). A special

case of remote monitoring concerns wearable cardioverter

defibrillators, where the intervention is in part automated and

implemented in the software of the wearable device (44, 46–48,

76). Historically, this paradigm pioneered the use of wearable

devices and the concept of remote monitoring, however it is

currently being integrated as part of the RPM model.

The concept of self-care in VHC includes a variety of

approaches to patient empowerment, such as improving self-

reported symptoms via mHealth apps (131), engaging the elderly

patient population in technology-guided self-care (17, 124, 126,

132), and increasing self-awareness when managing patients’

condition (130, 133).

There are several caveats to be considered when trying to

generalize the results of the reviewed clinical trials into general

practice. Most published studies are conducted in a controlled

environment of research hospitals with relatively small groups of

HF patients. The efficacy claims of the VHC interventions are

valid within the pre-selected HF populations and limited follow-

up of the studies. How will these results translate into a standard

of care that can be applied to a variety of clinical settings is an

open question. Even within the context of controlled studies,

some results cast doubt on the efficacy of VHC interventions.

For example, VHC interventions seem to have no effect on

reducing all-cause mortality. Out of the five RCTs investigating

this outcome none achieved significant improvement. Reasons

are currently unclear and this issue merits further investigation.

An interesting hypothesis to consider is the importance of direct

human-to-human interactions aided by technology as reflected in

the RPM paradigm. The number of significant results achieved

by integrated solutions as compared to purely technology-based

interventions may be, in part, explained by the presence of the

human component. The technology is best utilized in support of
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shared decision-making by providing timely information and

opening new channels for communications between patients and

their care team. The main challenge going forward is to maintain

this advantage in large-scale settings of existing healthcare systems.

With a few exceptions, the study durations did not extend

beyond a 1-year follow-up. Given that the average lifespan of

patients discharged from hospital with HF is 5.5 years (164),

extending up to 19.5 years in a younger, low-risk population, the

lack of long-term studies in this field represents an unmet need.

In addition, HF patient populations span generations of patients

starting from middle-aged “Gen-X”, through baby-boomers, to

geriatric patients (see Supplementary Figure S4). Technology

acceptance varies greatly among generations, hence a

personalized approach is needed to achieve desired utilization.

Here the studies analysing user experiences and barriers to

acceptance are particularly valuable. For example, Woo et al.

2018 analysed factors facilitating/hindering the acceptance of

VHC services in HF patients (165). Using a modified Unified

Theory of Acceptance Use of Technology, the authors identified

several factors associated with HF patients’ initiation or use of

VHC services in a home setting, some of which are relatively

straightforward to implement (e.g., high-risk drugs education by

visiting nurses).

One technological challenge to the general adaptation of VHC

solutions is the large amount of clinical data the devices can collect

and store. Particularly in the context of general use, this can be

overwhelming, and clinicians will need assistance with the

analysis and interpretation of the patient data. A promising

development is the introduction of AI algorithms targeting the

diagnosis, phenotyping, and prognosis in HF. The utility of using

AI in diagnosing HF may be in aiding the clinician in deciding

ambiguous cases (i.e., being a supporting factor to the clinical

judgement of the physician). For example, an existing algorithm

using a simple wristband achieved 74% accuracy (151) in

diagnosing chronic HF (present/absent) from data of cardiology

patients undergoing bedside monitoring. More sophisticated
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algorithms using better data sources (e.g., ECG) may be able to

achieve greater diagnostic accuracy. Similarly, algorithms

detecting sub-groups of HF patients using a collection of remote

data (152) can identify clusters of patients that display different

patterns of comorbidities and healthcare outcomes. This

information can be then used to tailor the VHC intervention to

address specific challenges facing the identified sub-groups. The

limitations of AI are mostly in the academic nature of the

algorithms with limited availability of these technologies where

they are mostly needed—in real-world practice. To achieve a

larger utilization, several barriers need to be overcome, such as

gaining the trust in the algorithms by clinicians (by illustrating

the physiology behind the algorithms), integrating the algorithms

with the current workflow, resolving problems with privacy and

data sharing, and providing adequate technical support in the field.

The topic of VHC in HF has been subject to several recent

systematic literature reviews (6, 8, 162, 166). In this review, the

intent was to highlight the comparative efficacy of the three

identified categories of interventions: telemonitoring, RPM, and

self-care. While summarizing the evidence, the limitations of the

included clinical studies prompted additional research, including

the questions of AI utilization and the real-world scaling of the

results reported by the published studies. One of the findings in

this review was that studies leveraging the synergy between AI

and VHC in the HF population are limited in numbers. This

seems like a potential area for future research. In particular, the

AI algorithms can bring expert-level decision support for

diagnostics and risk prediction to non-specialist general

practitioners and facilitate the scaling up of the VHC solutions

into real-world settings. A large-scale study of a distributed AI

algorithms aiding clinicians in HF diagnostics and risk

evaluations across multitude of real-world clinics could expose

the barriers and challenges to AI acceptance.

Additional promising areas of future research include the

apparent lack of efficacy of VHC intervention in reducing

all-cause mortality in the HF population, long-term adherence

and efficacy of VHC with follow-up spanning several years, and

age-specific approach to technology adaptation with focus on the

elderly HF patients. Additionally, given the relative novelty of

these interventions and lack of experience in utilizing them in

wider clinical settings, focus on education and transfer of

knowledge may help in improving their acceptance and

consequently their efficacy. This is particularly true in developing

countries where the distances are large, and the number of

healthcare professionals are limited.
4.1. Limitations

This is not a typical systematic review capturing all published

studies within this domain. Although the standard methodology

for this type of reviews was followed, the nature of this review is

qualitative. Our intention was to provide a narrative summary of

the most relevant findings related to the stated objectives of the

study. The quantitative information provided here is selected

based on the representativeness of the data without providing
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additional statistical analyses. The choice of narrative summary

instead of the standard meta-analysis was made for several

reasons. First, digital interventions in HF are heterogeneous both

in the ways intervention is delivered and, in the variety of

targeted outcomes. Unlike drug clinical trials where the methods

of delivery and the measured outcomes are relatively well

understood, for VHC interventions neither is true. How to

deliver the intervention (e.g., text messages, phone-calls, video

conferencing), frequency of the communications (e.g., daily,

weekly, on-demand), and specific content of the communication

are still being investigated. Methods of collecting clinical data

(what to collect and how) and their upload are far from

standardized. Targeted outcomes vary from easily quantifiable

(mortality, re-hospitalization) to more ambiguous (patient

experiences). Therefore, comparing the results using meta-

analysis would require adopting many assumptions about the

homogeneity of the included clinical trials. A narrative summary

allows for a more qualitative description of the respective

interventions although it lacks the rigor of quantitative meta-

analysis and definite conclusions are more difficult to draw.

However, given the exploratory nature of the clinical trials in

VHC, a narrative summary may provide a useful way to survey

the current state of the field.
5. Conclusions

The main finding of this review is that the promise of VHC in

HF has been established in some studies but not all interventions

reached their desired outcomes. The solutions with the most

consistent positive impact on clinical outcomes are those that

address already existing unmet needs such as early detection of

warning signs of cardiac decompensation, easy patient access to

the healthcare team, convenient access to relevant educational

materials, and encouragement of healthy lifestyle. On the other

hand, reducing mortality seems to be quite challenging and little

progress has been achieved in boosting patient adherence.

Artificial intelligence has a potential in interpretation of large

data sets, but it is largely confined to academic institutions.

Overall, while research studies administered by high-end

academic institutions show some success, scaling the VHC

intervention to general clinical practice remains a challenge.
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