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Interpretable machine learning
for prediction of clinical
outcomes in acute ischemic
stroke

Joonwon Lee , Kang Min Park and Seongho Park *

Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic

of Korea

Background and aims: Predicting the prognosis of acute ischemic stroke (AIS) is

crucial in a clinical setting for establishing suitable treatment plans. This study

aimed to develop and validate a machine learning (ML) model that predicts the

functional outcome of AIS patients and provides interpretable insights.

Methods: We included AIS patients from a multicenter stroke registry in this

prognostic study. ML-based methods were utilized to predict 3-month functional

outcomes, which were categorized as either favorable [modified Rankin Scale

(mRS) ≤ 2] or unfavorable (mRS ≥ 3). The SHapley Additive exPlanations

(SHAP) method was employed to identify significant features and interpret their

contributions to the predictions of the model.

Results: The dataset comprised a derivation set of 3,687 patients and two

external validation sets totaling 250 and 110 patients each. Among them, the

number of unfavorable outcomes was 1,123 (30.4%) in the derivation set, and

93 (37.2%) and 32 (29.1%) in external sets A and B, respectively. Among the

ML models used, the eXtreme Gradient Boosting model demonstrated the best

performance. It achieved an area under the receiver operating characteristic curve

(AUC-ROC) of 0.790 (95% CI: 0.775–0.806) on the internal test set and 0.791 (95%

CI: 0.733–0.848) and 0.873 (95% CI: 0.798–0.948) on the two external test sets,

respectively. The key features for predicting functional outcomes were the initial

NIHSS, early neurologic deterioration (END), age, and white blood cell count. The

END displayed noticeable interactions with several other features.

Conclusion: ML algorithms demonstrated proficient prediction for the 3-month

functional outcome in AIS patients. With the aid of the SHAPmethod, we can attain

an in-depth understanding of howcritical features contribute tomodel predictions

and how changes in these features influence such predictions.

KEYWORDS
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Introductions

Physicians are concerned about the prognosis following a diagnosis of acute ischemic

stroke (AIS) and must establish a long-term treatment plan (1). Traditional risk-

scoring models have been used to predict clinical outcomes after AIS (2–4), but

these models face challenges when learning the input of complex multi-dimensional

functions. The optimal weight for one input can easily change depending on other

input values (5, 6). On the other hand, machine learning (ML) algorithms have the

advantage of being able to maximize information to enhance predictive accuracy while

predicting complex clinical outcomes influenced by various situations and conditions.
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However, the clinical application of ML models has been

hindered by the interpretability challenge due to the black box

problem (7, 8). In medicine, the lack of interpretability can make

it difficult for clinicians to trust the predictions of the model and

incorporate them into their decision-making (9). The SHapley

Additive exPlanations (SHAP) is an attribution method used

to provide interpretation and an intuitive understanding of the

contribution of each variable to the outcome (10).

In this study, we aimed to develop and validate an ML-

based model that predicts the functional outcome of patients

with AIS. Furthermore, we aimed to provide interpretation and

an intuitive understanding of the model using model-agnostic

attribution methods.

Materials and methods

Study design and source of data

This study is a prognostic accuracy cohort study utilizing

prospectively collected multicenter hospital-based stroke registries.

The objective of this study is to develop, validate, and interpret

a machine learning system for predicting 3-month functional

outcomes after stroke. We utilized a derivation dataset for model

training and internal validation, while external datasets were used

for external validation.

The dataset from the National Information Society Agency

(NIA) was used as the derivation set (https://aihub.or.kr/). This is

a dataset prepared for developing an artificial intelligence model

from a multicenter prospective stroke registry. It contains clinical

data of patients diagnosed with AIS between January 2011 and

March 2019 at the stroke centers of three university hospitals

in the Republic of Korea. A diagnosis of AIS was confirmed

when there was diffusion restriction on MRI. In the dataset of

6,000 patients, data for 1,717 patients for whom clinical data

were unavailable were discarded. Of the 4,283 eligible patients,

patients under the age of 18 years, pre-stroke modified Rankin

scale (mRS) of three points or more, and who were not evaluated

with follow-up mRS were excluded (11). Additional external sets

were collected from a stroke center, where acute ischemic stroke

patients who visited each center from September 2019 to August

2021 were screened. Ultimately, the derivation set was composed

of datasets from two hospitals from the dataset of the NIA,

and the remaining one dataset of the hospital along with an

additional externally collected dataset became two separate external

validation sets. We have selected 16 clinical features from the 31

common clinical features of the NIA dataset, based on both a

feature importance algorithm and at the clinicians’ discretion (see

Supplementary Table S1 for further details). These selected features

include initial NIHSS, END, age, BUN, WBC, prothrombin time,

previous stroke, serum glucose, hemoglobins, atrial fibrillation,

hypertension, diabetes mellitus, BMI, onset-to-door time, EVT,

and tPA.

This study followed the TRIPOD and CLAIM

reporting guidelines (12, 13). All data were anonymized

using the de-identification method of the data provider

(Supplementary Figure S1).

Definition of functional outcome

A functional outcome was a binary label, defined as an

unfavorable outcome if the mRS is 3 or more, and a favorable

outcome if <3 (11). The functional outcome was evaluated in-

person by a neurology specialist when patients revisited the

outpatient department 3 months post-ischemic stroke. For a

minority of patients who could not attend the outpatient clinic,

evaluations were conducted over the phone by a well-trained

clinical nurse specialist.

Data preparation

We performed outlier detection and imputation for missing

values <10% on the clinical data of the entire dataset. Two

experienced clinicians, KMP and JL, checked the distributions of

the values of 16 common variables and looked for levels that were

not clinically feasible. Outlier candidates were replaced with NAs by

clinician consensus. We then conducted multivariate imputation

chained equations (MICE) on both the NA-replaced outliers and

the missing values of the original data (14). After these procedures,

we normalized all the data using the MinMaxScaler.

Model development and evaluation

We implemented a supervised machine learning approach to

develop a predictive model for the 3-month functional outcome

of acute ischemic stroke. The modeling process engaged three

tree-based machine learning algorithms: random forest, eXtreme

Gradient Boosting (XGBoost), and light gradient-boostingmachine

(LGBM) (Supplementary Table S2). These algorithms were chosen

due to their proven efficacy in calculating interaction effects among

features using TreeSHAP (15).

To validate the performance of the model, we performed not

only internal validation but also external validation using two

separate external datasets. Initially, we randomly allocated 20%

of the entire dataset as an internal test set and assigned the

remaining 80% of the data to a training set. We then used a 5-fold

cross-validation method to generate each model. This procedure

resulted in five versions of each machine learning model, with

their performance being evaluated on the internal test set. The

performance of each model was determined using the mean value

of the five derived probabilities (see Supplementary Figure S2).

Finally, we conducted validation using the developed models on

the two external datasets. The primary performance metric we

employed to assess the effectiveness of the model was the area

under the receiver operating characteristic curve (AUC-ROC). All

analyses were performed using Python 3.10.6 and the scikit-learn

1.0.2 library.

Interpretation of the developed models

We employed the SHAPmethod for interpreting the developed

model. First, we calculated the SHAP values for each feature in the
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model that performed the best. These SHAP values were used to

explain the contribution of each feature in the prediction of the

model. By plotting the SHAP summary plot, we visualized the top

16 features that were most impactful in the output of the model.

Second, we produced a SHAP dependency plot. This plot primarily

displays two aspects. One, it shows how SHAP values change as

the values of each feature change, essentially demonstrating the

relationship between the features and the predictions. The other

is it reveals the interactions between features. Through these two

aspects, we were able to ascertain the contribution of each feature

toward an unfavorable outcome and the interactions between

the features.

Statistical analysis

Values are presented as the mean± standard deviation, median

(interquartile range) for continuous variables, or as the number (%)

of subjects for categorical variables, as appropriate. Comparisons

of the characteristics between the two groups were performed

by the chi-square test, Fisher’s exact test, Wilcoxon Signed Rank

test, or Cochran–Armitage trend test according to the type of

the variable. To evaluate the performance of the models for

discriminating 3-month functional outcome, we plotted receiver

operating characteristic (ROC) curves and calculated the AUC and

95% confidence interval (CI) for each model. Differences between

AUCs were compared by DeLong’s test (16). Additionally, recall

(sensitivity), precision (positive predictive value), accuracy, and

Brier score were calculated as secondary outcome metrics. We also

calculated the sensitivity and specificity value for the threshold

determined by Youden’s index J (J = sensitivity + specificity-1) if

necessary. Statistical analyses were performed using the R package

version 4.1.2. The statistical significance was defined as a two-tailed

P-value of < 0.05.

Results

A total of 3,687 patients were included in the derivation dataset,

of which 1,123 (30.4%) had an unfavorable outcome. The external

validation dataset had 360 patients: 250 in external dataset A and

110 in dataset B, with 93 (37.2%) and 32 (29.1%) unfavorable

outcomes, respectively (Supplementary Figure S3). All missing

values for the derivation dataset common variables were within

10% (Supplementary Figure S4). Hence, multivariate imputation-

chained equations were applied to all variables (14). Baseline

demographics and clinical characteristics according to the favorable

and unfavorable outcomes of the dataset on which the imputation

was performed are listed in Supplementary Table S3.

Model performances

Table 1 presents the performance estimates of the ML

algorithm. Among the three tree-based ML algorithms, the

performance was quite similar, but XGB demonstrated the

highest performance. As a result, we chose XGB as the

TABLE 1 Comparison of performance of the models predicting 3-month

functional outcomes.

RF LGBM XGB

Internal test set (n = 737)

AUROC (95% CI) 0.789 (0.773–0.804) 0.785 (0.769–0.801) 0.790 (0.775–0.806)

Recall (95% CI) 0.695 (0.668–0.722) 0.705 (0.679–0.732) 0.756 (0.731–0.781)

Precision (95% CI) 0.553 (0.527–0.579) 0.540 (0.514–0.565) 0.525 (0.500–0.549)

Accuracy (95% CI) 0.736 (0.736–0.736) 0.727 (0.727–0.727) 0.717 (0.717–0.717)

External validation set A (n = 250)

AUROC (95% CI) 0.794 (0.737–0.852) 0.787 (0.729–0.845) 0.791 (0.733–0.848)

Recall (95% CI) 0.677 (0.582–0.772) 0.806 (0.726–0.887) 0.656 (0.559–0.752)

Precision (95% CI) 0.677 (0.582–0.772) 0.551 (0.468–0.635) 0.663 (0.566–0.760)

Accuracy (95% CI) 0.760 (0.759–0.761) 0.684 (0.682–0.686) 0.748 (0.747–0.749)

External validation set B (n = 110)

AUROC (95% CI) 0.860 (0.788–0.940) 0.869 (0.795–0.943) 0.873 (0.798–0.948)

Recall (95% CI) 0.875 (0.760–0.990) 0.844 (0.718–0.970) 0.875 (0.760–0.990)

Precision (95% CI) 0.609 (0.468–0.750) 0.643 (0.498–0.788) 0.667 (0.524–0.809)

Accuracy (95% CI) 0.800 (0.797–0.803) 0.818 (0.816–0.821) 0.836 (0.834–0.839)

AUROC, area under the receiver operating characteristic curve; RF, random forest; LGBM,

light gradient boosting model; XGB, eXtreme Gradient Boosting.

representative ML algorithm. The area under the receiver

operating characteristic curve (AUROC) values for the

internal test set and external validation sets A and B of

the model were 0.790 (95% confidence interval [95% CI]:

0.775–0.806), 0.791 (95% CI: 0.733–0.848), and 0.873 (95%

CI: 0.798–0.948), respectively (Supplementary Figure S5).

The Brier scores for the internal validation set and external

validation sets A and B of the model were 0.172, 0.202,

and 0.141, respectively. Model calibration was performed to

assess the likelihood that a given new observation belongs

to each of the known classes. The calibration slopes showed

a minimal difference between the predicted and observed

probability of unfavorable outcomes, indicating a good model fit

(Supplementary Figure S6).

Identification of important features

The SHAP summary plot illustrated the influence of each

feature on an unfavorable outcome (Figure 1). In the descending

order, the risk factors contributing most significantly to the

prediction of an unfavorable outcome were initial NIHSS, early

neurologic deterioration, age, WBC, BUN, hemoglobins, PT, use

of tPA, and previous stroke. The initial NIHSS, early neurologic

deterioration, and age provided notably larger contributions to

the unfavorable outcome prediction compared to the other risk

factors. The variables hemoglobins and the use of tPA showed

a negative correlation with the incidence of an unfavorable

outcome.

The SHAP dependency plot showed how the SHAP

values change as each feature value changes (Figure 2).
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FIGURE 1

Feature importance of the gradient boosting model using SHAP. In this summary plot, the redder the value, the larger the value of the feature, and the

bluer the value, the smaller the value. In addition, if the SHAP value increases in the positive direction based on 0, the probability of predicting positive

increases, and if the SHAP value increases in the negative direction, the probability of predicting negative increases. The higher the initial NIHSS

score, the higher the probability of predicting positive for unfavorable outcomes. However, when the hemoglobin level is high or tPA is used, the

probability of predicting a negative outcome increases. We obtained information on the importance and contribution of each patient through SHAP.

This helps in understanding how much each feature contributes to the model prediction and how that contribution changes. This information

enhances the interpretability of the model and can provide insightful guidance for feature selection or model tuning. NIHSS, National Institutes of

Health Stroke Scale; END, early neurologic deterioration; WBC, white blood cell; BUN, blood urea nitrogen; tPA, tissue plasminogen activator; BMI,

body mass index; EVT, endovascular treatment; SHAP, SHapley Additive exPlanations.

Initial NIHSS, END, age, BUN, WBC, PT, previous stroke,

hypertension, and diabetes mellitus indicated a positive

correlation with the unfavorable outcome when the feature

values were positive or increasing. On the contrary,

hemoglobins, atrial fibrillation, and the use of tPA exhibited an

opposite influence.

We identified certain features exhibiting non-linear

relationships with the outcome. Age had a progressively greater

positive influence as it increased, whereas the initial NIHSS

score followed a sigmoid curve with a positive correlation. BUN,

serum glucose, and BMI showed a U-shaped or V-shaped curve,

indicating an increase in the contribution to an unfavorable

outcome when the values deviated from what is known to be a

normal range.

Identification of interaction between
features

The SHAP dependency plot can depict the effect of

a specific feature on the prediction by using different

colors to represent the values of other features. By

observing these color patterns, we can explore the

interactions between two features that influence the outcome

(Figure 3).

END exhibited clear interactions with several features.

When the initial NIHSS was <3, the absence of END had a

negative association with the unfavorable outcome compared

to its presence. However, for NIHSS scores of 3 or higher,

the absence of END contributed more to an unfavorable
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FIGURE 2

SHAP dependency plots of features. In this graph, the x-axis represents the values of a specific feature, while the y-axis represents the SHAP values of

that feature. Each point signifies an individual data point, and its position denotes the value of the feature and the impact that this value has on the

prediction. For instance, if the SHAP value consistently increases as the feature value rises, it can be interpreted that the feature has a positive

influence on the prediction of the model. Conversely, if the SHAP value decreases as the feature value increases, the feature can be understood to

negatively a�ect the prediction. Furthermore, the SHAP dependency plot is useful for visualizing non-linear relationships. For example, if the plot

exhibits a U or S shape, it indicates a non-linear relationship between the feature and the prediction.
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FIGURE 3

Interaction plots of early neurologic deterioration (END) with (A) Initial NIHSS, (B) Age, (C) White Blood Cell (WBC) count, and (D) Duration of

symptom onset to admission. Interactions in SHAP dependency plots visually represent how the SHAP values of one feature change as the values of

another feature change. The left column of the plot depicts both the main e�ects and the interaction e�ects, while the right column isolates and

displays only the interaction e�ects. In the left column, each dot represents an individual data point, with its position indicating the value of a specific

feature and the corresponding SHAP value reflecting its impact on the prediction. These dots are colored according to the values of another feature,

illustrating how the relationship between a particular feature and the prediction depends on the values of another feature. If these patterns change

depending on the color of the dots (i.e., the values of the other feature), it indicates an interaction between the two features. For example, if dots of a

certain color tend to show an increase in SHAP values as the feature value increases, but dots of other colors show a stronger, weaker, or even

opposite trend, and this suggests an interaction between the two features. The plot in the right column, drawn using only interaction values,

emphasizes the interaction e�ects more clearly, which may not have been as evident in the left column plot. The larger the absolute value of the

interaction (indicated on the y-axis), the stronger the interaction between the two features, indicating that these two features are more closely

related to the prediction of the model.
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outcome than its presence (Figure 3A). In patients aged 70

years or above, the occurrence of END contributed less to

an unfavorable outcome compared to those under 70 years

(Figure 3B). When WBC was outside the normal range (6,000–

9,000/mL), the presence of END showed a positive interaction

with the unfavorable outcome (Figure 3C). Patients who arrived

within 12 h from symptom onset exhibited interactions with

END (Figure 3D). Additional examples of interaction effects

between features, other than END, can be found in the

Supplementary Figure S7.

Individual patient outcome interpretations

SHAP allows for not only global interpretations of a feature’s

contribution to the outcome across the entire dataset but also

local interpretations for individual patients. As illustrated in

Supplementary Figure S8, the patient was predicted to not have an

unfavorable 3-month functional outcome. The history of a previous

stroke, an age of 74 years, and a WBC count of 8,600/mL all

contributed to an unfavorable outcome. However, a lower NIHSS

score of 1, the absence of END, and a hemoglobin level of 13.9

had greater contributions to a more favorable outcome. These local

interpretations allow us to comprehend why the model predicted a

specific outcome for this particular patient.

Discussion

In this study, we demonstrated the application of machine

learning (ML) algorithms to predict the functional outcomes

following an acute ischemic stroke. Our model provided an

explanation not only based on individual patient data but also

utilized the entire dataset to visualize the contribution and

directionality of specific input features through SHAP.

The features that contributed most significantly to our study

were initial NIHSS, END, and age, which are well-known risk

factors for stroke functional outcomes and have been consistently

reported in previous studies (2, 17–20). In the case of a strong linear

relationship between two variables where the outcome variable is

binary, the predicted probabilities canmanifest as a sigmoid pattern

(21, 22). Interestingly, in our study, initial NIHSS showed a sigmoid

curve relative to the 3-month binary functional outcome (Figure 2).

In the prediction of unfavorable outcomes, END exhibited

clear interactions with most variables. When the initial NIHSS was

<3 points, the absence of END indicated a negative association

with unfavorable outcomes. However, in cases where NIHSS was

3 or higher, the absence of END contributed more to unfavorable

outcomes. While this finding may seem counterintuitive, it can

be understood when considering that the most common cause of

END is a progressive stroke, such as lacunar infarction (23). The

mechanism of this progressionmay well be related to the concept of

branch atheromatous disease, suggesting that a hypoperfused area

in the perforating arteriole region may deteriorate after admission,

leading to the occurrence of END, particularly in patients who were

admitted with lower NIHSS scores.

This notion aligns with the results from a previous cohort study

conducted on patients with lacunar infarction, where END was

associated with worse functional results at 90 days, and low NIHSS

scores at admission alongwith low perfusion lesions predicted END

(18). Our findings corroborate these results. Furthermore, the same

cohort study suggested that patients who received IVT treatment

demonstrated improved functional outcomes at 90 days, and a

conclusion is also reflected in our study.

As shown in Figure 3D, the presence of END within 12 h of

admission demonstrated a positive interaction with unfavorable

outcomes, whereas it exhibited a negative interaction in patients

who arrived later. This discrepancy could be attributed to the fact

that patients arriving at the hospital quickly are more likely to have

END identified. However, for those arriving later, even if END

has occurred, it may not be recorded as such in the data if the

event happened outside the hospital, thus potentially explaining

this observed interaction.

The other features, while not as widely recognized as risk

factors for 3-month functional outcomes as the ones previously

mentioned, showed consistency in our model interpretation with

existing research results (Figure 2). The post-hoc analysis of the

Enhanced Control of Hypertension and Thrombolysis Stroke

Study (ENCHANTED), which indicated that hyperglycemia and

increased WBC count independently relate to poor functional

outcomes (24), was reproduced in our study. Interestingly, lower

WBC counts at admission were associated with better functional

outcomes regardless of treatment (25), and the previously

observed association of increased WBC with poor functional

outcomes seemed to be reproduced in our results as a U-shaped

impact pattern.

Consistent with previous studies suggesting a potential link

between increased BUN and unfavorable outcomes (26), our study

also found an association between increased BUN and unfavorable

outcomes. BUN exhibited a V-shaped pattern, which seems to be a

plausible non-linear result when combined with previous findings

that a decrease in BUN is associated with better neurological

improvement (27).

Our study found that a decrease in hemoglobin contributed

significantly to unfavorable outcomes. Previous studies have also

found significant associations between abnormal hemoglobin levels

and poor outcomes (28, 29).

The duration of symptoms to hospital admission within 3 h

tended to decrease the likelihood of unfavorable outcomes but

showed a positive association thereafter. However, this influence

slightly decreased as the duration increased. This likely reflects the

impact of being able to use rtPA for those who arrived within 3 h.

In Figure 1, EVT showed relatively low importance for the

model, but the dependency plot revealed its association with a

favorable outcome in patients with an initial NIHSS value of 6

or more (Supplementary Figure S7c). This aligns with guidelines

suggesting that performing EVT on patients with an initial NIHSS

score of 6 or higher correlates with better prognoses (30). However,

it is necessary to interpret with caution, considering that features

with low contributions might have limited clinical significance for

the model.

We looked at the interpretation between the classical

generalized linear models and the interpretation of ML-based

Frontiers inNeurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2023.1234046
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Lee et al. 10.3389/fneur.2023.1234046

SHAP. Referring to the estimates from the multivariable logistic

regression model based on the dataset used in this study, there

was no considerable difference in the contributions of major

features derived from the SHAP of the XGB model (Figure 1,

Supplementary Figure S9). The overall consistency in the results

from both approaches in our dataset can be attributed to the

following reasons. As shown in Figure 2, variables considered

crucial in this study (initial NIHSS, Age, and END) did not

exhibit complex non-linear or multi-dimensional relationships.

Datasets with such simple inter-variable relationships are likely

to result in no substantial difference in predictive performance

between traditional and ML models. Indeed, the AUC of the

logistic regression model was not notably different from the XGB

model. The AUC for the logistic regression was 0.792 (0.776–

0.807) for the internal test set, 0.795 (0.737–0.853) for external

validation set A, and 0.893 (0.829–0.956) for set B. These AUC

values from the logistic regression did not show a statistically

significant difference when compared to the AUC of the XGB

model (p= 0.793, 0.738, and 0.247 for the internal test set, external

validation sets A and B, respectively). However, in datasets with

more complex relationships and interactions between variables, the

interpretation results and performance of these two models might

differ. Ultimately, understanding the characteristics and structure

of the data and choosing the appropriate model may be pivotal in

clinical research and practical decision-making.

Nevertheless, interpretable methods such as SHAP provides

added value. Through the use of SHAP, we can visually understand

not only the intensity of the contribution of risk factors to

outcomes but also the non-linear contribution of specific risk

factors and the interactions between variables. These are insights

that were not discernible in previous traditional statistical methods.

Through such analysis, we gain a deep understanding of how key

features contribute to model predictions and how changes in their

values impact those predictions. For example, we can not only

reproduce the results of previous studies but also decipher hidden

implications within those results. Furthermore, we can identify

lesser-known risk factors. In this way, interpretable methods can

provide insights about characteristics observed in clinical settings,

potentially improving model performance and facilitating its use in

medical practice.

Our research has several distinct advantages over previous

studies. Earlier research efforts particularly showed limitations in

their generalizability. This was mainly due to the limited amount of

data relative to the number of features and the absence of external

validation (31–33). However, our study overcame these limitations

by utilizing a much broader sample and conducting both internal

cross-validation and external validations.

Furthermore, while past research lacked clear methodologies

or approaches to the interpretability of ML models, our research

sought to address this gap by employing SHAP. Through this, we

were able to delve deeper into the interactions and relationships

among the variables used in our study. We believe that our research

will significantly contribute to expanding the current knowledge

on post-stroke management in clinical decision support systems

powered by AI.

Our study has several limitations. First, due to the multicenter

retrospective nature of the investigation, the performance results

may be inadequate for determining the robustness of theMLmodel

for clinical utility. Well-designed prospective cohort studies are

required to provide clear evidence for clinical use.

Second, the performance of ourmodel in some external datasets

was superior to that in internal validation. There could be multiple

explanations for this phenomenon: (1) If the training data contain

many noises or outliers, the model may overfit by learning these

noises. In this case, if the test data are cleaner or better reflect

the general pattern, the performance on these datasets may be

better; (2) The performance results could also vary depending

on the evaluation metric used. Particularly, if the distribution of

training data and test data differ, the same model can have varying

performance depending on the dataset. In such a case, the test

dataset could receive a higher score in a particular evaluation

metric; and (3) If the model is robust, that is, if it can capture

specific patterns or trends not present in the training data, it can

enhance performance in the test data. This happens because the

model can respond well to new patterns that were not observed in

the training data. If the model is not overfit and is appropriately

generalized, it can have a high predictive capability for new data.

Third, our study primarily employed a cross-sectional

research design, focusing on predicting short-term outcomes.

While this offers immediate insights, it captures data at

a single point in time, potentially limiting our ability

to track changes over time. Additionally, this approach

might not provide a comprehensive perspective on how

these outcomes might evolve or persist in the long run.

A longitudinal study on the long-term outcomes of stroke

should be undertaken as it could shed light on the temporal

patterns and variations, granting deeper insights into the

cause-and-effect relationships.

Fourth, while SHAP helps infer the importance of features

for a given model, there may be inherent problems in the SHAP

inferences if the model is poorly developed or trained. However,

we developed our model using a large dataset and also carried out

external validation.

In conclusion, machine learning algorithms, specifically

the tree-based model, can be used to predict the 3-month

functional outcome in patients with acute ischemic stroke.

Through the utilization of the SHAP method, we can

gain an in-depth understanding of how critical features

contribute to model predictions and how their changes

influence these predictions. Future work should focus

on refining the model, exploring additional predictive

features, and validating these findings in prospective

cohort studies.
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