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Besides dividing the organism’s immune system into adaptive and innate

immunity, it has long been thought that only adaptive immunity can establish

immune memory. However, many studies have shown that innate immunity can

also build immunological memory through epigenetic reprogramming and

modifications to resist pathogens’ reinfection, known as trained immunity. This

paper reviews the role of mitochondrial metabolism and epigenetic

modifications and describes the molecular foundation in the trained immunity

of arthropods and mollusks. Mitochondrial metabolism and epigenetic

modifications complement each other and play a key role in trained immunity.
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1 Introduction

The immune system evolved under coevolutionary selection and is the backbone of

animal resistance to pathogen attack (1). The immunity of an organism is divided into

adaptive immunity and innate immunity. Adaptive immunity evolved independently in

vertebrates (2) and is the only one that has memory. However, a growing number of studies

have shown that innate immunity can enhance immune responses to secondary infection,

which imply that innate immunity has memory (3). However, unlike adaptive immune

memory, the memory of innate immunity involves epigenetic modification (4).

In vertebrates, besides adaptive immune memory, innate immune memory or trained

immunity has been described (5, 6). The ability of the vertebrate innate immunity to build

immunological memory in macrophages was first described in 1986 (7), which seems to

result from environmental stress conditions (8–10), and therefore is distinct from classical

immunologic memory triggered by the T or B lymphocytes (11, 12) (Figure 1). Many

studies on vaccines and pathogens have provided evidence of innate immune memory,

such as in SCIDmice, which have no T/B lymphocytes, have revealed that Bacille Calmette-
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Guerin (BCG) could still protect against disseminated candidiasis

(13), indicating that some vaccinations and even infections can

induce more broad protection against other pathogens through

trained immunity mechanisms (5, 12). In vertebrates, trained

immunity may improve protection against emerging pathogens

and also against future new pandemics (14).

In the last couple of years, trained immunity in mammals has

been extensively reviewed (6). Infection and/or vaccine increases

the efficiency of immune responses or enhances the resistance to

reinfections by related and unrelated pathogens, i.e., offers a cross-

protection (15–17). Since the adaptive immune system of

vertebrates remembers previous encounters and mounts a robust

immune response (18), vertebrates are not ideal models for research

into innate immune memory. Recent studies have shown that

organisms, such as invertebrates and plants, which lack adaptive

immunity, show greater protection from reinfection (19–21). For

instance, Anopheles albimanus, Marsupenaeus japonicus,

Crassostrea gigas, etc., are reported to build immunological

memory to reinfection by the same and different pathogens (22–24).

Among metazoan species that number around 1,162,000, about

1,112,000 (about 95.70%) are invertebrates (25). Given that

invertebrates lack lymphocytes and are thought incapable of

developing immune memory (26), coupled with the species

richness of invertebrates, they are the ideal models for studying

innate immune memory. Moreover, many invertebrate species

provide steady sources of food globally (27), such as shrimps,

scallops, crabs, abalone, etc., are farmed on a largescale (28–31).
Frontiers in Immunology 02
Thus, understanding how these organisms enhance their immunity,

such as via trained immunity, would go a long way toward

improving their aquaculture. Therefore, this current review brings

together information on trained immunity in invertebrates,

especially those that serve as food sources, to understand better

how these organisms protect themselves from repeated infections.

The concepts and mechanisms from emerging scientific fields will

open new avenues for cultivating new species and enhancing disease

prevention and treatment of aquaculture animals.
2 Trained immunity in arthropods
and mollusks

The innate immunity of invertebrates displays some features of

an immunological memory (32), which has the same function as the

vertebrate adaptive immune system (15, 16). In arthropods and

mollusks, trained immunity has been reported in many, including

Brine Shrimp (Artemia), the Peruvian scallop (Argopecten

purpuratus), Chinese mitten crab (Eriocheir sinensis), Pacific

oyster (Crassostrea gigas), kuruma shrimp (Marsupenaeus

japonicus), etc. (22, 23, 29, 30, 32). Many studies have shown that

the innate immunity in organisms that have or lack adaptive

immunity can mount increased resistance to reinfection through

innate immunity memory or trained immunity (33–36). For

instance, innate immune memory is induced by microbiota to

protect mosquitoes against Plasmodium (37), while Bombus
FIGURE 1

The immune systems in vertebrates and invertebrates.
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terrestris can protect themselves against different pathogens

through innate immune memory (38). Similarly, innate immune

memory has been identified as an immune defense mechanism in

snails (39). In addition to forming memories to the same pathogen,

trained immunity helps the host to resist infection by other

pathogens, i.e., providing a cross-protection (40) (Figure 2). This

phenomenon is because the immune system stays active after the

first stimulus, which does not recover to the base level before the

next infection (6), indicating that trained immunity also has some

specificity (Figure 1). In invertebrates, pattern recognition receptors

and/or the genetic diversity of immune molecules and the

functional diversity of immune proteins are believed to provide

the basis for trained immunity (36, 41–43).

Growing evidence indicates that the molecular mechanisms of

trained immunity are epigenetically regulated (17, 44, 45) but not

through mechanisms dependent on T and B cell adaptive responses

(46). Some mechanisms shown to modulate trained immunity,

including histone acetylation, DNA methylation, modulation of

microRNA, and noncoding RNA expression (5, 47–49), are defined

as epigenetic modifications (50). Innate immune cell

reprogramming of metabolic pathways is another basis for

forming a trained immunity (51). When innate immune cells are

exposed to the first pathogen stimulus, metabolic pathways and

epigenetic modifications occur, providing rapid and enhanced

immune response upon subsequent pathogen challenge (5, 52).

Thus, the trained immunity of arthropods and mollusks could also

be affected by epigenetic modifications and metabolic

reprogramming, which provides a broader pattern of specificity

and immune memory.
3 The basis of trained immunity in
arthropods and mollusks

During an immune response, host cells’ surface receptors

recognize pathogens and transmit the infection signal to the

cellular signal transduction pathway to activate target genes’

expression, followed by the release of effector proteins or factors
Frontiers in Immunology 03
to clear the pathogen. Thus, pathogen recognition initiates the

immune response, hence, differences in this recognition induce

different immune responses.

Trained immunity has immune memory and primitive

specificity to the same pathogen, probably due to receptor

diversity (53). The innate immune system’s pattern recognition

receptors (PRRs) recognize different microbial species and mediate

a broad specificity pattern in vertebrates (53, 54). Similarly,

invertebrates have evolved genetic mechanisms capable of

producing thousands of different immune proteins from a few

genes, which helps them to clear a wide range of pathogens (55).

For instance, Tribolium castaneum, Anopheles gambiae, Drosophila

melanogaster, and Bombus terrestris, etc. diversify their immune

genes’ sequence to enable them to exert a certain degree of

specificity to microbial pathogens (38, 56–58).

The ability of invertebrates to discriminate between pathogens

is based on a set of PRRs specific for pathogen-associated molecular

patterns (PAMPs) of different pathogens (59). Many immune gene

families of these PRRs in invertebrates could mediate the non-

specific immune response (17, 60, 61), which could also be a form of

trained immunity whereby gene expression to synthesize immune

proteins is induced by environmental changes. For example, the

Down syndrome cell adhesion molecule (Dscam), which is well

studied in invertebrates, has been shown to play a role in mounting

adaptive-like immunity by specific splicing to produce different

immune protein isoforms during pathogens stimulation (62–66).

Similarly, C-type lectin-like domain (CTLD) proteins, which

perform important tasks in immunity by acting as PRRs (67) and

as effector proteins with bactericidal activity (68, 69), are expressed

in the genomes of many organisms, including, cephalochordata,

echinodermata, insecta, nematoda, cnidaria, porifera, and placozoa

(70–76). In penaeid shrimp, such as Litopenaeus vannamei, the C-

terminal domain of hemocyanin contains a highly variable genetic

sequence that is structurally homologous to immunoglobulin (Ig)

and can recognize and bind with bacteria or red blood cells to

agglutinate or cause hemolysis (77). The C-terminus of hemocyanin

also possesses single nucleotide polymorphisms (SNPs), which is

related to shrimp’s resistance to different pathogens (78, 79). In

addition, many multigene family proteins in invertebrates, such as

npr-1, Sp 185/333 protein, NLRs, TLRs, Caspase gene, and

fibrinogen-related proteins (FREPs), are immune effectors and/or

modulators of cellular processes involved trained immunity (17, 37,

80–87) (Table 1).

Gene evolution could result from the interaction between hosts

and pathogens, indicating that changes in gene expression patterns

could be a response to external environmental pressure resulting

from long-term evolution. Thus, specific immune pathways and

common immune pathways are preserved in the course of

evolution. The immune specificity of invertebrates is mainly

based on the diversification of somatic gene sequences that

encode recognition molecules, effector-enhancement molecules,

and other immune molecules (96–98), synonymous with receptor

diversification in the adaptive immune system of vertebrates (95).

In Arthropods, gene sequence diversity prevents different

pathogens from interfering with their immune response (Table 1).

The evolutionarily conserved immune system components might
FIGURE 2

The model of trained immunity.
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TABLE 1 Diversity of immune-related genes and proteins in invertebrates.

Organism Species
Protein/
gene

Family/
number of
genes

Tissue Stimuli Function References

Sponges
Amphimedon
queenslandica

NLRs

Family of
pattern
recognition
receptors

PRRs (86)

Echinoderms

Strongylocentrotus
purpuratus

Sp185/333
16 genes and 80
full-length
transcripts

Coelomic fluid,
axial organ, gut,
esophagus,
gonad, and
pharynx

LPS
Syncytium
formation

(88)

Strongylocentrotus
purpuratus

Sp 185/333
Sp 185/333 gene
family

LPS or Vibrio diazotrophicus
Antimicrobial
activity

(85)

Strongylocentrotus
purpuratus

Sp 185/333
Sp185/333
protein

(82)

Strongylocentrotus
purpuratus

TLRs 222 TLR genes Sperm

Mediates the
alternative
and lectin
complement
pathways

(87)

Arthropods Daphnia magna Dscam
13,000 different
transcripts

Whole-body PRRs (89)

Anopheles
gambiae

Dscam
Pathogen-
specific splice
variants

LPS, PGN PRRs (90)

Anopheles
gambiae

Dscam
Pathogen-
specific splice-
forms

Whole-body Plasmodium falciparum PRRs (65)

Litopenaeus
vannamei

Hemocyanin
Hemocyanin
fragments Hemolymph

Vibrio alginolyticus, V. fluvialis
Bacteria
agglutination

(91)

Litopenaeus
vannamei

Hemocyanin
Hemocyanin
SNPs

Hemolymph

V. parahaemolyticus, V.
alginolyticus, V. harveyi, V.
fluvialis, V. anguillarum,
Aeromonas hydrophila, A. sobria,
Pseudomonas fluorescens,
Staphylococcus aureus

Antimicrobial
protein

(77)

Scylla serrata Hemocyanin
Hemocyanin
subunits (70, 72,
75, 76, 80 kDa)

Hemolymph
V. parahaemolyticus, V.
alginolyticus, V. harveyi, V.
fluvialis, A. hydrophila, S. aureus

Agglutination
activities

(92)

Litopenaeus
vannamei

Hemocyanin
12 O-
glycosylationsites

Hemolymph V. parahaemolyticus, S. aureus

Agglutination
and
antibacterial
activities

(93)

Litopenaeus
vannamei

C-terminus
of
Hemocyanin

13 SNPs Hemolymph V. parahaemolyticus
Agglutinative
activities

(78)

Litopenaeus
vannamei

Hemocyanin

3 variant
sequences of the
hemocyanin
subunit

Hepatopancreas

Escherichia coli K12, V.
parahaemolyticus, V.
alginolyticus, V. fluvialis,
Streptococcus pyogenes, S. aureus

Agglutination
activities

(94)

Marsupenaeus
japonicus

Caspase
203 caspase
genes

Hemolymph
hepatopancreas,
muscle, gill, and
intestine

V. parahaemolyticus, WSSV
Enhances
virus-induced
apoptosis

(95)

Molluscs
Crassostrea
virginica

CTLD
CTLD gene
families

Alliroseovarius crassostreae PRRs (61)

(Continued)
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explain simple forms of specific immune memory from trained

immunity, such as the degree of specific immune reactions of the

Toll and Imd pathways (99).

In some invertebrates, macromolecular proteins undergo specific

degradation and modifications to allow them to respond to different

pathogens. For instance, in response to pathogenic bacteria, the

hemocyanin protein of penaeid shrimp degrades into functional

peptides to enhance their antimicrobial immunity (100–103) (Table 1).

Therefore, arthropods and mollusks do not only encode immune genes

but also immune effector molecules with different molecular

polymorphisms, which constitute part of their trained immunity

(Table 1). Similarly, other invertebrates have diversified their immune

gene sequences and repertoire of diversified receptors (Table 1).
4 The effect of metabolic and
epigenetic modification on trained
immunity in arthropods and mollusks

The immune system of organism senses and responds to

environmental stress, which is high-energy demanding. Trained

immunity is associated with many metabolic pathways to increase

the ability of immune cells to respond to secondary infections through

metabolic reprogramming (104). Environmental cues can also change

chromatin structure through epigenetic modification, which could be

passed on to the next generation to facilitate adaptation (105). Current

studies show that epigenetic modifications, including histone

modifications, DNA methylation, chromatin remodeling, and non-

coding RNA (106, 107), operate to maintain cell identity (108–110).

The mechanism of epigenetic modifications can play an important role

in host-pathogen interactions by regulating gene expression (111–116),

indicating that metabolic and epigenetic modification are two essential

parts of trained immunity.
4.1 Cellular metabolism

The cellular immunity of invertebrates mediated by hemocytes

consists of inflammatory responses, includes phagocytosis,
Frontiers in Immunology 05
encapsulation, cytotoxicity, and synthesis or release of microbicidal

agents (117). Different immune signals induce different cellular

metabolic reorganizations, which are critical for the epigenetic

modifications in trained immunity (33, 52, 118). Given that

immune responses are high-energy processes, metabolism provides

energy to maintain cellular hemostasis and enhances immune cells’

functions (51). For instance, the metabolic product lactate can inhibit

the activity of histone deacetylase (HDAC) to increase gene

accessibility (119). Moreover, mitochondria are key factors that

control many epigenetic enzymes (120). For instance, the activities

of alkaline phosphatase, alanine aminotransferase (ALT),

phenoloxidase, acid phosphatase (ACP), and lactate dehydrogenase

(LDH), peaked at 6-12 h after injection with fungal spores of

Spodoptera littoralis, while the highest immune responses and

intermediary metabolism occurred 12 h post-injection (121).

Similarly, ACP and ALP are the hydrolytic enzymes that mediate

the dephosphorylation of nucleotides, proteins, and alkaloids and

have been implicated in lipid hydrolysis to provide energy for

resistance to external stimuli (122). Thus, metabolic change can

promote epigenetic reprogramming under inflammatory

stimulation to achieve trained immunity phenotype (5, 33).

During immune stimulation, the metabolic state of cells is

modulated to regulate the expression of different genes by

retrograde signaling in the mitochondria to promote different

cellular functions, such as differentiation, adaptation to challenge,

etc. (123, 124). However, under an inappropriate metabolic state,

such as due to an effect in the electron transport chain, remedial

measures are taken to maintain the production of certain

tricarboxylic acid cycle (TCA) intermediates by glutamine-

dependent reductive carboxylation (125). The mutual regulation

between metabolism and genes expression have been observed in

some invertebrates, such as Caenorhabditis elegans, Daphnia pulex,

L. vannamei, Argopecten purpuratus, Scylla paramamosain, etc. (29,

126–129).

Mitochondria provide metabolic intermediates and their

derived products, e.g., S-adenosyl methionine (SAM) and

acetyl-CoA, which drives epigenetic modification, such as

histone acetylation by acetyl-CoA (120, 130). Levels of acetyl-

CoA affects the activity of histone acetyltransferases (HATs) to
TABLE 1 Continued

Organism Species
Protein/
gene

Family/
number of
genes

Tissue Stimuli Function References

Crassostrea gigas TLRs 83 TLR genes gill
V. anguillarum, V. tubiashii, V.
aestuarianus, V. alginolyticus

PRRs (60)

Biomphalaria
glabrata

FREPs
Putative
immune
repertoire.

Haemolymph
Phagocytosis
or
encapsulation

(80)

Nematodas

Caenorhabditis
elegans

CTLD
283 gene family
members.

PRRs (53)

Caenorhabditis
elegans

npr-1 npr-1 mutant. Whole-body
p38 MAPK
signaling

(84)
NLRs, NOD-like receptors; PRR, pattern recognition receptor; LPS, lipopolysaccharide; PGN, peptidoglycan; TLRs, Toll-like receptors; Dscam, Down syndrome cell adhesion molecule; SNPs,
single nucleotide polymorphisms; CTLD, C-type lectin-like domain; FREPs, fibrinogen-related proteins; Npr-1, neuropeptide Y receptor gene.
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regulate gene expression by changing the acetylation of the whole

histone (131, 132), which is highly dependent on fatty acid

metabolism and glucose availability in mitochondria (131, 133,

134) (Figure 3). Thus, histones acetylation drives the epigenetic

control of gene expression through transcriptional programs

(135, 136). For instance, exogenous acetate can produce acetyl-

CoA to maintain global histone acetylation when acetyl-CoA

production by ATP citrate lyase (ACLY) is limited (137). This

complementary mechanism relies on two important anaplerotic

mechanisms, i.e., the conversion of pyruvate to mitochondrial

oxaloacetate by pyruvate decarboxylase and the conversion of

glutamate by activation of glutaminolysis and subsequently to a-
ketoglutarate (a-KG) (123). However, mitochondria dysfunction

induced by exposure to environmental mutagens or pathogen

stimulation can suppress mitochondrial oxidative metabolism in

invertebrate (138, 139), which could be responsible for the

change in gene expression profiles after pathogen challenge

(140–142).
Frontiers in Immunology 06
An increase in energy metabolism can be regulated by

peroxisome proliferator-activated receptor g coactivator 1a
(PGC-1a) to alter cellular energy demand in different tissues

upon activation by stimuli (143, 144). In addition, PGC-1a can

coordinate tissue-specific transcription to mediate the plasticity

of cells (145) (see Figure 3). These cellular events could be

modulated by PGC-1a through steroid receptor coactivator 1

(SRC-1) and CREB-binding protein (CBP) to affect the HAT

complex (146). Thus, the influence of immune response through

metabolism could affect some aspects of inflammatory or

autoimmune diseases.
4.2 Epigenetic modification

4.2.1 Histone acetylation
Nucleosomes are formed when DNA strands are wrapped around

eight core histones and then compressed into chromosomes (147).
FIGURE 3

The mechanisms of innate immunity. Under external stimulation, metabolism and membrane receptors directly or indirectly affect DNA methylation,
which induces the synthesis of immune molecules by regulating transcription and translation or releases spliced mRNAs. LncRNA is also released to
modulate transcription and intercellular information transmission. The external stimuli also activate PGC-a, regulate the TCA cycle, and acetylate
chromatin histones through its intermediate product, acetyl-CoA, to promote transcription. Pyruvate, glutamine, or exogenous acetic acid metabolism,
supplement the substances needed for the TCA cycle to keep it running. HATs, histone acetyltransferases; a-KG, a-ketoglutarate; PGC-1a, peroxisome
proliferator-activated receptor g coactivator 1a; DNMTs, DNA methyltransferases; TET, Ten-eleven translocation; DNAm, DNA methylation; LncRNAs,
Long Non-coding RNAs; OAA, oxaloacetic acid; PDH, pyruvate dehydrogenase; GLS, glutaminase; PRR, pattern recognition receptor; Gln, glutamine;
Glu, Glutamate.
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Intrinsically, the compact structure of nucleosomes is repressive

regarding unwanted transcription activity. Histone proteins can be

modified post-translationally at various residues through methylation,

acetylation, phosphorylation, and/or ubiquitination, which changes the

chromatin structure (148–150). The increased resistance of Artemia to

Vibrio campbellii infection, mediated by increased acetylation levels of

histone H3 and H4, could be passed on to the next generation (151).

Histone acetylation is a reversible process involving the addition/

removal of an acetyl group on lysine residues catalyzed by HAT/

histone deacetylase (HDAC) (152, 153) (Figure 3). Although histone

deacetylation catalyzed by HDAC tightens the chromatin structure to

silence gene expression (153), pathogens infection can disrupt this

structure to inhibit host gene expression. For instance, the ICP11

protein of white spot syndrome virus (WSSV) can damage the

nucleosome assembly in Penaeus vannamei, by binding to histone

proteins to evade the hosts’ immune responses to promote viral

replication (154).

4.2.2 DNA methylation
Various gene expression changes are induced in the immune

system during pathogen infection, which involves regulating

epigenetic mechanisms. For instance, DNA methylation, a kind

of epigenetic modification, plays an important role in various

biological processes (155). DNA methylation is a stable covalent

cytosine modification in a cytosine-guanine dinucleotide (CpG)

context, which in the genomes of vertebrates, are highly

methylated but sparsely methylated in invertebrates (156).

T h i s g e n om i c me t h y l a t i o n i s r e g u l a t e d b y DNA

methy l t rans fe rases (DNMTs) , a key mechani sm for

controlling gene expression in various organisms (157, 158)

(Figure 3). The oxidation of 5-methylcytosine (5mC) at CpG

dinucleotides to form 5-hydroxymethylcytosine (5-hmC) serves

as an epigenetic marker (159) because 5-hmC is enriched at the

enhancers of most highly transcribed genes (160). Conversely,

the promoters of highly expressed genes that are highly

expressed are loss of CpG methylation and form CpG islands

(161). Therefore, CpG islands are important for chromosome

stability (162, 163).

In Drosophila melanogaster and Aedes aegypti, genomic

hypermethylation caused by Wolbachia infection may be

associated with the up-regulation of DNA methyltransferases

(DNMTs) gene expression (116, 164, 165). Under these

conditions, the cytosine-5 of the host insect DNMTs are induced

under bacterial infection to affect the expression of antimicrobial

peptides (AMPs) (166). In Drosophila, DNMTs are also required for

antiviral innate immune responses (167). Since DNA

hypermethylation has been linked to transcriptional silencing

(163), it is a key and stable mechanism for repressing gene

transcription (168), whereas hypomethylation may increase the

transcript levels of genes (169). DNA methylation is a reversible

process that can be reversed by Ten-eleven translocation enzymes

(TET) when gene expression is active (170). Therefore, the interplay

between TET proteins and DNMTs controls the DNA methylation

landscape (Figure 3).
Frontiers in Immunology 07
The methylation of most DNAs in invertebrates is not in the

intergenic regions (171, 172) but rather in genomic loci that match

small RNAs in gene bodies, which are densely methylated, probably

because they regulate the transcription and mRNA splicing of target

genes (173). For instance, the DNA methylation in Apis mellifera

controls the alternative splicing of mRNA and is involved in gene

expression (174, 175). Pathogens may establish successful infection

by manipulating the expression of host genes via DNAmethylation.

In Bombyx mori, cytoplasmic polyhedrosis virus infection may lead

to hypermethylation of the p53-2 gene, suppressing its expression to

facilitate the proliferation of infected cells (169).

Although histone and DNA methylation are reported widely

in most invertebrates, such as arthropods and mollusks, how

histone and DNA methylation interact to regulate gene

expression and induce trained immunity in invertebrates

remains unknown.

4.2.3 Non-coding RNA
Long non-coding RNAs (LncRNAs) are involved in various

regulatory functions in animals, including gene regulation at

multiple levels, such as at the post-transcriptional levels,

enhancers, promoters, and chromatin modification complexes

(176, 177). For example, lncRNAs can affect promoter activity or

mRNA translation (178) and form miRNA precursors to regulate

target gene expression (152). LncRNAs do not only act

intracellularly by regulating HDAC, CBP/P300, and HAT but also

can be transported to other cells by exosomes (179, 180), which

could be one of the mechanisms of epigenetic inheritance across

generations (Figure 3). Both lncRNAs (A. aegypti) and microRNAs

(C. elegans) show genetic characteristics (181, 182). Thus, in

invertebrates, various studies have reported on the regulation of

transcriptional activity by non-coding RNAs, such as miRNAs in

Galleria mellonella, let-7 miRNA cluster in silkworms (Dazao P50),

miRNAs/lncRNAs in A. aegypti, microRNA-8 in Drosophila,

miRNA-317 in C. gigas, etc. (183–188).
5 Heritability of trained immunity

Adaptive immune memory can last for a long time and respond

quickly to reinfection by the same pathogen. Invertebrates such as

Artemia display trained immunity with similar features as adaptive

immunity (32). The memory of innate immunity could persist for

days or almost the entire lifetime, and in some cases across

generations (181, 182, 189–191). Trained immune memory

induced by inactivated bacterial and viral antigens has been

reported in shrimp and crayfish, the main manifestation of which

is that the secondary immune response is greatly improved compared

with the control (192). For instance, the offspring of Trichoplusia ni

from parents raised on a bacteria-rich diet had an increased

expression of immune-related genes and immune enzyme activity

(193). Similarly, the initiation of transgenerational immunity occurs

after the red flour beetle Tribolium castaneum is exposed to heat-

killed bacteria (194). Early life microbial exposure improves oyster
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survival when challenged with the pathogen causing Pacific oyster

mortality syndrome (POMS) in both the exposed generation and

subsequent generation (195). When challenged with specific bacteria,

Artemia could acquire strain-specific immunity that increases

resistance against the same strain of bacteria and is transmissible to

the progenies of successive generations (196, 197).

From the foregoing, it is clear that trained immunity can also

respond specifically to external stimuli and be passed on to the next

generation. The transgenerational effects of trained immunity

induction in vertebrates have been confirmed (198–200).

Moreover, the mechanism of trained immune memory in

vertebrates could be mediated by innate immune cells, such as

monocytes, macrophages, and natural killer cells (201). Given that

invertebrate immunocytes perform the same immune functions as

vertebrate macrophages (202), a similar memory mechanism might

also be present in invertebrate immunocytes, although the life span

of immune-functioning cells in blood is shorter than that of trained

immunity. Therefore, more research is needed to further unravel

the mechanisms of trans-generational immune priming (TGIP) in

invertebrates during trained immunity memory.
6 Application prospects of
trained immunity

Invertebrates lack an adaptive immune system and are an

excellent model for studying innate immune defense mechanisms

(203). For instance, Drosophila has been used as a valuable insect

model to study immune mechanisms of neurodegenerative diseases,

such as Alzheimer’s disease and Parkinson’s disease (204, 205).

In aquaculture animals, trained innate immunity has been

reported in mollusks, such as oysters and abalone (23, 31, 206,

207). For instance, DNA methylation patterns are found to vary

with changes in seasons (especially in temperature) in the oyster

Isognomon alatus (208, 209) or changes in ocean acidification and

salinity in the Haliotis discus hannai (210, 211). Similarly, the speed

of water currents can change DNA methylation patterns, as in the

snail Potamopyrgus antipodarum (212, 213). Generally,

hypomethylation occurs in different oyster species after infection

with toxic algae (214, 215). In the freshwater gastropod

Biomphalaria glabrata, Trematode infection induces DNA

methylation machinery proteins to impact DNA methylation

levels (216, 217). Exposure to air has also been reported to affect

innate immunity and DNA methylation in M. japonicus (218).

Thus, environmental and biological factors can influence DNA

methylation levels in arthropods and mollusks, laying a foundation

for the selective breeding of economic species of invertebrates.

Although elucidating the epigenetic mechanisms in these species

is of great significance to genetic breeding, there is still limited

knowledge on pathogen-host interactions, which is one factor

limiting trained immunity application for economically important

arthropodan and molluscan species.

Prophenoloxidase (ProPO) and transglutaminase (TGase)

genes, which play crucial roles in melanization and coagulation,
Frontiers in Immunology 08
are important constituents of the innate immune system of

arthropods that protect the host from invading pathogens (219,

220). For instance, in penaeid shrimp, hemocyanin protein

interacts with TGase to modulate its expression, affecting

hemolymph clotting (221). Similarly, hemocyanin can be

converted into PO-like enzymes in arthropods and mollusks by

physical disruption of the structural motifs in the dicopper centers

(222), whereas glycosylation modification of hemocyanin or its

degradation into functional peptides enhances its antimicrobial

activity (223). Despite these findings, it is currently unknown

whether the degradation or post-translational modification

mechanisms of hemocyanin are regulated by epigenetic

inheritance. Thus, further studies would provide better insight

into epigenetic reprogramming of the invertebrates’ immune

system since such information could be leveraged for designing

therapeutic agents for aquaculture invertebrates, such as shrimps,

oysters, scallops, etc.
7 Conclusion

Arthropods and mollusks have evolved to inherit regulatory

mechanisms capable of producing thousands of immune

proteins from a few genes by epigenetic modifications,

allowing them to recognize and eliminate a wide range of

pathogens. These organisms select genes through epigenetics

to enhance the recognition of pathogens by expressing specific

protein receptors and also modify immune molecules, such as

hemocyanin, DSCAM, etc., to perform immune functions,

whereas mitochondrial metabolism provides the energy and

substrates required for epigenetic modifications. The

epigenetics of trained immune memories can last long and be

passed on to the next generation. Also, arthropods and mollusks

activate the trained immunity response to external stimuli, an

immune characteristic that can last for a very long time or even

into the next generation. Nonetheless, there is still limited

knowledge about pathogen-host interactions, an important

factor limiting in-depth trained immunity applications in

economically important arthropods and mollusks. Therefore,

further research on the mechanism of trained immunity would

provide vital information for breeding important economic

species, optimize the breeding methods, and speed up the

breeding process in arthropods and mollusks.
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