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The prediction of functional outcome after a stroke remains a relevant, open

problem. In this article, we present a systematic review of approaches that have

been proposed to predict the most likely functional outcome of ischemic stroke

patients, asmeasured by themodified Rankin scale. Di�erentmethods use a variety

of clinical information and features extracted from brain computed tomography

(CT) scans, usually obtained at the time of hospital admission. Most studies have

concluded that CT data contains useful information, but the use of this information

by models does not always translate into statistically significant improvements in

the quality of the predictions.
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1. Introduction

After a stroke occurs, fast patient care is of paramount importance, given the rapid

degradation of the patient’s brain (Saver, 2006). In order to guide clinicians on what may

be the best treatment to apply, the expected functional outcome of the patient is often

considered (something the patients and their relatives are also interested in knowing). The

most commonly used metric to assess this outcome is the modified Rankin scale (mRS). It is

an integer scale that goes from 0 to 6, where the lower end corresponds to full independence

and the upper end corresponds to death (Swieten et al., 1988).

Studies exploring the prediction of this variable can be categorized into three groups

based on the information they consider: tabular approaches that rely solely on demographic

and clinical variables, imaging-only approaches that exclusively utilize brain images obtained

from imaging protocols, and hybrid approaches that incorporate both tabular and imaging

data. This review aims to assess the potential value of imaging data in this prediction

task, focusing primarily on the imaging-only and hybrid approaches. These approaches are

generally less prevalent in the literature compared to the tabular approach. Specifically, we

concentrate on studies utilizing brain computed tomography (CT) scans, including non-

contrast CT scans (NCCT), which are the recommended initial scan procedure for stroke

investigation due to their availability, speed, and patient tolerance (Hopyan et al., 2010).

Additionally, we consider variants of CT scans that use contrast agents: CT angiography

(CTA) and CT perfusion (CTP).
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To this end, we searched PubMed using the following query:

(“machine learning” OR “neural networks” OR “deep learning”)

AND “stroke” AND (“prognosis” OR “prediction”). The resulting

719 articles were then filtered using the Rayyan collaborative tool

(Ouzzani et al., 2016) in a blind process based on their title and,

in case of doubt, their abstract as well. A paper was considered

relevant if it focused on predicting the mRS variable using imaging

data from CT scans. The papers deemed relevant by at least two

reviewers were chosen for further analysis.

Regarding the exclusion criterion, we excluded studies

that violated the following constraints. Studies analyzing other

modalities besides CT as it would not be possible to analyse the CT

influence individually, in such studies. Studies with missing patient

data information and where such information was not possible

to obtain from the authors. Studies not presenting original work,

which also excludes reviews, meta-analyses, and editorials. Studies

that were only focused on interventions or treatments without a

direct relevance to predictive modeling using CT images. Studies

not written in English or a language familiar to the research team.

The entire process, illustrated in Figure 1, led to the selection of

19 studies, which are summarized in Table 1. Among these studies,

there were three feasibility analyses, four imaging-only studies, and

12 hybrid studies.

2. Characterization of the studies

Regarding CT modalities, of the 19 studies examined, 15

included at least a NCCT scan and 10 used just thismodality. All the

imaging-only methods used only one modality (three with NCCT,

one with CTA and one with CTP). Conversely, among the hybrid

models, five out of 12 studies utilized more than one modality, and

in all of these hybrid approaches, NCCT scans were consistently

included.

In 17 of the studies, the primary focus was on predicting the

mRS based on data available during the acute phase of stroke.

However, two other studies (Fang et al., 2022; Meng et al., 2022)

did not explicitly mention the phase from which their data was

obtained.

Some of the studies only considered a specific type of stroke

patients. For example, seven of them only considered patients

selected for thrombectomy (EVT). Furthermore, six studies limited

their analysis to groups of patients who experienced a stroke in

particular arterial territories, with two studies focusing on the

middle cerebral artery (MCA), two on the anterior cerebral artery

(ACA), and two on the posterior cerebral artery (PCA).

Although the mRS is a seven point scale, it is rarely considered

in its entirety. Instead, authors frequently split the scale into “good”

and “poor” output at different mRS thresholds, simplifying the task

to a binary classification problem. Considering that good outcome

patients have an mRS≤ 2 (and poor outcome patients have mRS >

2) is by far the most frequent strategy, with 16 of the studies using

it. The exceptions were Bacchi et al. (2020) using a split at 1, Danala

et al. (2022) using a split at 3 and Cao et al. (2022) mentioning no

split. Considering these splits, the binary distribution of outcomes

was roughly evenly distributed (≤ 5% difference between classes) in

seven studies, and in the other 11 poor outcome was the majority

class.

The other important factor related to the target variable is when

it is assessed. The 90 day mRS is the most frequent choice, being

used in 16 works. The exceptions were Mah et al. (2020) and Fang

et al. (2022) who considered the discharge mRS and Danala et al.

(2022) who considered the mRS after EVT.

Regarding the pre-processing applied to the scans, determining

the optimal trade-off between preprocessing and model invariance

remains an open question. Out of the 19 studies reviewed, eight

authors employed template registration, six used skull stripping,

five applied both techniques, and six studies conducted no pre-

processing at all. In the studies that mentioned no pre-processing,

the scans were either manually inspected by experts or processed

using proprietary algorithms such as e-Stroke (Brainomix Ltd,

Oxford, United Kingdom) or RAPID (iSchemaView, Menlo Park,

USA).

Throughout this review, we compare the performance of the

algorithms using the AUC metric, as it is the most commonly used

metric to evaluate the performance of the proposed methods.

3. Feasibility analyses

Three of the studies analyzed in this review do not propose a

specific algorithm to predict the mRS of stroke patients. Instead,

their focus is on assessing the feasibility of predicting this variable

from CT scan data. This distinction is crucial because if there

were no evidence that CT scans contained prognostically relevant

information, attempting to use them for prediction purposes would

not be justified.

Nagel et al. (2019) and Kis et al. (2022) used e-Strokes tools

to estimate biomarkers like acute ischemic volume (AIV) and

ASPECTS and related them to the mRS target, using statistical

analysis. They both conclude that both these biomarkers have the

potential to be good predictors of patient outcome. In Cao et al.

(2022) work, a custom deep learning (DL) algorithm is proposed

to predict the ASPECT score, instead of using e-Stroke. These

authors also conclude that this biomarker has the potential to be an

important prognostic variable. Although these studies only focused

on NCCTs, the other modalities (CTAs and CTPs) are in principle,

at least as informative, meaning they should also contain relevant

prognostic information.

4. Imaging-only studies

Of the four imaging-only approaches examined, three used DL

and one used a custom algorithm. The DL algorithms all got an

AUC bellow 0.8. Hilbert et al. (2019) and Fang et al. (2022) both

used 2D neural networks. The former transformed the 3D CT

volume into a 2D projection using maximum intensity projection

(MIP) (Fishman et al., 2006) and the latter worked at the axial slice

level.

Using CTA scans in their model, Hilbert et al. (2019) employed

the MIP method to highlight brain arteries in the axial plane. The

resulting 2D MIP image was then fed to their model, a ResNet

(He et al., 2016) adapted with receptive field neural networks

(RFNNs) (Jacobsen et al., 2016), to avoid overfitting. This model

outperformed two baseline classifiers trained with 20 radiological
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FIGURE 1

Studies inclusion criteria and classification flowchart.

imaging biomarkers (annotated by experts). The authors noticed

their model tends to focus on the occluded arteries (that appear to

be missing in the scans) by inspecting its activation mappings.

A segmentation model for nine posterior circulation structures

was developed by Fang et al. (2022). The ground truth

masks for this model were annotated by a neurologist. The

proportions of affected tissue in each region were then used

as features for a outcome prediction model. The authors

note that their approach (0.74 AUC) predicted the discharge

mRS better than pc-ASPECTS semiquantitative scale (0.67

AUC).

On the other hand, Samak et al. (2022) used the whole 3D

volume of NCCTs. Their feature matching auto-encoder (FeMA)

model not only predicts the dichotomised mRS score but also

outputs a 3D image with the predicted one week stroke evolution.

The authors used one week follow up scans as ground truth to

train this model and compared it with other generative models.

The predicted follow up scans gives a qualitative result useful for

physicians and is also used by the model to improve the mRS

prediction.

Finally, Danala et al. (2022), created a custom algorithm that

uses CTP scans. For each of the images the CTP captures over time,

their algorithm counts the number of “blood pixels” in each brain

hemisphere. From this analysis, it creates two blood flow curves

that represent the blood flow over time in each of the hemispheres.

The idea is that big differences in these curves may indicate the

presence of major large vessel occlusions (LVO). Several different

features were extracted from these curves and used to predict the
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TABLE 1 Tabular summary of the studies considered in this review, ordered by date and then by name.

References Paper
type

Cohort
size

Good/bad
outcome

(%)

mRS
time

mRS
split

Dataset
split

Modalities Best AUC Pre-
processing
steps

Adding
imaging
data
improves?

Stroke
type

Feature
extraction
method

Top 3
features

Tong et al.

(2017)

Hybrid 135 48/52 90 days 2 No mention CTA, CTP,

NCCT

0.85 No mention Inconclusive ACA stroke,

AIS

Custom,

Manual

No

mention

Hilbert et al.

(2019)

Image-

only

1,301 36/64 90 days 2 4 fold CV CTA 0.71 MIP,

registration,

skull stripping,

windowing

N/A AIS DL N/A

Nagel et al.

(2019)

Study 388 34/56 45, 90

and 120

days

2 N/A NCCT N/A Gantry tilt,

registration

Potentially

yes

AIS e-Stroke AAIV,

e-ASPECTS

Xie et al. (2019) Hybrid 512 47/53 90 days 0–5 Stratified 5

fold CV

CTA, CTP,

NCCT

0.87 No mention Inconclusive AIS Manual Age,

Baseline

NIHSS,

ASPECTS

Bacchi et al.

(2020)

Hybrid 204 55/45 90 days 1 Random 85%

train/ 15% test

split; train

used 10 fold

CV

NCCT 0.75 N/A Potentially

yes

AIS DL No

mention

Brugnara et al.

(2020)

Hybrid 246 33/67 90 days 2 0.632

bootstrapping

CTA, CTP,

NCCT

0.86 No mention Inconclusive ACA stroke,

AIS, LVO,

EVT

Manual,

e-stroke

24 h

NIHSS,

premorbid

mRS, final

infarction

volume

Mah et al.

(2020)

Hybrid 1,696 45/55 Discharge 2 10 fold CV NCCT 0.76 Registration,

skull stripping

No AIS Custom No

mention

Samak et al.

(2020)

Hybrid 500 25/75 90 days 2 80% train/

20% test

NCCT 0.75 Windowing,

Z-scaling

Inconclusive AIS, LVO,

EVT

DL No

mention

Brugnara et al.

(2022)

Hybrid 1,103 31/69 90 days 2 0.632

bootstrapping

NCCT 0.85 Gantry tilt,

registration

No AIS, MCA

stroke, EVT

Manual,

e-ASPECTS

Premorbid

mRS,

baseline

NIHSS, age

(Continued)
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TABLE 1 (Continued)

References Paper
type

Cohort
size

Good/bad
outcome

(%)

mRS
time

mRS
split

Dataset
split

Modalities Best AUC Pre-
processing
steps

Adding
imaging
data
improves?

Stroke
type

Feature
extraction
method

Top 3
features

Cao et al.

(2022)

Study 870 N/A 90 days N/A 694 train/176

test

NCCT N/A Registration,

skull stripping

Potentially

yes

AIS DL,

Radiomics

No

mention

Danala et al.

(2022)

Image-

only

31 52/48 After

EMT

3 Leave-one-

case-out

evaluation

CTP 0.88 Skull stripping N/A AIS, LVO Custom N/A

Fang et al.

(2022)

Image-

only

31 50/50 Discharge 2 5-fold CV NCCT 0.74 N/A N/A PCA Stroke DL N/A

Jabal et al.

(2022)

Hybrid 293 34/66 90 days 2 Random

spliting 75%

train/ 25% test;

train used 10

fold CV

CTA, NCCT 0.84 No mention Potentially

yes

AIS, EVT e-Stroke N/A

Kis et al. (2022) Study 295 35/65 30 and 90

days

2 N/A NCCT N/A No mention Potentially

yes

AIS, EVT e-Stroke N/A

Kniep et al.

(2022)

Hybrid 149 31/69 90 days 2-5 Nested 5 fold

CV

NCCT 0.90 Registration Potentially

yes

AIS, PCA

Stroke

Radiomics Cerebellum,

midbrain,

thalamus

Meng et al.

(2022)

Hybrid 323 32/68 90 days 2 80% train/

20% test

CTA 0.82 Windowing Inconclusive LVO, EVT DL No

mention

Ramos et al.

(2022)

Hybrid 3,279 38/62 90 days 2 5 fold CV with

80% train/20%

validation in

the training

sets

CTA 0.81 Registration,

skull stripping

No AIS, LVO,

EVT

DL,

Radiomics

Age,

baseline

NIHSS,

pre-stroke

mRS

Samak et al.

(2022)

Image-

only

500 25/75 90 days 2 Stratified 70%

train/ 15% val/

15% test

NCCT 0.79 Registration,

skull stripping,

Z-scaling

N/A AIS DL N/A

Ozkara et al.

(2023)

Hybrid 185 54/46 90 days 2 60% train/20%

val/20% test

CTA, CTP,

NCCT

0.96 No mention No mention AIS, MCA

stroke

Manual,

RAPID

Discharge

NIHSS,

discharge

BUN, age

The AUC scores are rounded to two decimal places. The acronyms BUN, AIS, EVT, EMT, and AAIVmean blood urea nitrogen, acute ischemic stroke, endovascular treatment, endovascular mechanical thrombectomy and automatically derived acute ischemic volume,

respectively. N/A, not applicable.
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patient outcome, using machine learning (ML) classifiers like k-

nearest neighbors (KNN) and support vector machines (SVM).

This method obtained an AUC of 0.878 ± 0.077, but it is worth

noting that they only analyzed 31 patients and, as mentioned, it

used an unconventional mRS target, making it hard to compare

with other results.

5. Hybrid studies

There are twomain ways of incorporating imaging information

into the prediction models:

• Using imaging biomarkers (5/12 papers) which are distinct

characteristics of the image recognized by experts (examples

of biomarkers are the ASPECT score or the occlusion site). Of

the five hybrid studies that used biomarkers, only one obtained

them from experts annotations (Xie et al., 2019). Three were

obtained in a semi-automatic (algorithmic labeling revised by

humans) (Brugnara et al., 2020, 2022; Ozkara et al., 2023) and

the other one in a fully automatic way (Jabal et al., 2022).

• Using features extracted by algorithms (7/12 papers). Here,

these features can be generated by DL approaches (Bacchi

et al., 2020; Samak et al., 2020; Meng et al., 2022; Ramos

et al., 2022) or using more traditional methods, like radiomics

(Kniep et al., 2022; Ramos et al., 2022) or other hand-crafted

features (Tong et al., 2017; Mah et al., 2020).

5.1. Imaging biomarkers

Several different ML models at various different mRS

dichotomisation thresholds were tried by Xie et al. (2019). Their

models used demographic, NIHSS and biomarkers variables from

NCCT, CTA, and CTP scans. They achieved 0.748 and 0.772

AUC when the imaging variables and NIHSS were obtained at

baseline and 24h after stroke onset, respectively. These results

suggest that more up-to-date variables are more informative. Using

feature selection, the authors were able to improve their models

performance to 0.772 and 0.884, respectively. This feature selection

step is not only relevant for model performance improvements but

also for making it more robust to clinical usage, as it is easier to

obtain the necessary information from patients.

Another work that also tried to use imaging features collected

at different points in time was Brugnara et al. (2020). They also

observed that the 24 h features resulted in the model with the best

performance—0.856 AUC, in their case. They noted that adding

CTP features did not improve the predictive performance of their

models, when starting with a baseline containing NCCT and CTA

biomarkers. Of the three most importance features considered by

their algorithms—24 h NIHSS, premorbid mRS and final infarction

volume—only the last is an imaging biomarker. These two facts

raise the question of the relevance of the CT imaging in the outcome

prediction.

Indeed, in their more recent study, Brugnara et al. (2022)

tried to answer this question in a more principled way, comparing

models with and without imaging biomarkers—acute ischemic

volumes (AIV) and ASPECTS, in this study—using statistical tests.

They note that both variables are strong independent predictors of

the target 90 day mRS. Despite that, their conclusion is that there is

no clear advantage in adding either AIV or ASPECTS (nor both),

to a purely tabular baseline with just demographic and clinical

variables. While the ASPECTS procedure is an established method

for analyzing early infarct signs, the authors explain that it may

be an overly simplistic approach, something which can limit its

predictive power. In particular, this score weights all its ten brain

regions equally and is invariant to infarct volume. The authors

point out that ASPECTS and AIV were highly correlated variables,

which explains both why they produce such similar results when

used independently for prediction, and why combining them does

not improve predictive performance.

In the study proposed by Ozkara et al. (2023), the focus was

MCA patients and the authors tried different ML models with

access to the three different CT modalities. They were able to

achieve an impressive 0.958 AUC, albeit using a smaller dataset

compared with the previous studies and not using cross validation

for model evaluation. Using SHAP (Lundberg and Lee, 2017), they

noted that discharge NIHSS score, discharge blood urea nitrogen

(BUN) and age were the top three most important features in their

best model (notably, none of them being an imaging biomarker).

The fact that they used variables at discharge time is probably what

explains their higher AUC score.

5.2. Algorithmicly generated features

The use of DL with CT imaging to predict stroke outcome was

pioneered Bacchi et al. (2020) work. They developed a “branched”

network where one branch uses a custom 3D CNN to encode a

NCCT scan and the other branch encodes a collection of clinical

and demographic variables. Although it only got an AUC of 0.75,

this network outperformed the other tabular-only and imaging-

only approaches experimented by them.

A branched network was also used in Samak et al. (2020) study.

Their model introduced several new improvements such as the

use of data augmentations, a more thorough pre-processing, focal

loss (Lin et al., 2017) to help with class imbalance and attention

mechanisms (Hu et al., 2018). In their dataset, this network

achieved 0.75 AUC but that was enough to beat Bacchi et al. (2020)

network and also a baseline model that only used clinical metadata

(including imaging biomarkers).

In Meng et al. (2022) study, a custom branched network was

also employed and obtained an AUC of 0.82, but it differed from

the previous articles in some aspects. Instead of two branches, this

study utilized three branches in parallel. The first branch encoded

CT scan information, the second branch encoded the location of

occluded vessels, and the third branch encoded other demographic

and clinical features. Additionally, unlike the previous studies that

used NCCTs, Meng et al. utilized CTAs.

Statistical tests were employed to assess if automatically

extracted imaging features, either from radiomics or DL, can

improve the outcome predictions, in Ramos et al. (2022) study.

Their experiments were comprehensive, testing several different

ML algorithms for the radiomics approach and several training

methodologies for a ResNet-10 encoder (He et al., 2016). They
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also compared models trained on any combination of tabular data,

imaging biomarkers and radiomics or DL features. In the end,

they reached an AUC of 0.81 and concluded that the inclusion of

imaging features does not improve model performance. Notably,

unlike the previously mentioned studies, Ramos et al. (2022)

directly concatenate the (unencoded) tabular features with the

features produced by the imaging encoders. Finally, their SHAP

(Lundberg and Lee, 2017) analysis points to age, baseline NIHSS,

and pre-strokemRS being themost important features (again, none

of them being a biomarker).

Radiomics were also used by Kniep et al. (2022) who focused

on posterior circulation strokes. These authors first registered the

patient’s NCCT scans to a MNI 152 (Brett et al., 2002) template

to then extract radiomic features from the different pc-ASPECTS

regions. These features, when combined with other clinical data

obtained a 0.9 AUC, with the cerebellum, midbrain and thalamus

being among the most relevant regions for the prediction task.

A custom algorithm to analyse the blood flow in CTP scans

was also created by Tong et al. (2017), like it was done by

Danala et al. (2022). However, Tong et al. (2017) algorithm is

only semi-automatic, requiring expert input to select a region in

circle of Willis for each of the three main brain arteries (MCA,

PCA, and ACA). Time intensity curves are computed for each

of these regions. Time intensity curves are also extracted for

each “vascular pixel” and they are assigned to the territory with

which they have the most similar territory intensity curve. The

amount of blood in a territory is given by the amount of pixels

assigned to that territory. They assume that high collateral scores

correspond to high PCA/ACA scores. This collateral score is then

combined with other features, including ASPECTS (from NCCTs)

and recanalization (from CTAs) in a ML model that achieved 0.85

AUC.

Finally, Mah et al. (2020) also tried different models with

progressively more variables, starting from a baseline with no

imaging data. Their imaging features were extracted by a custom

algorithm developed by the authors to segment lesions in NCCTs.

Despite achieving an AUC of 0.76, the model that included the

imaging information did not perform significantly better than the

models where imaging information was not included.

6. Discussion and conclusions

Regarding the scale used to evaluate functional outcome, it is

important to remember that the mRS has “moderate variability”

between experts, as Mah et al. (2020) mention. Additionally, the

AUC is known to provide unreliable estimates, particularly in low

sample size and class imbalanced regimes (Hanczar et al., 2010)

(characteristics of some of the studies here analyzed). Therefore,

the results should be accompanied with additional metrics like the

sensitivity, specificity or F1-score [something some authors already

do (Bacchi et al., 2020; Danala et al., 2022; Ramos et al., 2022; Samak

et al., 2022)].

An overview on the use of DL applied to imaging methods on

stroke patients was done by Zhu et al. (2022). On their section

about outcome prediction, they note that, compared with tissue fate

prediction, outcome prediction may be a more difficult task. Their

reasoning is that the outcome is influenced by several factors like

age and stroke treatment, that are not accessible just using images.

Naturally, we see that in the literature the hybrid models that are

complemented by these additional variables perform better than

the imaging-only models.

These authors also note that because the outcome prediction is

a classification task, it has inherently less supervision than other

tasks that have slice or voxel level annotations, meaning larger

training datasets are required. Indeed, many of the studies we

analyzed mention lack of data as a limiting factor of their work

(Bacchi et al., 2020; Danala et al., 2022; Jabal et al., 2022; Kniep et al.,

2022).

Models using variables collected at 24 h or discharge exhibited

the best results, potentially good enough for clinical practice.

However, the evident problem with such models is that they can

not be used at admission. At the time of hospital admission, the

consensus among researchers is that CT imaging contains relevant

prognostic information. Unfortunately, all the studies that check

if there is a statistically significant performance boost in adding

such information conclude that these hybrid models are no better

than their counterparts without imaging data (Brugnara et al., 2022;

Ramos et al., 2022). This is consistent with the fact that imaging

features are not regularly among the top most relevant features of

the hybrid models (Brugnara et al., 2022; Ramos et al., 2022; Ozkara

et al., 2023).

Despite the extensive literature on mRS prediction, there are

relatively few works that attempt to predict this variable using

imaging data, as evidenced by the relatively small size of this review.

This may suggest that the research topic is still underexplored or

may not hold significant promise. However, this second possibility

seems incompatible with the results of feasibility studies, which

assert the presence of relevant information in imaging data.

Nonetheless, these studies also indicate that not all imaging

variables retain statistical significance in multivariate analysis. In

other words, while imaging data is relevant, its contribution may be

limited when combined with other clinical data, further supporting

the observations made in the previous paragraph.

Another reason for the limited number of studies considered

in this review is its relatively narrow focus solely on CT

images, while disregarding other brain imaging techniques like

magnetic resonance imaging (MRI) and angiograms. BothMRI and

angiograms provide relevant diagnostic information, with MRIs

detecting small infarcts shortly after stroke onset and angiograms

being valuable for grading collateral flow (Vital, 1999; Kim et al.,

2004; Fonseca and Ferro, 2021). Arguably, these modalities may

offer even more informative insights than CTs, known to be less

sensitive to acute ischemic signs (de Lucas et al., 2008), whichmight

contribute to their underrepresentation in the literature. However,

it is worth noting that MRIs and angiograms are generally less

available and come with more patient constraints compared to CTs,

potentially impeding the deployment of solutions based on them in

clinical practice.
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