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The most important factor for increasing crop production is pest and pathogen

resistance, which has a major impact on global food security. Pest management

also emphasizes the need for farming awareness. A high crop yield is ultimately

achieved by protecting crops from pests and raising public awareness of the

devastation caused by pests. In this research, we aim to investigate the intricate

impacts of nonlinear delayed systems for managing crop pest management

(CPM) supervised by Ordinary Di�erential Equations (ODEs). Our focus will be on

highlighting the intricate and often unpredictable relationships that occur over

time among crops, pests, strategies for rehabilitation, and environmental factors.

The nonlinear delayed CPM model incorporated the four compartments: crop

biomass density [B(t)], susceptible pest density [S(t)], infected pest density [I(t)],

and population awareness level [A(t)]. The approximate solutions for the four

compartments B(t), S(t), I(t), and A(t) are determined by the implementation of

sundry scenarios generated with the variation in crop biomass growth rate, rate

of pest attacks, pest natural death rate, disease associated death rate and memory

loss of aware people, by means of exploiting the strength of the Adams (ADS)

and explicit Runge-Kutta (ERK) numerical solvers. Comparative analysis of the

designed approach is carried out for the dynamic impacts of the nonlinear delayed

CPM model in terms of numerical outcomes and simulations based on sundry

scenarios.

KEYWORDS

non-linear delayed crop pest management model, public awareness, explicit Runge–

Kutta method, Adams method, comparative analysis, approximate solutions, graphical

illustrations

1. Introduction

In recent years, researchers have paidmore attention to integrated pest management, and

its use in the crop field has increased. This strategy emphasizes the implication of biological

control factors to minimize the credence of pesticides. In agriculture, forest management,

and population health, microbiological pesticides play a significant role in incorporated

pest management. In the case of crops, biopesticides provide noticeable pest management

dependability as part of incorporated pest management [1]. In North America and Europe,

viruses are used as pest control agents against insect pests [2–4]. Agricultural-related

awareness programs on radio, TV, mobile and other media might aid in disseminating

agricultural knowledge among farmers and ranchers about the hazards of pesticide use on

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1208774
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1208774&domain=pdf&date_stamp=2023-09-07
mailto:adiqa@yuntect.edu.tw
https://doi.org/10.3389/fams.2023.1208774
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1208774/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Anwar et al. 10.3389/fams.2023.1208774

human health as well as the other linked environmental concerns

[5–9]. Pesticide overuse is significantly associated with farmers’

lack of pesticide knowledge, the impact of pesticide retail outlets,

and inaccessibility to non-synthetic pest control methods, while

the tendency to overuse reduces higher levels of the learning

process in Integrated Pest Management [10]. As a result, farming

awareness is essential to prevent crop losses having the least amount

of detrimental side effects [11, 12]. Pesticide communication

campaigns made it easier for farmers to understand the substantial

risks pesticides pose to public health and the ecosystem, and to limit

harmful consequences. Farmers primarily learned about pesticide

use and hazards through oral communication [13].

Time delay is a key feature in both natural and manmade

systems. Kuang provided an example to demonstrate the

significance of time delay [14]. He claimed that animals require

time to digest their food before moving on to other activities

and reflexes. As a result, any species model with no temporal

delay is at best an approximation [15]. Many systems as well as

industrial plants, including biological systems, machining, metal

forming, thermal acoustic systems and many others experience

time delays [16–19]. Furthermore, dynamical systems including

time delay exhibit far more complex behaviors than those without

delay in time [20]. There are two key reasons for the presence of

temporal delays in prey-predator systems [21, 22]. The first is the

gestation period, and the second is the maturation period. As a

result, incorporating delays into predator-prey model is essential

for ensuring the realistic nature of these models and demonstrating

how well the population dynamics of such models are influenced

by previous relevant information. In fact, time delays have a

significant impact on the overall characteristics of dynamic systems.

Many publications in the literature have described the theory-

based analysis of the prey-predator model involving time delay,

such as hunting delay [23], dispersal delay [24], predator gestation

period [25], as well as intra-specific competitive pressure generated

feedback delay [26].

There is a lack of mathematical modeling on agricultural

awareness to limit plant pests as well as diseases. Daudi et al. [27]

proposed a dynamic model using the fractional derivative operator

for maize growth as well as interactions with fall armyworms.

They described the basic reproductive number, which was the

average amount of newborns generated by a single female moth

over the course of a lifespan. The resilience of the trivial equilibria,

as well as the positive equilibria of the dynamical system, were

investigated by Li et al. [28] and the threshold requirements

for pest destruction and system permanence were determined.

Abbreviations: IPM, Integrated Pest Management; ERK, Explicit Runge-Kutta;

MD, Mating disruption; TV, Television; ODEs, Ordinary di�erential equations;

HIV, Human immunodeficiency virus; COVID-19, coronavirus disease of

2019; ADS, Adams method; CPS, Crop pest management; B(t), S(t), I(t),

A(t), Crop biomass density, Susceptible density, Infected density, Aware

people density; B0 , S0 , I0 and A0, Initial conditions for B, S, I and A; NDSolve,

Numerical solution of di�erential equations; α, Crop biomass growth rate; N,

Maximum crop biomass percentage; δ, Rate of pest attacks; c, Pest natural

death; β, Disease associated death rate; l, Aware individuals’ activity level;

d, Growth rate of aware individuals; υ , Memory loss of aware people; A0,

Awareness level from a widespread source; τ , Delay in time.

TABLE 1 Parameters default values used for non-linear delayed CPM

model [38].

Parameters Value Parameters Value

a 0.2 ϕ 0.5

N 50 µ 0.6

δ 0.025 µ1 0.12

c 0.1 l 0.025

β 0.05 d 0.015

A0 0.2 υ 0.05

τ 1 - -

Xiang et al. [29] explored the influence of MD controls on the

dynamical behavior of the pest systems by adding the gestational

delay and sex pheromones. First, the system’s bounds, stability,

as well as bifurcation were discussed. Second, by integrating

the constraint violating function, an optimized control problem

depending on sex pheromone and pesticides was reduced into

an analogous optimized parameter decision issue. The bifurcation

control of mosaic viruses fractional order infection models for

Jatropha curcas with agricultural awareness and an executing

delay was examined by Liu et al. [30] Hopf bifurcation generated

by executing delay was explored for the unregulated system by

examining the corresponding characteristic equation. They found

that changing the fractional order had a considerable impact on

bifurcation dynamics. Kumari et al. [31] employed the Integrated

Pest Management (IPM) technique to create a mathematical model

that used a combination of chemical and biological management.

The feasibility of pest eradication and non-trivial equilibria state

were examined, and the local stability of the pest eradication

equilibria state was investigated further. Shi et al. [32] presented a

unique population Smith framework with continual delay as well

as impulsive phase adaptive control and examined how it may

be used in pest management. The model’s singularity was first

qualitatively examined, and then the presence and uniqueness of

order one periodical orbits were considered in order to calculate

the frequency of chemical control implementation. A Filippov

prey predator model incorporating time delay was introduced by

Arafa et al. [33], where the delay time indicated the changes in

the natural enemy’s growth rate before discharging it to fatten up

pests. The bifurcation parameter time delay was used to derive

the threshold constraints for the stability of the equilibrium.

Utilizing Hopf bifurcation, it was proven that whenever the time

delay parameter crosses through specific critical levels, a periodical

oscillation phenomenon arises. They also established the equation

of slipping motion and addressed the sliding phase dynamics

using the Filippov convex approach. Al Basir et al. [34] presented

prey predator framework for assessing the impact of delay time

in crop pest management utilizing agricultural awareness-based

treatments. The authors indicated that the application of biological

insecticides is proportionate to the pest population density on the

plantation. The presence of steady states, as well as their stability,

had been examined. Allen-Perkins and Estrada [35] constructed

an epidemic model to explore disease transmission and control

in planted agricultural farms as a long-term pest management
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TABLE 2 Illustration of scenarios for the non-linear delayed CPMmodel.

Scenario 1 for the crop biomass growth rate

ADS solver ERK solver

C-1 a= 0.25 a= 0.25

C-2 a= 0.3 a= 0.3

C-3 a= 0.5 a= 0.5

C-4 a= 0.7 a= 0.7

C-5 a= 0.9 a= 0.9

Scenario 2 for the rate of pest attacks

ADS solver ERK solver

C-1 δ = 0.015 δ = 0.015

C-2 δ = 0.025 δ = 0.025

C-3 δ = 0.035 δ = 0.035

C-4 δ = 0.045 δ = 0.045

C-5 δ = 0.055 δ = 0.055

Scenario 3 for the pest natural death rate

ADS solver ERK solver

C-1 c= 0.15 c= 0.15

C-2 c= 0.25 c= 0.25

C-3 c= 0.33 c= 0.33

C-4 c= 0.45 c= 0.45

C-5 c= 0.55 c= 0.55

Scenario 4 for disease associated death rate

ADS solver ERK solver

C-1 β = 0.01 β = 0.01

C-2 β = 0.02 β = 0.02

C-3 β = 0.03 β = 0.03

C-4 β = 0.04 β = 0.04

C-5 β = 0.05 β = 0.05

Scenario 5 for memory loss of aware people

ADS solver ERK solver

C-1 υ = 0.01 υ = 0.01

C-2 υ = 0.02 υ = 0.02

C-3 υ = 0.03 υ = 0.03

C-4 υ = 0.05 υ = 0.05

C-5 υ = 0.06 υ = 0.06

strategy. In an epidemiological susceptible, infectious and removed

model, the model includes the mobility of aphids carrying a

virus in an agricultural farm, the spatial dispersion of plants in

a planted field, and the existence of “trapped crops.” Abraha

et al. [36] studied a mathematical model for crop pest control

that took into account plant biomass, pests, and the impact of

farmer awareness. The basic reproductive number and delays in

time were used to determine the presence as well as stability

of the equilibria. Whenever time delays approach critical values,

stability transitions happen due to Hopf-bifurcation. The delayed

system’s cost-effectiveness was assessed using optimal control-

theory. Rossini et al. [37] presented a mathematical framework

for calculating the analytical solutions to the second variant of

the distributed delay model. The researchers also investigated how

the model behaved when it came to representing the population

of insect pests in various environmental factors, particularly with

respect to temperature. Al Basir et al. [38] proposed a mathematical

model including delay to investigate the impact of public awareness

on agricultural pest management using crop biomass, and pests.

The basic reproductive number was used to determine the presence

and stability conditions of the equilibria. The Hoph bifurcation

analysis was performed at the epidemic equilibria with time delay

as the bifurcation parameter.

Numerical approaches are frequently employed in science

and engineering to solve mathematical problems for which exact

solutions are difficult or impossible to grab. Only a limited number

of differential equations can be solved analytically. There are

several analytical methods to solve ordinary differential equations

(ODEs). Although several ODEs have closed form solutions that

can be obtained using renowned analytical methods, numerical

methods must be evolved and applied to obtain numerical

solutions of a differential equation under a predefined initial

history. Many researchers used a variety of numerical methods to

simulate the solution of mathematical models, acquiring results

that were more accurate than those found in the literature, such

as [39–43]. Researchers have recently focused their efforts on the

numerical solutions of numerous mathematical models in the

realm of epidemiology, such as the HIV model [44], COVID-19

[45], plant disease model [46], tuberculosis propagation model

[47], computer virus transmission model [48]. Although the

above mentioned techniques have high precision and consistency

but they require considerable memory and long computational

cost. Consequently, the procedures for this technique present

noteworthy challenges that may be resolved in order to ensure that

the solution is precise and consistent. Therefore, several efforts

have been made by researchers to develop efficient techniques

for solving linear and non-linear ODE systems [49–51]. The

importance of numerical solutions is emphasized in the literature

listed above. As a result of these considerations, the authors have

decided to use the ADS (Adams) and ERK (explicit Runge–Kutta)

numerical solvers to solve the delay differential system [52–56].

The Adams predictor-corrector approach [46, 57–60] is also a

more efficient and straightforward numerical tool for solving delay

differential systems.

In order to manage crop pests, insecticides or other

preventative measures are frequently used. The emphasis is

shifted to educating farmers about alternative techniques including

rotation of crops, biological insect control, and cultural practices

by incorporating agricultural knowledge into the pest management

approach. Through integration, agricultural pest control may

be approached holistically and sustainably [61]. To model and

simulate the dynamics of agricultural pest populations while

taking into account a variety of elements such as environmental

conditions, insect life cycles, and farming practices, numerical

analytic techniques such as the use of differential equations

and optimization methods can be used. The model can offer
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FIGURE 1

Flowchart of designed methodology for non-linear delayed CPM model.

insights to the population dynamic of pests, the effects of various

management techniques, and the ideal time for putting control

measures into place by using numerical analysis. By offering data-

driven advice to farmers and decision-makers, this quantitative

method improves the decision-making process [62]. In general,

the notion is innovative since it addresses agricultural pest control

by combining principles of farming awareness with numerical

analytic methods. This multidisciplinary approach emphasizes eco-

friendly and sustainable practices while also offering a quantitative

foundation for analyzing and improving pest management tactics.

Combining these factors helps researchers create agricultural

pest management strategies that are both more practical and

ecologically responsible. This research may help with the creation

of efficient and long-lasting farming awareness campaigns, the

adoption of integrated pest management techniques, and the

alleviation of farmer difficulties brought on by crop pests. Time

delay models really have the potential to increase complexity

because of the intrinsic properties of temporal latencies and their

impact on system dynamics. The implementation of numerical

solutions for non-linear delayed systems may be challenging and

computationally expensive. Researchers may require sophisticated

software, outstanding durability computing devices, as well as

expertise in both computational and mathematical modeling

strategies. In this study, we used state-of-the-art numerical

techniques like Adam (ADS) and explicit Runge–Kutta (ERK) to

find the numerical solution of the non-linear delayed CPM model.

The presented study has the following salient features:

• The dynamic impact of the non-linear delayed crop pest

management (CPM) system supervised by ODEs is analyzed

by incorporating awareness growth level.

• The approximate solutions for the four compartments B(t),

S(t), I(t), and A(t) are determined by the implementation of

sundry scenarios generated with the variation in crop biomass

growth rate, rate of pest attacks, pest natural death rate, disease

associated death rate and memory loss of aware people.

• The strength of the Adams and explicit Runge–Kutta

numerical solvers are utilized to determine the approximate

solutions for the non-linear delayed CPMmodel.

• Comparative analysis is carried out for the dynamic

impact of the non-linear delayed CPM model in terms of

numerical outcomes as well as graphical illustrations based on

sundry scenarios.

The rest of the article’s layout is as follows: In the second

section, the non-linear delayed CPM model is formulated. The

third section provides a detailed overview of the methodology.

The fourth section provides the analysis, discussion, and graphical

interpretation of approximate solutions. The fifth section presents

the analysis-based conclusion.

2. Formulation of the mathematical
model

The model [38] integrated agricultural biomass, pests, and

the population’s awareness. Crop biomass density, susceptible pest

density, infected pest density, and aware people density are the four

compartments incorporated in the model. Logistical evolution for

the densities of crop biomass is assumed, since crop fields have a

finite size (though it might be large), with a net growth rate a and

N is carrying capacity. Pests that are susceptible to the crop are
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FIGURE 2

(A–D) Dynamics of B(t), S(t) for variation in α by ADS and ERK solvers.

attacked, significantly reducing the crop. Let λ represent the pest

attack rate on crops [38].

dB

dt
= aB (t)

(

1−
B (t)

N

)

− δB (t) S (t) − ϕδB (t) I (t) (1)

To take into consideration their interests as well, aware

individuals may keep the crops under observation and, if properly

trained, will squirt biopesticides or integrate them into fertilizer

applications to manage the insect invasion. The massive term

lA(t)S(t) can be used to introduce the awareness action rate l, which

results from deliberate human activities and control actions like the

application of biopesticides [38].

dS

dt
= µδB (t) S (t) − lA (t) S (t) − cS (t) (2)

Pests that are infected can also harm the crop, φδ, although at

a much lesser rate φ < 1. Here, c represents the pests’ natural death

rate, and the infectionmortality rate β is a result of knowing human

behavior, like the application of insecticides [38].

dI

dt
= µ1ϕδB (t) I (t) + lA (t) S (t) − (c+ β) I (t) (3)

µ and µ1 represent the “conversion efficacy” of susceptible

as well as infected pests, or how well the pests can use plant

components. Since pests influenced by pesticides are less effective,

µ > µ1. Because of media initiatives and increased public

awareness, farmers now have a higher level of awareness, which

is denoted by A. Additionally, it is expected that the exposure of

the resilient pests influences the rate at which local information is
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FIGURE 3

(A–D) Dynamics of I(t), A(t) for variation in α by ADS and ERK solvers.

increasing at a rate d. The loss of memory causes farmers’ levels of

consciousness to decline at a rate υ [38].

dA

dt
= A0 + d (S+ I) − υA (t) (4)

A delay in observing the number of pests or their activity

might occur in a field. Typically, this prediction is produced by

studying past incidences of pest prevalence. As a consequence,

there are differences in the degree of awareness and the application

of preventive countermeasures. Enforcement of such remedies is

anticipated to be delayed. The number of pests present at time (t-

τ ) (or time τ > 0 in some cases) will determine how intense the

awareness campaigns are at time t.

The following modified mathematical model results from the

abovementioned assumptions [38].

dB

dt
= aB (t)

(

1−
B (t)

N

)

− δB (t) S (t) − ϕδB (t) I (t) , (5)

dS

dt
= µδB (t) S (t) − lA (t) S (t) − cS (t)

dI

dt
= µ1ϕδB (t) I (t) + lA (t) S (t) − (c+ β) I (t) ,

dA

dt
= A0 + d [S (t − τ) + I (t − τ)]− υA (t) ,

and initial conditions are as:

B0 > 0, S0 > 0, I0 > 0, A0 > 0.

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2023.1208774
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Anwar et al. 10.3389/fams.2023.1208774

TABLE 3 Numerical solutions of non-linear delayed CPMmodel.

Time (Days) ADS method: Case-1, scenario 1 ERK method: Case-1, scenario 1

B S I A B S I A

0 5.0000 9.0000 0.0000 5.0000 5.0000 9.0000 0.0000 5.0000

30 26.1125 5.8948 3.9220 5.5834 23.3716 6.8244 5.0614 5.8591

60 25.0607 2.9136 4.0531 6.4258 25.7283 3.6210 4.6352 6.5924

90 20.9814 3.3823 5.2252 6.7278 22.5739 3.5602 5.4542 6.8884

120 21.3736 4.0253 5.4197 6.7014 21.973 4.0203 5.7923 6.9152

150 22.5170 3.9243 5.1375 6.6640 22.5754 4.1149 5.6882 6.8880

180 22.4914 3.7534 5.0876 6.6792 22.8188 4.0266 5.6053 6.8852

210 22.2127 3.7693 5.1551 6.6915 22.736 3.9931 5.6144 6.8919

240 22.2056 3.8118 5.1717 6.6890 22.6739 4.0055 5.6330 6.8939

270 22.2742 3.8102 5.1559 6.6859 22.6809 4.0143 5.6342 6.8929

300 22.2797 3.7995 5.1510 6.6864 22.6949 4.0132 5.6306 6.8924

Time (Days) ADS method: Case-1, scenario 2 ERK method: Case-1, scenario 2

B S I A B S I A

0 5.0000 9.0000 0.0000 5.0000 5.0000 9.0000 0.0000 5.0000

30 42.1137 1.4442 1.2169 4.9590 37.5666 2.4939 1.7529 5.0883

60 30.9961 4.2045 4.7578 5.9536 24.7972 3.0352 4.8875 6.4178

90 35.8779 2.8193 3.4942 6.0433 29.1146 3.9229 4.4357 6.2426

120 34.6532 3.2335 3.8803 6.0627 29.0943 3.2468 4.2783 6.3584

150 35.0477 3.0773 3.7627 6.0738 28.4761 3.5095 4.5016 6.3678

180 34.9494 3.1288 3.7958 6.0697 28.9109 3.4469 4.3903 6.3534

210 34.9740 3.1114 3.7869 6.0720 28.7450 3.4403 4.4240 6.3634

240 34.9693 3.1171 3.7891 6.0710 28.7786 3.4551 4.4215 6.3599

270 34.9697 3.1153 3.7886 6.0714 28.7857 3.4467 4.4174 6.3605

300 34.9700 3.1158 3.788 6.0713 28.7754 3.4496 4.4205 6.3607

Time (Days) ADS method: Case-1, scenario 3 ERK method: Case-1, scenario 3

B S I A B S I A

0 5.0000 9.0000 0.0000 5.0000 5.0000 9.0000 0.0000 5.0000

30 35.5348 3.2136 1.3479 4.8960 33.3640 3.5504 1.7029 5.0144

60 25.7824 2.3893 2.3939 5.8214 24.4191 2.2973 2.7589 5.9697

90 23.0944 3.4217 3.2682 5.9988 21.3008 3.46005 3.8654 6.1715

120 24.6101 3.7104 3.1689 5.9524 23.2995 3.8409 3.6906 6.0977

150 25.2161 3.5072 3.0193 5.9478 24.0785 3.5170 3.4583 6.0924

180 24.9855 3.4511 3.0346 5.9622 23.6254 3.4445 3.5082 6.1180

210 24.8747 3.4821 3.0615 5.9652 23.4641 3.5134 3.5601 6.1213

240 24.9097 3.4933 3.0603 5.9632 23.5660 3.5293 3.5490 6.1162

270 24.9307 3.4884 3.0556 5.9627 23.6013 3.5138 3.5377 6.1156

300 24.9257 3.4862 3.0556 5.9630 23.5785 3.5105 3.5402 6.1168

Each parameter used in the mathematical model is described

in the nomenclature. The parameters’ descriptions and default

values are listed in Table 1 as per in Al Basir et al. [38]. These

default parameter values are used to generate each scenario. The

non-linear delayed CPM model by using numerical values can be

mathematically defined for one of the cases as:
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FIGURE 4

(A–D) Dynamics of B(t), S(t) for variation in δ by ADS and ERK solvers.

dB

dt
= 0.2B (t)

(

1−
B (t)

50

)

− 0.025B (t) S (t) − 0.0125B (t) I (t) ,

dS

dt
= 0.015B (t) S (t) − 0.025A (t) S (t) − 0.01S (t) (6)

dI

dt
= 0.0015B (t) I (t) + 0.025A (t) S (t) − 0.15I (t) ,

dA

dt
= 0.2+ 0.015 [S (t − 1) + I (t − 1)]− 0.6A (t) ,

3. Methodology

This section includes a detailed presentation of

the learning methodologies that are used to determine

the approximate solutions of the non-linear delayed

CPMmodel.

3.1. Adams method

A two-step process called the ADS numerical solver is used

to solve an ODE [63, 64]. Initially, the predictive stage provides

a rough approximation of the target outcome in order to utilize

an explicit technique. The corrector step uses a different method,

typically an implicit one, to speed up the previous approximation.

dB

dt
= H (t, B, S, I) , B (t0) = B0 (7)
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FIGURE 5

(A–D) Dynamics of I(t), A(t) for variation in δ by ADS and ERK solvers.

dS

dt
= H (t, S, B, A) , S (t0) = S0

dI

dt
= H (t, I, B, S, A) , I (t0) = I0

dA

dt
= H (t, A, S, I) , A (t0) = A0

For the very first equation in set (7) of the non-linear delayed

CPM model, use the following formula to produce a two-step

prediction solution:

Bk+1 = Bk +
6

4
hH (tk, Bk) −

1

2
hH

(

tk−1, Bk−1

)

, (8)

Once the very first equation in the non-linear delayed CPM

model has been evaluated, the following two step corrector formula

is obtained:

Bk+1 = Bk +
1

2
hH

(

tk+1, Bk+1

)

+H (tk, Bk) . (9)

Adams techniques may be used to solve a variety of initial value

problems, including those involving delay differential equations

and ODEs. They are capable of handling stiff as well as non-stiff

systems. When compared to other numerical approaches, such as

implicit methods, these techniques are computationally efficient.

They can lead to faster computations since they require fewer

function evaluations each step. Adams techniques contain stability

constraints on the step-size and the ratio of step-size to time delay,
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FIGURE 6

(A–D) Dynamics of B(t), S(t) for variation in c by ADS and ERK solvers.

making them conditionally stable. The approach could result in

unstable solutions if these requirements are not satisfied. Adams

techniques need a sufficient number of starting values to begin

the iteration process since they are multi-step approaches. When

starting quantities are difficult to get or need further calculations,

this might be difficult [65].

3.2. Runge–Kutta method

The explicit Runge–Kutta (ERK) numerical solver can be used

efficiently and comprehensively to solve ODEs [66]. C. Runge

and M. W. Kutta introduced the Runge–Kutta methods in the

early 1900s. As time went on, this approach played a significant

part in the research of iterative approaches based on explicit

and implicit assumptions that were used to solve ODEs using

time discretization.

The generic form of ODE is considered as:

dy

dt
= f

(

t, y
)

, (10)

A generic form of ERK method is defined as:

m1 = f
(

tn, yn
)

, (11)
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FIGURE 7

(A–D) Dynamics of I(t), A(t) for variation in c by ADS and ERK solvers.

mj = f



tn + bjh, yn + h

j−1
∑

i=1

cjimi



, j = 2, ..., l, (12)

yn+1 = yn + h

l
∑

j=1

ajmj, (13)

where the time interval is h = 1t, and yn approximates y (tn) .

The stability characteristics of Runge–Kutta techniques

are well established. They can manage a variety of concerns,

which includes stiff systems, without running into stability

problems. Numerical simulations can be resilient and trustworthy

thanks to this stability. These methods are adaptable and

effective for dealing with delayed differential equations as

well as regular differential equations, partially differential

equations, and other forms of differential equations. They

have broad applications in several fields of science and

engineering [67].

4. Analysis and discussion

The approximate numerical solutions for compartments B(t),

S(t), I(t), and A(t) of the non-linear delayed CPM model

are presented here in this section. The dynamics of the

non-linear delayed CPM model are investigated for sundry

scenarios each comprising of 1–5 cases by means of ADS

and ERK numerical solvers with input points from 0 to
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FIGURE 8

(A–D) Dynamics of B(t), S(t) for variation in β by ADS and ERK solvers.

300 and step size 0.5. The approximate solutions for the

sundry scenarios with 1–5 cases of the non-linear delayed

CPM model are computed by varying the crop biomass

growth rate, rate of pest attacks, pest natural death, disease

associated mortality rate and memory loss of aware people.as

listed in Table 2. Figure 1 presented the flowchart of the

designed methodology.

The dynamics of crop biomass density are shown in Figures 2A,

B, respectively, using the ADS and ERK numerical solvers for the

variation in crop biomass growth rate, i.e., a for the non-linear

delayed CPM model. The crop biomass density has been found

to increase as the value of a increases. Figures 2C, D for various

values of a illustrate the effects of susceptible pest density. The

graph shows that as the value of a increases, so does the density of

pests that are susceptible. Figures 3A, B show how infected pests’

behavior varies as the value of a changes. There is an increase

in the density of infected pests for larger values of a. The effects

of people’s level of awareness for various values of a are depicted

in Figures 3C, D. The graph illustrates how increasing the value

of a raises the level of awareness. Table 3 presents the numerical

results for the classes B(t), S(t), I(t), and A(t) for scenario 1, case-

1 of the non-linear delayed CPM model. Using the strength of

ADS and ERK numerical solvers for cases 1 to 5 of scenario 2,

the dynamics of the non-linear delayed CPM model for the rate

of pest attacks, i.e., δ, is investigated for all four classes B(t), S(t),

I(t), and A(t) and graphically shown in Figures 4, 5 respectively.
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FIGURE 9

(A–D) Dynamics of I(t), A(t) for variation in β by ADS and ERK solvers.

The numerical outcomes for the classes B(t), S(t), I(t), and A(t)

for scenario 2, case-1 of the non-linear delayed CPM model are

shown in Table 3. Raising the value of δ increases the density of crop

biomass, as presented in Figures 4A, B. For case-1 of pest attacks

rate, the maximum value of B(t) is approximately between 5 to

45, oscillates from 0 to 150 days, and then maintains steady state

behavior. The maximum value for case-2 is between 5–30 and it

initially exhibits oscillating behavior in the range of 0 to 250 days

before becoming stable in the range of 250 to 300 days. Cases 3

to 5, as depicted in Figures 4A, B, exhibit oscillations with varying

amplitudes across the time interval. As the value of pest attacks i.e.,

δ expanded, the density of susceptible pests also increased, as seen

in Figures 4C, D.

Susceptible pest density demonstrated oscillatory behavior

from 0 to 150 days before returning to steady state behavior,

whereas cases 2 to 5 exhibit oscillatory behavior with varying

amplitudes from 0 to 300 days, as shown in Figures 4A, B.

For compartment I(t) of the non-linear delayed CPM model,

Figures 5A, B depict the effects of pest attacks rate. The graphs

show that increasing the value of δ will result in decreasing the

infected pest density. The impact of pest attacking rate, i.e., δ is also

determined for compartment A(t) of the non-linear delayed CPM

model. As seen in Figures 5C, D, the awareness level decreases as

the value of pest attacks grow.

Similarly, for scenario 3 of non-linear delayed CPM model,

the dynamics of the four compartments B(t), S(t), I(t), and A(t)
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TABLE 4 Numerical solutions of non-linear delayed CPMmodel.

Time (Days) ADS method: Case-1, scenario 4 ERK method: Case-1, scenario 4

B S I A B S I A

0 5.0000 9.0000 0.0000 5.0000 5.0000 9.0000 0.0000 5.0000

30 25.6352 2.7948 2.6511 5.2802 25.6454 2.9384 2.5856 5.2683

60 16.0485 1.2237 4.1627 6.2469 16.4980 1.2738 3.9219 6.2050

90 12.5031 3.1099 6.3705 6.4831 12.4801 2.9846 6.0962 6.4722

120 19.5105 3.6746 4.8757 6.1610 18.5848 3.9118 4.9691 6.1742

150 19.2204 2.0351 4.3368 6.2646 19.6539 2.2603 4.1730 6.2164

180 15.3228 2.38003 5.3581 6.4332 15.8217 2.3344 5.0070 6.3913

210 16.5595 3.2259 5.4430 6.3382 16.0291 3.1776 5.3515 6.3469

240 18.6317 2.7134 4.7792 6.2699 18.2773 2.9676 4.7624 6.2551

270 17.1624 2.407 4.9620 6.3510 17.611 2.5253 4.7201 6.3055

300 16.4349 2.7711 5.2948 6.3684 16.4975 2.7282 5.0572 6.3479

Time (Days) ADS method: Case-1, scenario 5 ERK method: Case-1, scenario 5

B S I A B S I A

0 5.0000 9.0000 0.0000 5.0000 5.0000 9.0000 0.0000 5.0000

30 33.4212 1.2608 1.7179 9.7847 32.7550 1.4497 1.7952 9.2354

60 26.8333 0.5218 3.3758 14.054 25.9310 0.6014 3.3390 12.9231

90 30.8679 1.2775 4.4344 15.9967 27.0746 1.4925 5.0180 14.4833

120 37.2066 0.5837 2.6639 17.3430 34.5850 0.9614 3.1909 15.3405

150 35.5515 0.6244 3.2161 18.1282 32.5484 0.77943 3.5441 15.9731

180 37.9167 0.5752 2.7510 18.5074 33.3100 0.9351 3.6511 16.1777

210 37.6625 0.5377 2.7981 18.7708 34.2309 0.81780 3.3647 16.3285

240 38.1941 0.5387 2.7157 18.8880 33.7867 0.8282 3.4894 16.4132

270 38.2294 0.5225 2.6998 18.9693 34.1173 0.8365 3.4408 16.4400

300 38.3414 0.5238 2.6863 19.0066 34.1219 0.8184 3.4242 16.4658

are explored by varying the value of pest natural death rate i.e., c,

which is represented by c and graphically portrayed in Figures 6,

7 respectively. The numerical solutions for compartments B(t),

S(t), I(t), and A(t) for scenario 3, case-1 of the non-linear delayed

model are computed and listed in Table 3. The influence of the

pest’s natural death rate on crop biomass density using the ADS

and ERK numerical solvers respectively, is shown in Figures 6A,

B. The effects of the pest natural death rate on the density

of susceptible pests are shown in Figures 6C, D. It is noticed

that the number of susceptible pests reduced as c increased.

Figures 7A, B demonstrated how the density of infected pests

decreases as the value of c rises. In Figures 7C, D, the level of

people’s awareness can be analyzed. It is worth noting that the larger

value of the natural pest’s death rate i.e., c, causes a decrease in

people’s awareness.

The dynamical behavior of the four compartments B(t), S(t),

I(t), and A(t) for cases 1 to 5 of scenario 4 with the variability

in disease associated death rate, i.e., β is analyzed and graphically

portrayed in Figures 8, 9 respectively. The numerical solutions

for scenario 4, case-1 of the non-linear delayed CPM model are

calculated for all four classes B(t), S(t), I(t), and A(t) and presented

in Table 4. The dynamics of crop biomass density are portrayed

in Figures 8A, B exploiting the potential of the ADS and ERK

numerical solvers for the variability in the disease associated death

rate, i.e., β . It has been found that the crop biomass density

falls as the value of β increases. Figures 8C, D show the effect of

disease associated death rate on the density of susceptible pests.

It is evident from Figure that raising the value of β would lead

to a rise in the density of susceptible pests. The behavior of

infected pest density for the variation in disease associated death

rate is shown in Figures 9A, B. As the value of β is raised, it

may be observed that the density of infected pests will decrease.

Figures 9C, D show the impact of disease associated death rate

against awareness level in people. The graphical representation

presented that increasing the value of β causes the awareness

level to decrease.

Using the strength of ADS and ERK numerical solvers, the

dynamics for memory loss of aware people, i.e., υ , are investigated

for all four compartments B(t), S(t), I(t), and A(t) for scenario 5,

cases 1 to 5 of the non-linear delayed CPM model. The numerical
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FIGURE 10

(A–D) Dynamics of B(t), S(t) for variation in υ by ADS and ERK solvers.

outcomes of all four compartments B(t), S(t), I(t), and A(t) for

case-1 of scenario 5 are provided in Table 4. The behavior of

crop biomass density for the varying values of υ is depicted in

Figures 10A, B, and it can be observed that crop biomass density

decreases for higher values of υ. Figures 10C, D illustrated how the

density of susceptible pests increases as the value of υ increases.

Figures 11A, B show the dynamics of infected pest density for the

variation in memory loss of aware people, i.e., υ. One may witness

that the density of infected pests increases continuously in the first

three cases, for υ = 0.01, 0.02, and 0.03, and then decreases again

in the subsequent two cases, for υ = 0.04, and 0.05, in the interval

of 0 to 300 days. Consequently, the density of infected pests shows

varied behavior for different values of υ. Figures 11C, D portrayed

the effect of memory loss in aware people, i.e., υ on awareness level

compartmentA(t). It is clearly noticed from Figures 11C, D that the

awareness level is decreased as the value υis increased.

5. Conclusions

In this research, the numerical approximate solution of

the non-linear delayed CPM system supervised by ODEs is

investigated effectively to portray the dynamic impacts of

unforeseen interactions between crops and pests, rehabilitation

strategies, and environmental factors across time. Based on the

presented model, the dynamic nature of crop biomass density
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FIGURE 11

(A–D) Dynamics of I(t), A(t) for variation in υ by ADS and ERK solvers.

[B(t)], susceptible pest density [S(t)], infected pest density [I(t)]

and awareness level of the population [A(t)] may be forecasted

effectively. Analysis based on the approximate numerical outcomes

as well as graphic interpretations of the non-linear delayed CPM

model is carried out by means of sundry scenarios by varying

the different parameters utilized in the model. The approximate

numerical solution of the non-linear delayed CPM model is

computed by exploiting the state-of-the-art Adams (ADS) and

explicit Runge–Kutta (ERK) numerical techniques. Compared

with real-time models, delayed models exhibit greater realism

because they take into account the interval between contact

and infection. As delay affects processes along with dynamics,

mathematically it impacts stability. This analysis can help to create

predictive models for upcoming outbreaks and shed light on the

efficacy of various pest management techniques. The numerical

analysis that is being given makes it possible to optimize pest

control tactics, analyze risks, educate people, and pursue continual

improvement. It is essential for improving agricultural methods,

reducing crop losses, and advancing environmentally friendly pest

control strategies.

In the future, soft computing approaches based on

artificial intelligence algorithms may be used to study

the dynamics of epidemic models and other non-linear

systems [68–73].
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