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Intranasal administration offers a feasible, non-invasive method of delivering
therapeutic drugs to the brain, allowing therapeutic pharmaceuticals to be
administered directly to the central nervous system by bypassing the blood-
brain barrier. Furthermore, exosomes are naturally occurring cell-derived
nanovesicles that can serve as carriers for a variety of chemical compounds.
Many studies have focused on artificial exosomes as innovative medication
delivery methods. As a result, trans-nasal delivery of artificial exosomes might
be employed to treat brain illnesses in a novel method. This review will outline the
drug delivery mechanism of artificial extracellular vesicles, emphasize its
advantages as a nasal drug carrier, particularly its application as a novel
nanocarriers in brain diseases, and focus on its prospective application in
chronic inflammatory nose disorders. Finally, artificial exosomes may become a
unique drug delivery mode for clinical therapeutic usage.
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Introduction

The blood-brain barrier (BBB) may be seen at the level of the cerebral microvasculature
and is critical for maintaining homeostasis of the central nervous system (CNS) (Lochhead
et al., 2020). The BBB significantly restricts access to all but tiny, nonpolar molecules, making
medication penetration into the CNS challenging and limiting CNS illness therapy
(Lochhead and Thorne, 2012). Intranasal drug administration is a feasible, noninvasive
method of delivering therapeutic medications to the brain, and it has the potential to
circumvent the BBB, allowing therapeutic compounds direct access to the CNS. Because it is
noninvasive and may be repeated, intranasal injection of extracellular vesicles (EVs) has
received a lot of attention (Kodali et al., 2019). While intranasal drug administration is an
excellent method of delivering therapeutic medications, it has been demonstrated that there
were some hurdles in transportation. Due to the permeability barrier in the nasal mucosa, the
presence of mucociliary clearance system and the degradation of enzymes in the mucosa,
multiple and complex factors contribute to many drugs into the brain is quite little by
intranasal administration (Touitou and Illum, 2013; Kumar et al., 2017).
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EVs are naturally occurring cell-derived nanovesicles that
convey information between tissue microenvironments. They also
have the ability to alter target cell activity and differentiation
(Quesenberry and Aliotta, 2010; Hood and Wickline, 2012). EVs
are found in most biological fluids, including blood, urine, saliva,
cerebrospinal fluid, and breast milk (Zhang et al., 2019a). EVs can
carry specific proteins, nucleic acid andmetabolites, and the cargo in
EVs retains its biological activity and can modulate recipient cells
(Vázquez-Ríos et al., 2019). Although EVs are naturally derived
vesicles, their surfaces can be conveniently modified, and surface
engineering can confer targeted specificity to vesicles (Liang et al.,
2021). The use artificial EVs is a new method for drug delivery. The
nanovesicles (NVs), exosome mimics (EMs) and hybrid exosomes
(HEs) are the major types of artificial EVs, which are obtained by
top-down, bottom-up and biohybrid strategies, respectively
(Figure 1). At present, top-down is the most widely used strategy
to prepare artificial exosomes. The main advantage is that it contains
being carried are from the producer cells, which mimics the
biological complexity of natural exosomes. However, this method
of production consumes more time and manpower, and the limited
number of producer cells also limits production. The bottom-up
strategy can produce artificial exosomes with pure composition and
controllable characteristics, which can be used for large-scale
production, significantly reducing time and labor costs. However,
the biological complexity of synthetic exosomes is not as good as that
of natural exosomes. The strategy of biohybrid has the advantage of
including some natural components of exosomes, which may have
higher delivery efficiency than liposomes and higher stability than
exosomes. The limitation is that the yield will not be very high
(García-Manrique et al., 2018; Li et al., 2021).

In recent years, a variety of artificial exosomes that can overcome
the shortcomings of natural exosomes have been developed. It has
been reported to be effective in the treatment of cancer (Zhang et al.,
2019b; Lin et al., 2021), ischemic diseases (Aday et al., 2021) and
injury (Staufer et al., 2021), and has a good prospect for clinical
application. However, the research of this new biological treatment
material is still in its early stage. In this review, we introduced the
mechanism of artificial EVs delivery, reviewed its benefits as a drug
carrier in nasal delivery, particularly its use as a new nanocarrier in
brain diseases and emphasized the important potential for
application in chronic rhinosinusitis and allergic rhinitis.

In stroke/ischemia-reperfusion damage

Stroke has a high fatality rate and a leading cause of disability
(Towfighi and Saver, 2011). Ischemic stroke, a subtype of stroke, is
caused by the narrowing of one or more cerebral arteries due to
occlusion by emboli or thrombi. The disease is typically treated with
thrombolytic drugs. However, brain injury often worsens after
reperfusion. This pathological process is often called ischemia
reperfusion (IR) injury (Zhou et al., 2018). In recent years, EVs
produced from embryonic stem cells (ESCs) have been found to
boost endogenous repair mechanisms and improve heart function
after myocardial infarction and have shown therapeutic potential
following stroke (Khan et al., 2015). Curcumin, as a natural
polyphenol found in the rhizome of Curcuma longa (turmeric),
has been extensively explored for its therapeutic effect ischemic

stroke and its bioavailability is hampered by its low absorption and
rapid metabolism (Li et al., 2017). One previous study created a
curcumin-loaded EVs from cultured mouse embryonic stem cell
(MESC) lines by a fast freeze-thawing technique and delivered
nasally (Kalani et al., 2016). They found that MESC-exoscur

(curcumin-loaded in MESC derived exosomes) has greater
stability and solubility and MESC-exoscur therapy dramatically
reduced neurological scores, cerebral edema, and infarct volume
(Figure 2A).

Furthermore, receptor for advanced glycation end-products
(RAGE) has been identified as a critical element involved in the
pathophysiological process of IR injury (Ramasamy and Schmidt,
2012). Recombinant RAGE-antagonist peptide (RAGE-binding
peptide, RBP) could have neuroprotective effect by reducing
RAGE-mediated ischemic brain inflammation (Kim et al., 2021).
Another study reported that delivery of anti-microRNA
oligonucleotide (AMO) against miR181a (AMO181a) attenuated
ischemic neuronal damage and that knockdown of miRN181a can
reduce infarct volume. Therefore, investigators engineered an
artificial EVs contains the RBP-linked exosomes (RBP-exos)
combined cholesterol-modified AMO181a (AMO181a-chol) by
hydrophobic interactions. The nanovesicles were administered
intranasally to treat a mouse model of ischemic brain injury. As
a result, intranasal administration of this hypoxia-specific vector
allowed AMO181a to be delivered into the ischemic brain more
effectively, and the RBP moiety promoted the delivery of AMO181a
in the ischemic tissue. Amo181a-chol significantly inhibited RAGE
pathways, inflammatory cytokines, apoptotic cells and infarct
volume (Kim et al., 2021) (Figure 2B).

In glioblastoma multiforme

Glioblastoma multiforme (GBM) is the most malignant primary
tumor of the central nervous system, having a poor prognosis and a
high mortality rate. Chemotherapy remains the primary therapeutic

FIGURE 1
Synthetic methods of artificial exosomes. Artificial exosomes
were obtained by top-down, bottom-up and biohybrid bottom-up
and top-down strategies.
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choice for GBM treatment and the existence of the BBB inhibits
medication effects. Sandbhor et al. (2021) recently shown in
orthotopic GBM mouse models that in situ administration of
hydrogel embedded with miltefosine (HePc, a proapoptotic
antitumor agent) and temozolomide (TMZ, a DNA methylating
agent)-loaded targeted nanovesicles could suppress the tumor
relapses. Because transferrin receptors are overexpressed on the
surface of the tumor, surface engineering of vesicles can increase
cellular uptake and medication internalization into tumor (Zhao
et al., 2020). As a result, TMZ was given via lipid nanovesicles (LNs)
that were surface transferrin-decorated and coencapsulated with
HePc. In terms of tumor-bearing mouse survival, the effectiveness of
the TLNs rose by 1.8-fold when compared to free medicines.
Furthermore, off-target organ damage has been demonstrated in
the clinic, and tailored nanovesicles in conjunction with HePc will be
tolerated better than traditional systemic delivery, lowering systemic
drug exposure. This study shows that LNs have the potential to boost
brain medication bioavailability following intranasal delivery, and
the treatment strategy is also likely to improve compliance in
patients on long-term drug therapy (Sandbhor et al., 2021)
(Figure 3A).

The signal transducer and activator of transcription 3
(STAT3) protein is constitutively active in several forms of

human malignancies and is essential for tumor development,
including GBM. Cucurbitacin I (JSI-124), as a potent
STAT3 signaling pathway inhibitor, have antitumor properties
in human breast cancer, neuroblastoma, lung cancer, murine
melanoma cell lines and B cell leukemia (Ren et al., 2014).
Furthermore, JSI-124 inhibits the proliferation of glioblastoma
polymorphic cells by increasing apoptosis and inducing G2/
M-phase cell cycle arrest (Su et al., 2008). Therefore, to
investigate the therapeutic impact of artificial EVs, GL26 brain
tumor model mice were treated with the exosome-encapsulated
JSI-124 (Exo-JSI124). On the one hand, EVs have been observed
in brain tissue to selectively target microglial cells, exhibiting
potent anti-tumor capabilities (Figures 3B–D). On the other
hand, Exo-JSI124-treated mice had considerably higher
survival periods, with an average of 44.5 days. Furthermore,
none of the mice displayed any signs of toxicity or aberrant
behavior during the 15-day period after Exo-JSI124 intranasal
administration (Zhuang et al., 2011).

In a recent work, researchers used a pressure-based
disruption and reconstitution procedure to load miRNA (anti-
miRNA 21 and miRNA 100) while managing the size of
microfluidically processed EVs (mpEVs) (Wang et al., 2021).
In this work, vesicles were collected from neural stem cells,

FIGURE 2
Biomedical applications of artificial exosomes for drug delivery in stroke/ischemia-reperfusion damage: (A)MESC-exocur treatment reduced infarct
volume and water content in IR mice. Reproduced with permission from Kalani et al. (2016). (B) Production and anoxic-specific delivery of RBP-Exo/
AMO181a-chol by intranasal administration. Reproduced with permission from Kim et al. (2021).
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designed to overexpress the CXCR4 receptor, and then
engineered to have the ideal size of mpEVs. Intranasal
injection of miRNA-loaded mpEVs to a GBM mouse model
resulted in a consistent pattern of mpEV transport across the
nasal epithelium, bypassing the BBB and entering the cerebral
compartment. Such EVs have a GBM-specific tropism, and the
loaded miRNAmade GBM cells susceptible to TMZ. The findings
revealed that the miRNA-loaded mpEVs not only reduced tumor
size but also increased mouse survival.

In brain inflammatory illness and other brain
diseases

It is evident thatmicroglial cells, or brain-residentmacrophages, play
an important role in many CNS inflammation-related disorders,
including meningitis, migraine headaches, Parkinson’s disease, and
others. Curcumin, as previously said, not only has anticancer and
preventative effects, but it is also a potent anti-inflammatory agent.
After incubation, the mixture was centrifuged using a sucrose gradient

FIGURE 3
Biomedical applications of artificial exosomes for drug delivery in glioblastoma multiforme: (A) Schematic illustration of the synergistic drug-loaded
transferrin-targeted nanovesicle system. The nanovesicles can bypass the blood-brain barrier and reach the brain through neurological pathways.
Reproduced with permission from Sandbhor et al. (2021). (B) A total of 10 μg of IRDye 800-labeled EL-4 T cell-derived exosomes were administered
intranasally into C57BL/6j mice, and the distribution pattern of exosomes in the brain was observed. The fluorescence of the brain was stronger after
intranasal administration for 3 h. Reproduced with permission from Zhuang et al. (2011). (C) The results of HE-stained brain tumor tissue suggest that
tumors adjacent to the olfactory region aggressively invaded the adjacent tissue of mice treated with BSA, Exo, and JSI124. In contrast, intranasally
administration of Exo-JSI124 was much less invasive. Reproduced with permission from Zhuang et al. (2011). (D) The results of TUNEL staining were
similar to those of HE staining. Reproduced with permission from Zhuang et al. (2011).
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to extract exosomal curcumin (Exo-cur), the size and morphology of
Exo-cur were similar to those of natural exosomes (Figures 4A, B). LPS-
challenged mice were treated with intranasal treatment of exosome-
encapsulated curcumin. It was discovered in the brain 1 h after the fake
EVswere administered, which is consistent with prior findings. The levels
of cytokines decreased after treatment (Sun et al., 2010) (Figure 4C).
Meningitis is a disease caused by microbial infection that can be divided
into bacterial meningitis, viral meningitis, tuberculosis meningitis and
cryptococcal meningitis. Bacterial meningitis responsible for 75% of all
meningitis cases globally and the strong dosages of antibacterial
medications are used to treat the infection (van de Beek, 2012). The
key to efficient meningitis management is to keep high doses of
antibiotics in the brain. Ofloxacin-loaded transfersomal nanovesicles
(OFLOX-TNVs) were created for the treatment of meningitis by
nasal administration to avoid the difficulties of its high-dose use.
These NVs were created using the thin film hydration process with
chemicals such as lecithin, edge activator (EA), and cholestasis. These
findings imply that OFLOX-loaded nanometastases might be a useful
colloidal delivery mechanism for brain targeting and treatment of
bacterial meningitis (Hussein et al., 2019).

Spinal cord injury (SCI) is a crippling disorder with few treatment
options and erratic recovery. The inherent obstacle to axonal
development in the pathological phase of SCI is mostly phosphatase
and tensin homolog (PTEN). PTEN downregulates cytoplasmic
mammalian target of rapamycin (mTOR) activity and plays an
important role in regulating the regeneration of corticospinal neurons

(Terenzio et al., 2018). MSC-Exos may be able to cross the BBB and
move to the damaged spinal cord region (Figure 4D). In another animal
studies, this type of EV has been shown to greatly increase mobility,
sensory recovery, and urine reflex recovery (Guo et al., 2019).

A nasal nanovesicle delivery system (NVS) for pain treatment was
created and developed in a recent study. Ketoprofen (KET), butorphanol
(BUT), or tramadol (TRA) were incorporated in a phospholipid
nanovesicular carrier in an animal model of pain, resulting in a faster
onset and improved analgesic effectiveness (Touitou et al., 2021).
According to pharmacokinetic results, the blood concentration of the
ketoprofen nasal nanovesicular system (KET-NVS) after administration
was higher than that of the drug after oral administration, the delivery
time was shorter, and it took less time to reach the highest plasma
concentrations (Figures 4E, F). This phenomenon is also consistent in
the tramadol nasal nanovesicular system (TRA-NVS). Taken together,
the NVS not only offers a high transmission efficiency but is also safe for
the nasal mucosa. In conclusion, this noninvasive, rapid, cell-free, lesion
specific, and effective therapy has a lot of potential for therapeutic usage
in brain disorders.

In chronic rhinosinusitis and allergic rhinitis

Chronic rhinosinusitis (CRS) is a common clinical inflammatory
disease of the nasal cavity and sinuses that often involves multiple
sinuses (Stevens et al., 2015). The pathogenesis of CRS is complicated,

FIGURE 4
Biomedical applications of artificial exosomes for drug delivery in brain inflammatory illness and other brain diseases: (A) Exo-cur was obtained by
gradient centrifugation after co-incubation of curcumin and EL-4 exosomes. (B) Electron microscopic images of EL-4 exosomes and Exo-cur. (C) Exo-
cur can reduce IL-6 and TNF-α secretion after LPS stimulation. Reproducedwith permission from Sun et al. (2010). (D)Nasal administration ofMSC-Exo in
SCI rats showed that MSC-Exo inherit MSC targeting capability, rendering them a suitable delivery system to the injured spinal cord. Reproduced
with permission from Guo et al. (2019). (E) Pharmacokinetic profiles of tramadol in the brain and plasma (F) following administration of the drug in the
nasal nanovesicular system (TRA NVS) compared to the nasal nonvesicular system (TRA NV) and oral administration (TRA PO). The TRA PO and TRA NV
groups showed lower levels than the NVS-treated animals. Reproduced with permission from Touitou et al. (2021).
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and many internal and external factors influence its occurrence and
development. EVs have also been found to play an important role in
chronic sinusitis. Nasal mucus-derived EVs (NMDEs) containing
cystatin-SA (CST-2) can predict the severity and phenotype of the
CRS phenotype (Miyake et al., 2019). Pappalysin-1 (PAPP-A), an EVs
biomarker, can not only monitor the severity of CRS but also predict
recurrence at an early stage (Mueller, 2021). Previous study revealed
that the nasal microbiota in patients with CRS had increased
abundance and reduced diversity (Choi et al., 2014), and that
bacterial-derived EVs may be responsible for the onset of CRS and
inflammation (Miyake et al., 2019). LPS exposure in vivo and in vitro
induced a 2-fold increase in NMDEs secretion (Nocera et al., 2019).
P-glycoprotein (P-gp) was enriched in CRSwNP NMDEs and those
NMDEs are capable of rapid interepithelial protein transfer (Nocera
et al., 2017) (Figures 5A–C). These EVs not only exhibit direct
microbiocidal activity but also actively arm epithelial cells with
immunoprotective proteins that can be used to defend against the
same microorganisms in mucus.

Allergic rhinitis (AR) is one of the most common upper
respiratory disorders worldwide, with a convoluted cause. It is a
nasal mucosal inflammatory condition induced by allergen exposure.
The imbalance between Th1 and Th2 differentiation is implicated in
the development of AR (Eifan and Durham, 2016). Recent research
suggests that EVs may have a role in immune-driven illness such as
allergies. MiRNA profiles in AR patients’ EVs were significantly
changed as compared to healthy controls. Furthermore,
considerable enrichment of these differentially expressed miRNAs
in certain biological and physiological processes, such as the B cell
receptor signaling, natural killer cell-mediated cytotoxicity, and T cell
receptor signaling pathway, have been established (Hovhannisyan
et al., 2021). Another study found that miR-146a-loaded nasal
epithelial cell (NEC)-derived EVs increased IL-10 production in
monocytes, which inhibited downstream allergy reactions. IL-10+
monocytes exert immunosuppressive effects on CD4+ effector
T cells and Th2 polarization in this mouse AR model (Zhou et al.,
2021). GAS5, a long noncoding RNA (lncRNA), is expressed in nasal

FIGURE 5
Research progress of exosomes in chronic rhinosinusitis and allergic rhinitis: (A) transmission electron microscopy images showed exosomes
purified from nasal mucus (i) and negative controls (ii), immunolabeling of exosomemarker CD63 (iii), and P-gp (iv) localization on exosomemembranes.
(B) The concentration of P-gp per exosome was significantly higher in patients with CRSwNP compared to the control group. (C) Time-lapse fluorescent
images showed rapid absorption of labeled exosomal proteins and RNA within 10 min after exposure to purified exosomes. Reproduced with
permission from Nocera et al. (2017). (D) LncGAS5 was upregulated in both exosomes of AR mucosa (AR-EXO) and OVA-treated RPMI 2650 cells (OVA-
EXO) (E). (F) LncGAS5 in OVA-EXO suppresses Th1 differentiation via regulating EZH2 and T-bet. (G) LncGAS5 in OVA-EXO promotes Th2 differentiation
via regulating EZH2 and T-bet. Reproduced with permission from Zhu et al. (2020).
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mucus-derived EVs as well as ovalbumin-stimulated NEC-derived
EVs in AR (Figures 5D, E). And EVs loaded with the lncRNA
GAS5 could inhibit Th1 cell development while inducing
Th2 differentiation (Zhu et al., 2020) (Figures 5F, G).

Conclusion and perspectives

EVs have the potential to overcome biological barriers by
themselves, and their ability to express particular proteins, cell
adhesion molecules, or ligands that cause natural target selectivity
for certain recipient cells is what makes them appealing as delivery
vehicles. Artificial EVs for intranasal administration have been
widely used as vectors for delivering therapeutic drugs in some
kinds of brain illness. However, its transmission efficiency still
needs to be further improved. The intranasally administered drug
enters the parenchymal space of the brain or cerebrospinal fluid
(CSF) via trigeminal and olfactory nerves via axonal or endocytic
routes and intra- or extra-neuronal pathways, respectively
(Djupesland PG and Mahmoud, 2014). Although nasal
administration bypasses the BBB, the mucosal barrier still
important in delivery. The medicine must be deposited on the
luminal surface of the epithelial membrane and absorbed before
being removed or destroyed in the respiratory system. Controlling
the drug’s release profile as it passes through different biological
barriers may also be required for adequate absorption (Ghadiri
et al., 2019).

Many artificial approaches, such as in situ chitosan hydrogels,
mucoadhesive nanostructured lipid carriers, and chitosan
nanoparticles, have been used to overcome the nasal mucosa
barrier and improve the efficacy of drug therapy. However,
several of these techniques may cause nasal toxicity and
membrane component leaching, resulting in local irritation of the
nasal mucosa. Full artificial EVs based on phospholipids have been
developed for nasal delivery. This carrier has demonstrated the
potential to improve drug delivery to the brain and the systemic
circulation without generating nasal mucosal irritation or toxicity.
Furthermore, the carrier combining magnesium ions with soft
phospholipid vesicles and a mucoadhesive molecule called the
phospholipid magnetosome was performed to explore a transport
carrier with higher efficiency (Natsheh and Touitou, 2018). This
chemically modified nasal carrier can boost pharmacological effects,
probably by a combination of absorption enhancement and
prolongation of mucosal contact. It seems to solve the difficulties
caused by the BBB and mucosal barrier, but its safety and other
aspects are still being studied as a new method.

Although several studies demonstrated that nasal
administration of artificial nanovesicles had significant
advantages in safety and transport efficiency on the treatment of
brain illness. Collectively, the BBB is considered to be the main
barrier to drug penetration into the CNS. Intranasal administration
is an attractive alternative route to central nervous system
administration because it bypasses the BBB more effectively than
systemic administration. Artificial EVs can effectively cross the BBB.
Intranasal administration of artificial EVs may be particularly
appropriate for drugs that cannot achieve perfect blood
concentrations in the brain due to the presence of the BBB,

drugs that tend to cause adverse effects in peripheral tissues or in
the blood, and drugs that are easily degraded by intravenous or oral
administration. Although intranasal treatment has been shown to be
effective in many brain illnesses, it has not been used in chronic
inflammatory nose disorders. Only few reports on the use of artificial
EVs in the treatment of chronic nasal diseases, such as chronic
rhinosinusitis and allergic rhinitis. The great ability of artificial EVs
in nasal disorders of the nasal cavity can be further explored in the
future.
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