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Introduction: Tuning the control parameters is one of the main challenges in
robotic gait therapy. Control strategies that vary the control parameters based on
the user’s performance are still scarce and do not exploit the potential of using
spatiotemporal metrics. The goal of this study was to validate the feasibility of
using shank-worn Inertial Measurement Units (IMUs) for clinical gait analysis after
stroke and evaluate their preliminary applicability in designing an automatic and
adaptive controller for a knee exoskeleton (ABLE-KS).

Methods: First, we estimated the temporal (i.e., stride time, stance, and swing
duration) and spatial (i.e., stride length, maximum vertical displacement, foot
clearance, and circumduction) metrics in six post-stroke participants while
walking on a treadmill and overground and compared these estimates with
data from an optical motion tracking system. Next, we analyzed the
relationships between the IMU-estimated metrics and an exoskeleton control
parameter related to the peak knee flexion torque. Finally, we trained twomachine
learning algorithms, i.e., linear regression and neural network, to model the
relationship between the exoskeleton torque and maximum vertical
displacement, which was the metric that showed the strongest correlations
with the data from the optical system [r = 0.84; ICC(A,1) = 0.73; ICC(C,1) =
0.81] and peak knee flexion torque (r = 0.957).

Results: Offline validation of both neural network and linear regression models
showed good predictions (R2 = 0.70–0.80; MAE = 0.48–0.58 Nm) of the peak
torque based on the maximum vertical displacement metric for the participants
with better gait function, i.e., gait speed > 0.7 m/s. For the participants with worse
gait function, both models failed to provide good predictions (R2 = 0.00–0.19;
MAE = 1.15–1.29 Nm) of the peak torque despite having a moderate-to-strong
correlation between the spatiotemporal metric and control parameter.

Discussion: Our preliminary results indicate that the stride-by-stride estimations
of shank-worn IMUs show potential to design automatic and adaptive exoskeleton
control strategies for people with moderate impairments in gait function due to
stroke.
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1 Introduction

One of the main challenges of robotic devices for post-stroke
gait rehabilitation is the tuning process of the control parameters
(Fricke et al., 2020a; Labruyère, 2022; Melendez-Calderon and
Maggioni, 2022; van Dellen and Labruyère, 2022). There is a lack
of systematic or automatic procedures to help clinicians in the
selection of appropriate parameter values depending on the
selected task and the level of impairment (Morris et al., 2023).
In general, therapists manually tune the control parameters,
especially the assistance level, based on the visual assessment
of the patient, and they are often kept constant throughout the
whole session or treatment, which might lead to reduced training
effect (Park et al., 2019; van Dellen and Labruyère, 2022).
Previous studies have shown that automatic tuning of this
assistance might be more optimal than manual tuning (Fricke
et al., 2020a).

The majority of the control strategies implemented in
exoskeletons for post-stroke rehabilitation provide assistance
based on the error between the actual and reference positions
(Fricke et al., 2020a; de Miguel-Fernández et al., 2023a; Morris
et al., 2023). In this way, the robotic assistance can be tailored on
the basis of the user’s performance. An alternative to these
control strategies based on predefined joint references might
be to adapt the assistance based on spatiotemporal metrics,
e.g., stance duration, stride length, or foot clearance. This
approach has the main benefit of using metrics that are good
biomechanical descriptors of the level of gait impairment post
stroke and have a strong relationship with the exoskeleton
control parameters (Sulzer et al., 2009; Koopman et al., 2013;
Mizukami et al., 2018; Fricke et al., 2020b; Pan et al., 2022).
Therefore, these adaptive controllers based on spatiotemporal
metrics can also be useful to complement or guide the automatic
tuning of the control parameters.

In previous years, gait monitoring algorithms based on Inertial
Measurement Units (IMUs) have become very popular as a method
to estimate spatiotemporal metrics. IMU-based systems are portable
and of low cost when compared to traditional stationary systems,
i.e., marker-based optical motion tracking, instrumented treadmills,
or pressure-sensitive walkways. Several studies have shown that it is
possible to obtain reliable estimations of average gait spatiotemporal
metrics of post-stroke individuals using IMU sensors, yet little is
known regarding their reliability in estimating spatiotemporal
metrics for each stride (Yang et al., 2013; Parisi et al., 2016; Visi
et al., 2017; Wang et al., 2018; Feuvrier et al., 2020; Feuvrier et al.,
2020; Arens et al., 2021; Arumukhom Revi et al., 2021; Laidig et al.,
2021; Romijnders et al., 2021; Hendriks et al., 2022). Thus, it is still
unclear whether spatiotemporal parameters estimated with IMUs
can be used to automatically adapt the control parameters of an
exoskeleton for post-stroke gait rehabilitation.

In this work, we evaluate the use of shank-worn IMUs for gait
monitoring after stroke and for developing an automatic and
adaptive method to tune the assistance provided by a unilateral
knee-powered exoskeleton (ABLE-KS), i.e., adapting the control

parameter related to the peak knee flexion torque. Specifically, we
sought an answer to the following question: can shank-worn IMUs
be used to design adaptive control strategies for knee exoskeletons for
post-stroke rehabilitation?

To answer the posed question, first, we addressed the following
points: (i) evaluation of the reliability of estimating gait
spatiotemporal metrics using shank-worn IMUs after stroke; (ii)
evaluation of the relationship between the parameter that controls
the peak knee flexion torque and biomechanical metrics estimated
with shank-worn IMUs.

2 Methods

2.1 Experimental protocol

Six post-stroke participants were recruited at the Hospital
Universitari Mútua de Terrassa (Barcelona, Spain) to be involved
in an observational study approved by the Medical Research
Ethical Committee (MREC) of the Hospital Universitari Mútua
de Terrassa under the number: E/22-082/S1. The clinical trial was
carried out at the same hospital in December 2022. The
experimental protocol (see Figure 1) consisted of six sessions
with three different objectives: (1) comparing the performance of
the IMU-based system against an optical motion capture system
while walking on a treadmill (sessions 1–6); (2) validating the
IMU-based system while walking overground performing the 10-
Meter Walk Test (10MWT; sessions 1 and 6); and (3)
investigating the relationship between the parameter that
controls the peak knee flexion torque provided with a knee
exoskeleton (i.e., ABLE-KS) and spatiotemporal metrics
obtained with the IMU-based system (session 6).

For sessions 1–6, the participants were asked to walk on a
treadmill (er2100, custo med GmbH, Germany) for up to 5 min
at a comfortable speed, which remained constant during the whole
session. Kinematic data were collected at 120 Hz with an optical
motion capture system (V120:Trio, OptiTrack, NaturalPoint Inc.,
Corvallis, OR, USA). Reflective markers were placed on the sacrum
and bilaterally on the iliac crests, midpoint of the thigh segments,
lateral femur condyles, midpoint of the shank segments, lateral
malleoli, fifth metatarsal heads, and posterior surface of the calcanei.

In sessions 1 and 6, the participants also performed the 10MWT
twice per session, which was used to validate the IMU-based system
while walking overground. The walking speeds estimated with the
IMUs were compared with the ones measured by the experimenters
with a digital stopwatch.

For the endline session, the participants were asked to walk on
the treadmill with the ABLE-KS knee exoskeleton providing
different levels of assistance during the swing; the peak knee
flexion torque was set to 0, 1, 2, 3, and 4 Nm. The participants
walked for 2 min on each torque condition starting from 0 Nm to
4 Nm. Apart from providing knee flexion assistance, the exoskeleton
also provided knee stability assistance during stance and knee
extension assistance at the end of the swing phase. All the

Frontiers in Bioengineering and Biotechnology frontiersin.org02

De Miguel-Fernández et al. 10.3389/fbioe.2023.1208561

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2023.1208561


control parameters were kept constant for all the conditions, with
the exception of the peak knee flexion torque.

2.2 Participants

Suitable candidates were identified as individuals capable of
performing independent gait and exhibiting mild to moderate gait
deviations due to stroke (Salbach et al., 2004). Individuals were

eligible for inclusion if they met the following criteria: (1) age
above 18 years, (2) unilateral ischemic or hemorrhagic chronic
(≥6 months) stroke, (3) Functional Ambulation Categories
(FAC) score ≥2, and (4) comfortable treadmill walking speed
≥0.5 km/h. The exclusion criteria included: (1) high levels of
spasticity of muscle tone (resistance to passive movement), as
represented by the modified Ashworth scale scores of ≥3, (2)
premorbid disability of the lower extremity, (3) skin problems or
ongoing infections in areas in contact with the exoskeleton, (4)

FIGURE 1
Experimental protocol overview. The experimental protocol included six sessions, namely, baseline (session 1), training (sessions 2–5), and endline
(session 6) sessions. Treadmill walking was carried out in each session, overground walking, i.e., the 10-Meter Walk Test, was carried out only in the
baseline and endline sessions, and walking with the exoskeleton to analyze the relationship between peak knee flexion torque and biomechanical metrics
was carried out only in the endline session. Note that the data from the training sessions (indicated in purple), in which the participants walked with
the exoskeleton on the treadmill, were not used for the present study.

TABLE 1 Study participants’ characteristics.

Participant Age
(years)

Body
mass
(kg)

Height
(cm)

Gender Type of
stroke

Chronicity
(years)

Regular
assistive
device

FAC MAS
knee
Ext/
Flex

10MWT
(m/s)

Treadmill
speed
(km/h)

ID 1 71 64 165 Male Ischemic 11.0 None 4 0/1 1.14 1.3

ID 2 56 62 150 Female Ischemic 0.5 Cane
and AFO

2 0/0 0.34 0.5

ID 3 68 66 169 Male Hemorrhagic 12.0 Cane
and AFO

4 0/1 0.69 0.8

ID 4 58 56 156 Female Hemorrhagic 30.0 Cane 3 0/1 0.55 1.0

ID 5 40 85 169 Male Ischemic 0.5 AFO 4 0/0 0.93 1.5

ID 6 58 61 154 Male Ischemic 7.0 Cane 4 1/2 0.48 0.9

AFO, ankle–foot orthosis; FAC, Functional Ambulation Category; 10MWT, 10-Meter Walk Test.
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impaired cognition, (5) relevant comorbidities (e.g., chronic
heart failure, uncontrolled diabetes or hypertension, chronic
obstructive pulmonary disease, medical or family history of
osteoporosis, or a history of fragility fractures in the last
2 years), and (6) pregnancy or breastfeeding.

In total, six participants with left-side hemiplegia due to stroke
were enrolled for this study (see Table 1). All participants provided
informed consent before starting the study.

2.3 Experimental setup

The ABLE-KS is a wearable, unilateral, powered knee
exoskeleton that provides knee stability assistance during stance,
and flexion and extension assistance during swing. Further details
about the knee exoskeleton can be found in de Miguel-Fernández
et al. (2023b). The synchronization with the user is based on the
detection of the foot–ground contacts of both legs following a
threshold-based algorithm that uses shank angle and velocity.

Kinematic shank data were obtained by means of two IMUs
(BNO055, Bosch, Germany) attached to both shanks at the position
closest to the ankle (see Figure 1). Raw linear accelerations (±4 g
range) and angular velocities (±2,000 deg/s range) were measured in

the three sensor local axes at a sampling frequency of 100 Hz. The
IMUs were connected to a microcontroller (Teensy 4.0; PJRC,
Sherwood, OR, USA) via an i2C protocol connection to store
and process data.

As described previously, the participants were asked to walk
with the ABLE-KS with five different peak knee flexion torques
(i.e., 0, 1, 2, 3, and 4 Nm). Note that during sessions 2–5, the
participants had already trained with the different torque levels.

2.4 Gait monitoring with shank-worn IMUs
after stroke

The algorithm implemented in the current study to monitor
spatiotemporal metrics using IMUs was similar to others found in
the literature (Arens et al., 2021; Laidig et al., 2021; Uchitomi et al.,
2022). First, the gait events of interest, i.e., initial contact (IC), flat-
foot (FF), toe-off (TO), and mid-swing (MSw), were detected by
using the angle and velocity of the paretic and non-paretic shanks
(see Figure 2A). Precise detection of gait events in the present
algorithm is critical to accurately estimate the temporal and
spatial metrics. Second, we estimated the sensor linear
displacement by double-integrating the acceleration data during

FIGURE 2
Gait monitoring with shank-worn IMUs. (A)Gait events, i.e., flat-foot (FF), toe-off (TO), mid-swing (MSw), and initial contact (IC), are detected on the
basis of the angular rates (ω) of the paretic (P) and non-paretic (NP) shanks and the difference between angular displacements (θ). The sagittal plane
projection of the estimated IMU trajectory is used to estimate the maximum vertical displacement (MVD), foot clearance (FC), and stride length (SL).
Circumduction (CD) is extracted from the transverse plane projection of the IMU trajectory, i.e., maximum lateral displacement. (B) General
algorithm pipeline to estimate spatial parameters. The algorithm runs every time that a new FF event is detected by using ω and θ. For each period of
interest, the acceleration signal (as) is transformed to a fixed world frame (aw) and gravity is removed. The resulting acceleration signal (a) is integrated
twice to get the velocity (vd) and position (pd) of the IMU. From the computed trajectories, the drift is removed (v, pr), and the position is rotated for every
step (p) to get the spatial parameters.
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the swing phase (see Figure 2B). Finally, temporal metrics were
defined using the phases limited by the detected gait events, and the
spatial metrics were obtained from the estimated 3D trajectory (see
Figure 2). For the spatial metrics, synchronized reset and
initialization of the acceleration integrators were required to get
an accurate estimation.

To detect the gait events of interest, i.e., IC, FF, TO, andMSw, we
used a threshold-based algorithm that fuses the shanks’ angular
kinematics, i.e., angle and velocity, and time elapsed between two
consecutive events (see Figure 2A), which we have previously
validated in participants after stroke (de Miguel-Fernández et al.,
2022). We combined the shank angle of the paretic and non-paretic
sides to increase the robustness in the detection of gait events in
pathological gait (Arens et al., 2021; Laidig et al., 2021). Each gait
event was associated with three independent detection parameters:
(1) angular velocity threshold to detect local maxima or minima, (2)
angle difference threshold between shanks to consider the detection
of the event, and (3) minimum time required between events to
avoid false positives. All the participants shared the same angular
velocity threshold of 100 deg/s and a time threshold of 0.5 s. The
angle difference between shanks ranged from 5 to 15 degrees,
depending on the step length of each participant, i.e., lower step
length was associated with a lower angle threshold. These target
levels were chosen on the basis of pilot tests performed with
individuals after stroke. The thresholds of the gait event
detection algorithm were confirmed to be appropriate based on
real-time data, i.e., shank angular kinematics and event detection
flags.

Both IC and TO were detected by estimating local maxima in the
angular velocity of the shank (see Figure 2A).We used the difference in
the angle between both shanks to differentiate between events. We
classified the events as ICwhen the angular velocity had a local maxima
and the angle difference was positive, while the TO was classified when
the angle difference was negative. For the MSw, we identified the local
minima in the angular velocity of the same leg with a difference in the
angle between both shanks below an angle threshold. The foot was
assumed to be fully flat on the ground (FF) when theMSw event of the
contralateral leg occurred, as described by Uchitomi et al. (2022). Note
that FF events are commonly detected by using the magnitude of the
acceleration vector measured by the IMUs (Pierleoni et al., 2019),
although it has been shown that angular velocity–based algorithms
perform significantly better than acceleration-based algorithms,
especially for pathological gait (Arens et al., 2021; Laidig et al.,
2021; Uchitomi et al., 2022).

Every time an FF event occurred, the three-axis linear
accelerations in the local sensor frame were transformed into the
world frame using the rotation matrix obtained from the IMU,
i.e., unit quaternions computed directly by the onboard Kalman
filter (see Figure 2B). Then, the gravity term was removed from
the acceleration in the vertical axis. The resulting acceleration signals
were integrated twice using trapezoidal integration to obtain the 3D
displacement of the IMU. After the first integration of the
acceleration, the velocity drift was removed, assuming that the
velocity at the past and current FF events was zero. To correct the
position drift, we set the three components of the position to zero at
the previous FF event, and only the vertical component was set to zero
at the current FF event. Finally, the 3D IMU position trajectories of
each step were rotated to start with the same orientation.

The stride time was estimated as the time between two
consecutive IC events of the same leg. Stance time, as a
percentage of the gait cycle, was estimated as the time between
the first IC and TO with respect to the total stride time of the same
leg. Swing time was approximated as the time between the TO and
IC of the next gait cycle with respect to the total stride time of the
same leg.

The stride length (SL) was defined as the maximum distance in
the anterior–posterior direction measured between two successive
stationary periods (see Figure 2A). Circumduction (CD) was defined
as the maximum lateral displacement of the IMU during the swing
phase (see IMU trajectory projected to the transverse plane in
Figure 2A). Foot clearance (FC) was defined as the vertical
position of the 3D IMU trajectory at the MSw. The maximum
vertical displacement (MVD) was defined as the maximum vertical
position of the IMU during the swing phase. The spatiotemporal
metrics obtained from the motion capture system, which were used
as ground truth, were computed in the same way using the markers
placed at the ankle, heel, and toe. Finally, the gait speed during the
10MWT was computed as the average stride speed of both paretic
and non-paretic sides, which was calculated by dividing each stride
length by each stride time.

2.5 Regression-based automatic and
adaptive controller

We developed a control scheme based on regression models to
automatically adapt the exoskeleton peak knee flexion torque
parameter based on a spatiotemporal metric estimated from the
IMUs data (Figure 6A). The spatiotemporal metric that was used
as input for the adaptive controller was the metric that presented the
strongest correlation when compared with the optical system and also
presented a high correlation with the peak knee flexion torque
parameter. Specifically, the proposed controller follows these steps:
1) the spatiotemporal metric is estimated from the previous strides
using the data from IMUs; 2) the estimated spatiotemporal metric is
compared to the desired value (set by the therapist), and the variation
is fed to a regression model; and 3) the regression model generates a
new value for the peak knee flexion torque parameter that is used by
the torque profile generator to set the device torque for the next step.

Two types of regression models were evaluated offline: 1) linear
regression model and 2) neural network. Both models were trained
with 80% of the available steps of each participant for each condition
to model the relationship between the variations of the selected
spatiotemporal metric and peak knee flexion torque parameter. The
remaining 20% of the steps of each participant were used to validate
the model.

2.6 Outcomes and statistical analysis

To compare the estimation for the metrics presented in Section
2.4 with the ground truth values obtained with the optical motion
capture system, we used the mean absolute error (MAE), Pearson’s
correlation coefficient (r), and inter-rater reliability based on intra-
class correlation analysis (ICC). The MAE was used as a measure of
statistical dispersion of the error, while the ICC evaluated the
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agreement ICC(A,1) and consistency ICC(C,1) between both
measurement systems. We used the values of each stride and
average values for each participant per session separately.

The linear regression analysis was used to determine the
relationship between the selected control parameter, i.e., the peak
knee flexion torque, and spatiotemporal metrics of interest. For each
metric, the coefficient of determination was extracted using the
Pearson’s correlation and the corresponding p-value was
computed. We defined mild, moderate, and strong relationships

as having r values ranging 0.25–0.49, 0.50–0.69, and 0.70–1.0,
respectively. The F-tests were used to evaluate statistical
significance. The level of significance was set to p < 0.05. We
also analyzed the results in relation to the level of gait function,
which was quantified as the gait speed during the 10MWT at the
baseline, i.e., lower gait speed was associated with a lower level of
gait function (Salbach et al., 2004).

To validate offline the performance of the regression models
that related the variation of the selected spatiotemporal metric

FIGURE 3
Regression plots for the temporal and spatial gait metrics comparing the estimated values obtained with the IMU-based system with the ground
truth values obtained with the optical motion capture system. Average (red) and stride-to-stride (gray) estimations of the stride time (A), stance (B) and
swing (C) phases, stride length (D), maximum vertical displacement (E), minimum foot clearance (F), and circumduction (G) for the paretic (i) and non-
paretic (ii) sides. Regression plots show Pearson’s correlation r between the actual values obtained with the optical motion-capture system and
estimated values using the shank-worn IMU-based algorithm, with *** indicating p < 0.001. Plots show linear fit (gray and red) and identity lines (black
dashed) representing perfect estimation. For the statistical analysis, we also included the inter-class correlation coefficients for both agreement ICC(A,1)
and consistency ICC(C,1), along with the mean absolute error (MAE).
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obtained from the IMUs data with the peak knee flexion torque
parameter, the MAE and Pearson’s determination coefficient (R2)
were used as measures of error dispersion between the actual and
predicted values. Additionally, the results were also analyzed in
relation to the gait speed measured during the 10MWT at the
baseline.

The corrected Akaike information criterion (AICc) was the
outcome metric used to determine the most suitable neural
network architecture for this application (Hurvich and Tsai,
1989). AICc compared the performance and complexity of the
neural network and the linear regression model.

For the neural network, a hyperparameter optimization was
performed via grid search to find the model that was best adapted
to the available data. The combinations tested were three
activation functions, i.e., Rectified Linear Unit (ReLU), tanh,
and sigmoid, and one-to-three hidden layers with different
nodes, i.e., 5, 10, 15, 20, 25, and 30. The selected configuration
of the neural network had one layer and five hidden nodes with
ReLU as the activation function.

3 Results

3.1 Estimation of spatiotemporal metrics for
clinical gait analysis

The estimated averaged values of the gait temporal parameters
using the IMUs for each session showed a strong correlation (0.76 <
r < 0.99, p < 0.001) and inter-rater reliability both in terms of
agreement and consistency [0.72 < ICC(A,1) < 1.00; 0.76 <
ICC(C,1) < 1.00] (see Figure 3 and Table 2) with the metrics
obtained with the optical motion capture system. The most
robust estimations were found for the stride time of the paretic
and non-paretic sides [r = 1; ICC(A,1) = 1; ICC(C,1) = 1], with the
mean estimation errors lower than 0.002 s (see Figure 3A). The
lowest correlation indexes were found for the stance duration [r =
0.765; ICC(A,1) = 0.721; ICC(C,1) = 0.764; see Figure 3Bi] and swing
duration [r = 0.789; ICC(A,1) = 0.748; ICC(C,1) = 0.788; see

Figure 3Ci] of the paretic side, with an estimated mean error
lower than 3% of the gait cycle.

The estimation of temporal metrics at a stride-to-stride level
using the IMU-based system showed a moderate to strong
correlation (0.66 < r < 0.99) together with inter-rater reliability
agreement [0.64 < ICC(A,1) < 0.99] and consistency [0.66 <
ICC(C,1) < 0.99] with the metrics obtained using the optical
motion capture system. The stride time for the paretic [r = 0.953;
ICC(A,1) = 0.953; ICC(C,1) = 0.953; see Figure 3Ai] and non-paretic
[r = 0.991; ICC(A,1) = 0.991; ICC(C,1) = 0.991; see Figure 3Aii] sides
showed the highest correlation coefficients, but the mean absolute
errors for the paretic and non-paretic sides increased up to 0.039 s
and 0.015 s, respectively. The lowest correlation coefficients were
found for the duration of the stance [r = 0.666; ICC(A,1) = 0.643;
ICC(C,1) = 0.666] and swing [r = 0.691; ICC(A,1) = 0.668;
ICC(C,1) = 0.691] phases, with the mean estimation errors being
lower than 3% of the gait cycle (see Figures 3B–C).

Averaged spatial metrics obtained with the IMU-based
system showed a moderate to strong correlation (r = [0.53,
0.99], p < 0.01) and a poor to strong agreement [0.33 <
ICC(A,1) < 0.99] and consistency [0.51 < ICC(C,1) < 0.99]
with the metrics obtained with the optical motion capture
system (see Figure 3). The highest correlation indexes were
found for the stride length of the paretic [r = 0.989;
ICC(A,1) = 0.983; ICC(C,1) = 0.985] and non-paretic [r =
0.991; ICC(A,1) = 0.991; ICC(C,1) = 0.991] sides, with a mean
estimation error lower than 0.023 m (see Figure 3D). The lowest
correlation indexes were found for the non-paretic minimum
foot clearance [r = 0.609; ICC(A,1) = 0.328; ICC(C,1) = 0.589; see
Figure 3Fii] and circumduction [r = 0.534; ICC(A,1) = 0.388;
ICC(C,1) = 0.515; see Figure 3Gii].

The stride-to-stride estimation of the spatial metrics did not
remarkably affect the strength of the correlation (r = [0.46, 0.96], p <
0.001) or the inter-rater reliability agreement [0.32 < ICC(A,1) <
0.96] and consistency [0.46 < ICC(C,1) < 0.96] when compared to
the estimation using the averaged values (see Figure 3).

The estimated overground gait speed obtained with the
IMU-based system for the 10MWT showed a strong

TABLE 2 Summary of mean ± std (range) of the optical motion capture (ground truth) and inertial measurement unit (IMU) for each metric along with the mean
error between the ground truth motion capture and IMU-estimated values.

Ground truth value IMU value Mean error

P NP P NP P NP

CD (m) 0.043 ± 0.022 (0.078) 0.006 ± 0.005 (0.020) 0.028 ± 0.017 (0.067) 0.011 ± 0.007 (0.029) 0.015 ± 0.013 (0.064) −0.005 ± 0.006 (0.030)

MVD (m) 0.071 ± 0.018 (0.065) 0.088 ± 0.020 (0.074) 0.083 ± 0.023 (0.098) 0.085 ± 0.017 (0.068) −0.011 ± 0.011 (0.041) 0.003 ± 0.009 (0.040)

FC (m) 0.056 ± 0.017 (0.063) 0.051 ± 0.009 (0.045) 0.062 ± 0.023 (0.078) 0.040 ± 0.007 (0.033) −0.0062 ± 0.011 (0.061) 0.010 ± 0.007 (0.040)

SL (m) 0.483 ± 0.160 (0.566) 0.470 ± 0.153 (0.547) 0.472 ± 0.147 (0.523) 0.465 ± 0.158 (0.545) 0.011 ± 0.026 (0.113) 0.004 ± 0.021 (0.099)

StP (%) 71.22 ± 3.12 (12.18) 76.55 ± 4.93 (19.89) 70.12 ± 3.00 (13.98) 74.03 ± 4.907 (19.81) 1.10 ± 2.10 (8.50) 2.52 ± 1.99 (7.56)

SwP (%) 28.75 ± 3.13 (12.31) 23.45 ± 4.93 (19.89) 29.81 ± 3.06 (14.13) 25.97 ± 4.907 (19.81) −1.05 ± 2.01 (8.00) −2.52 ± 1.99 (7.56)

ST (s) 1.62 ± 0.19 (0.76) 1.62 ± 0.19 (0.76) 1.62 ± 0.19 (0.76) 1.62 ± 0.19 (0.76) 0.00 ± 0.00 (0.00) 0.00 ± 0.00 (0.00)

P, paretic; NP, non-paretic; CD, circumduction; MVD, maximum vertical displacement; FC, foot clearance; SL, stride length; StP, stance phase; SwP, swing phase; ST, stride time.
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correlation [r = 0.944, p < 0.001], with a strong agreement
[ICC(A,1) = 0.94] and consistency [ICC(C,1) = 0.94], with
the gait speed, which was obtained with the digital stopwatch
(see Figure 4A). The MAE for the estimation of gait speed and

distance covered was 0.07 ± 0.059 m/s and 0.07 ± 0.050 m,
respectively (see Figure 4B). As an example, Figure 4C shows
continuous gait trajectories estimated by the proposed method
during the 10MWT (participant ID3).

FIGURE 4
Estimated gait speed and distance for the 10MWT. (A) Regression plot comparing the estimated gait speedwith the IMU-based system and the actual
value for each trial. (B) Bar plot with the estimated distance covered during the 10MWTwith the IMU-based system for each trial (circles) and themean of
all the trials (bar). (C) Example of a continuous gait trajectory obtained with the IMU-based system for paretic and non-paretic sides during the 10MWT.
The regression plot shows the Pearson’s correlation r between actual values and the estimates obtained with the IMU-based system, with ***
indicating p < 0.001. The regression plot shows the linear fit (green) and identity lines (black dashed) representing perfect estimation. For the statistical
analysis, we also included the inter-class correlation coefficients for both agreement ICC(A,1) and consistency ICC(C,1), along with the mean absolute
error (MAE). In the axes, CC means the craniocaudal direction, AP means the anteroposterior direction, and ML means the mediolateral direction.

FIGURE 5
Relationships between the spatiotemporal metrics of interest estimated by the IMUs and peak knee flexion torque. (A–D)Correlation plots between
peak knee flexion torque and the spatiotemporal outcomes estimated by the IMUs (i), and the relationship between the coefficient of correlation and level
of gait function of the participants measured with the gait speed during the 10MWT at baseline (ii). The gray lines in subplot (i) depict the best fit line; r
values are the coefficients of correlation; the green bar plots represent the average value of all participants for the IMU-estimated metrics, and the
gray dots represent the average of each participant. The gray points in subplot (ii) represent the correlation coefficients found for each metric and
participant in relation to the motor function of each participant (measured as the gait speed at baseline). *p < 0.05, **p < 0.01.
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3.2 Relationship between estimated
spatiotemporal metrics and peak knee
flexion torque

Paretic maximum vertical displacement (r = 0.96, p = 0.010; see
Figure 5Ai), minimum foot clearance (r = 0.90, p = 0.015; see
Figure 5Ci), and circumduction (r = 0.86, p = 0.058; see Figure 5Bi)
had the highest significant positive correlations with the peak knee
flexion torque parameter (see Table 3). Regarding the temporal

metrics of the paretic side, there were significant strong correlations
for the duration of the stance (r = 0.97, p = 0.006; see Figure 5Di) and
swing (r = −0.97, p = 0.007; see Table 3) phases. Low to moderate
Pearson’s correlation coefficient values (0.06 < r < 0.68) were
observed for the spatiotemporal metrics for the non-paretic side
(see Table 3). The mean and standard deviation of each metric for
each torque level is given in Tables 4 and 5.

To understand how the gait function level of the participants
affected the strength of the correlations, we also analyzed the

TABLE 3 Relationship between the spatiotemporal metrics of interest estimated by the IMUs and peak knee flexion torque per participant.

Participant Coefficient of correlation (r) with the peak knee flexion torque

CD MVD FC SL StP SwP ST

P NP P NP P NP P NP P NP P NP P NP

ID 1 0.95 0.01 0.98 −0.51 0.95 0.67 0.68 0.63 0.74 0.34 −0.74 −0.34 0.73 0.71

ID 2 0.50 0.54 0.30 0.70 0.50 −0.01 0.74 0.71 0.94 0.65 −0.94 0.83 0.75 0.76

ID 3 0.32 0.01 0.59 0.77 0.20 0.40 −0.12 −0.62 0.84 0.44 −0.84 −0.44 0.13 0.15

ID 4 0.62 0.55 0.78 0.72 0.62 0.61 −0.30 −0.12 0.87 0.87 −0.88 −0.23 −0.86 −0.85

ID 5 0.78 0.00 0.98 0.02 0.78 0.05 −0.43 −0.34 0.08 0.30 −0.08 0.30 −0.44 −0.44

ID 6 0.65 0.35 0.63 −0.36 0.48 0.36 −0.35 −0.15 0.31 0.09 −0.31 0.09 −0.21 −0.21

All 0.86 0.66 0.96* 0.46 0.90* 0.68 0.32 0.46 0.97** 0.62 −0.97** 0.06 0.66 0.68

P, paretic; NP, non-paretic; CD, circumduction; MVD, maximum vertical displacement; FC, foot clearance; SL, stride length; StP, stance phase; SwP, swing phase; ST, stride time. *p < 0.05,

**p < 0.01.

The values in bold indicate statistical significance.

TABLE 4 Mean ± std of the spatial metrics of interest for each peak knee flexion torque level.

Peak knee flexion torque (Nm) CD (m) MVD (m) FC (m) SL (m)

P NP P NP P NP P NP

0 0.015 ± 0.010 0.011 ± 0.004 0.079 ± 0.023 0.087 ± 0.017 0.059 ± 0.022 0.038 ± 0.012 0.499 ± 0.214 0.485 ± 0.222

1 0.015 ± 0.005 0.012 ± 0.007 0.084 ± 0.026 0.087 ± 0.017 0.062 ± 0.024 0.040 ± 0.008 0.502 ± 0.232 0.495 ± 0.232

2 0.017 ± 0.012 0.011 ± 0.006 0.086 ± 0.028 0.088 ± 0.020 0.062 ± 0.023 0.040 ± 0.007 0.515 ± 0.214 0.505 ± 0.224

3 0.023 ± 0.012 0.013 ± 0.008 0.089 ± 0.029 0.086 ± 0.018 0.064 ± 0.023 0.039 ± 0.008 0.508 ± 0.219 0.493 ± 0.235

4 0.021 ± 0.0087 0.012 ± 0.004 0.090 ± 0.031 0.089 ± 0.018 0.066 ± 0.025 0.041 ± 0.008 0.502 ± 0.215 0.496 ± 0.224

P, paretic; NP, non-paretic; CD, circumduction; MVD, maximum vertical displacement; FC, foot clearance; SL, stride length.

TABLE 5 Mean ± std of the temporal metrics of interest for each peak knee flexion torque level.

Peak knee flexion torque (Nm) StP (%) SwP (%) ST (s)

P NP P NP P NP

0 65.49 ± 1.79 72.74 ± 4.67 34.39 ± 1.63 27.14 ± 4.83 1.49 ± 0.23 1.49 ± 0.23

1 66.20 ± 1.65 72.74 ± 4.95 33.76 ± 1.65 27.21 ± 4.99 1.50 ± 0.23 1.50 ± 0.24

2 67.51 ± 3.41 72.92 ± 4.87 32.40 ± 3.26 27.01 ± 4.98 1.54 ± 0.26 1.54 ± 0.26

3 68.75 ± 2.48 72.85 ± 4.81 31.24 ± 2.48 27.14 ± 4.80 1.52 ± 0.26 1.52 ± 0.26

4 68.69 ± 2.97 72.83 ± 4.69 31.30 ± 2.97 27.16 ± 4.69 1.52 ± 0.25 1.53 ± 0.25

P, paretic; NP, non-paretic; StP, stance phase; SwP, swing phase; ST, stride time.
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relationship between the baseline gait speed of the participants
during the 10MWT and correlation coefficients (see Figures
5A–Dii; Table 3). At the participant level, the results showed a
large deviation in the coefficient of correlation among participants
depending on their gait function level. We observed that for paretic
maximum vertical displacement and minimum foot clearance, the
coefficient of correlation increased for the participants with a higher
baseline speed, while for circumduction, the coefficient of
correlation decreased for the participants with a higher baseline
speed (see Figures 5A–Cii).

3.3 Offline validation of using IMU-based
estimations of spatiotemporal metrics for
design of adaptive control strategies

From the previous results, we identified that the paretic
maximum vertical displacement had the strongest correlation
when compared with the optical system, and also a high
correlation with the exoskeleton parameter that controls the peak
knee flexion torque (see Figure 6A).

The results for the evaluation of the linear regression model and
neural network model with 20% of the steps in relation to the gait
speed measured during the 10MWT at baseline are presented in
Figure 6B and Table 6. Predictions for peak knee flexion torque were

more accurate for participants with a higher gait speed during the
10MWT, i.e., better gait function (R2 = 0.70–0.78; MAE =
0.55–0.58 Nm). These participants also had the highest
correlation index between the maximum vertical displacement
and the peak knee flexion torque (r = 0.96; see Figure 5Bi). The
lowest levels of the determination coefficient (R2 = 0.00–0.18) and
highest MAEs (MAE = 1.15–1.29 Nm) were found for the
participants with worse gait function. These participants had
lower levels of correlation indexes between the maximum vertical
displacement and peak knee flexion torque (r = 0.3–0.78; see
Figure 5Bii).

The neural network model better predicted the peak knee flexion
torque in terms of MAE and R2 than the linear regression model (see
Figure 6B). The predictions of peak knee torque for the participants
with a better gait function (i.e., higher velocities during the baseline
10MWT) had high coefficients of determination and low MAE (R2 =
0.78–0.80; MAE = 0.48–0.50 Nm). For these participants, the
complexity added to the neural network with respect to the linear
model was justified in terms of performance, i.e., lower values for the
AICc with the neural network (neural network vs. linear regression =
ID1: −55 vs. −31 and ID5: −58 vs. −54). For participants with worse
gait function (i.e., lower gait speed during the baseline session), the
prediction of the peak torque was considerably worse as also observed
with the linear regression model (R2 = 0.00–0.19; MAE =
1.15–1.28 Nm). For this group of participants, the complexity

FIGURE 6
Proposed control method and offline validation results. (A) Conceptual diagram of the proposed adaptive control strategy for a knee exoskeleton.
Maximum vertical displacement (MVD) is estimated from previous strides using the data from IMUs, and a regression model (neural network in this
example) is used to generate a new value for the peak knee flexion torque parameter. (B) (i) Mean absolute errors (MAEs), (ii) coefficients of determination
(R2), and (iii) corrected Akaike InformationCriterion (AICc) for the prediction of the peak knee flexion torque of the trained linear regression (blue) and
neural network (green) models in relation to the gait function of the participants. The gait function was associated with the gait speed during the 10MWT
at baseline (Salbach et al., 2004).
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added to the neural network with respect to the linear model was not
justified in terms of performance, i.e., higher values for the AICc with
the neural network.

4 Discussion

In this work, we validated the feasibility of using shank-worn
IMUs for clinical gait analysis after stroke and evaluated their
preliminary applicability in designing an automatic and adaptive
controller for a knee exoskeleton. The main contribution of the
present study relies in the stride-to-stride estimation of
spatiotemporal metrics using two shank-worn IMUs to design
adaptive control laws for knee exoskeletons after stroke. First, we
validated a gait monitoring algorithm capable of estimating the
spatiotemporal metrics using two shank-worn IMUs with data from
six participants after stroke when walking on a treadmill and
overground. Second, we analyzed the relationship between the
spatiotemporal metrics obtained from the IMU data and the
parameter that sets the peak knee flexion torque of a unilateral
knee exoskeleton (ABLE-KS). Finally, we designed and validated
offline a set of control laws using two regression models, linear
regression and neural network, to automatically adapt the peak knee
flexion torque parameter based on the maximum vertical
displacement. We selected this metric as it had the highest
reliability in the estimation and correlation with the control
parameter.

4.1 Reliability of estimating gait
spatiotemporal metrics using shank-worn
IMUs after stroke

We can confirm that IMUs placed at the shanks of the paretic
and non-paretic sides can provide valuable estimates of
spatiotemporal metrics for gait analysis in post-stroke
individuals. However, it is important to consider that the
accuracy of estimation is highly related to the level of
impairment and the location of the IMU sensors (Picerno, 2017;
Carcreff et al., 2018; Niswander et al., 2020).

In the case of the stride time, our estimation (r = 1; MAE =
0.001 s) was better than the one reported in other studies that placed
the IMUs at the thighs (MAE = 0.028 s) (Arumukhom Revi et al.,

2021) or lower back (r = 0.965) (Parisi et al., 2016). Our results for the
stance and swing ratios (MAE = [1.91–2.67] %; r = [0.76–0.92]) were
similar to those of Laidig et al. (2021) where an IMUwas placed at the
foot (MAE = 1.43%; r = 0.89), and to those of Parisi et al. (2016) where
one IMU was placed at the lower back (r = [0.86–0.91]).

Our estimation quality for the stride length (MAE = 0.023ii r =
0.99) was aligned with other studies that used IMUs placed at the
feet (MAE = [0.001, 0.038] m; r > 0.99) (Arens et al., 2021; Laidig
et al., 2021) and better than the studies that placed the IMUs at the
thigh and shank (MAE = 0.035 m) or only shanks (r = [0.81, 0.942])
(Visi et al., 2017; Hendriks et al., 2022). Contrarily, a study that used
two IMUs placed at both feet obtained better estimation results than
the ones reported here for the circumductionmetric [r = 0.534 vs. r =
0.920; MAE = 0.006 m vs. MAE = 0.002 m; ICC(C,1) = 0.515 vs.
ICC(C,1) = 0.852; ICC(A,1) = 0.388 vs. ICC(A,1) = 0.868] and the
maximum vertical displacement [r = 0.88 vs. r = 0.912; MAE =
0.012 m vs. MAE = 0.006 m; ICC(C,1) = 0.858 vs. ICC(C,1) = 0.912;
ICC(A,1) = 0.746 vs. ICC(A,1) = 0.847] in individuals after stroke
(Arens et al., 2021). However, in the cited study, authors only had
analyzed 9-48 strides per participants, while we have analyzed
530–650. This difference in the number of analyzed strides might
explain the difference in the quality of estimation, as analyzing a
lower number of strides might lead to less data variability and to
consequently more accurate estimations. The estimation of the
paretic minimum foot clearance [r = 0.89; MAE = 0.01 m;
ICC(A,1) = 0.812; ICC(C,1) = 0.848] was found to be robust
enough to be used in a clinical environment (Al Bochi et al.,
2021). However, we have not found any other study that
validated the estimation of this metric using IMUs in participants
after stroke (Yang et al., 2013; Parisi et al., 2016; Visi et al., 2017;
Wang et al., 2018; Feuvrier et al., 2020; Arens et al., 2021;
Arumukhom Revi et al., 2021; Laidig et al., 2021; Hendriks et al.,
2022) or with other brain injuries (Bourgeois et al., 2014; Sijobert
et al., 2015; Moon et al., 2017; Behboodi et al., 2019).

The estimation of overground gait speed during the 10MWT
(MAE = 0.07 m/s) was good enough to detect minimal clinically
important differences (0.14 m/s) for post-stroke gait analysis
(Livolsi et al., 2022; Shin et al., 2022). Our results were
slightly better than the ones reported in other studies that
estimated the same metrics with shank-worn (r = 0.94 vs. r =
0.93; MAE = 0.07 m/s vs. MAE = 0.09 m/s) (Yang et al., 2013;
Hendriks et al., 2022) and foot-worn (MAE = 0.07 m/s vs. MAE =
0.1 m/s) (Feuvrier et al., 2020) IMUs.

TABLE 6 Results of the offline validation for the linear regression and neural network.

Participant Linear regression Neural network

MAE (Nm) R2 AICc MAE (Nm) R2 AICc

ID 1 0.58 0.70 −31.14 0.50 0.80 −55.36

ID 2 1.15 0.00 49.52 1.15 0.00 54.36

ID 3 1.16 0.18 55.49 1.16 0.19 55.49

ID 4 1.21 0.14 47.75 1.23 0.12 53.99

ID 5 0.55 0.78 −54.33 0.48 0.80 −58.81

ID 6 1.29 0.08 107.76 1.28 0.07 113.92

MAE, mean absolute error; R2, coefficient of determination; AICc, Akaike Information Criterion.
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At the stride level, the estimation of most of the spatiotemporal
metrics of interest was accurate enough to consider these metrics as
candidates for the application of real-time adaptive control due to the
high value of the correlation coefficients. We found that the estimations
of the non-paretic minimum foot clearance (see Figure 3Fii) and
circumduction (see Figure 3Gii) were not robust enough to be
considered as candidate metrics to adapt the control action of an
exoskeleton for people after stroke. The reason is that most of the actual
values of thesemetricsmight be out of the range of precision of the IMU
sensor and sampling frequencies used in this study.

4.2 Relationship between peak knee flexion
torque and spatiotemporal outcomes
estimated with shank-worn IMUs

At a group level, strong correlations were found for the peak
knee flexion torque and the estimation of circumduction, minimum
foot clearance, maximum vertical displacement, and stance and
swing phases of the paretic side. Our findings agree with those of
Sulzer et al. (2010) and Fricke et al. (2020b), where the authors also
found positive relationships between peak knee flexion torque and
step length, circumduction, minimum foot clearance, foot
maximum vertical displacement, and stance time.

However, we have seen that the coefficients of correlation at a
participant level presented high variations depending on the level of
gait function. In the present study, we have not found any
spatiotemporal metric that strongly correlated with the peak knee
flexion torque for all the levels of gait function of the included
participants. This finding highlights the fact that the correlation
between the biomechanical descriptors and control parameters can
be highly dependent on the level of gait function (Fricke et al.,
2020b).

4.3 Can shank-worn IMUs be used to design
adaptive control strategies for knee
exoskeletons for post-stroke rehabilitation?

We selected the maximum vertical displacement estimated from
the IMU data as the input for evaluating the performance of the
proposed adaptive controller. It was the metric that presented the
best accuracy against the optical motion capture system and highest
correlation index with the peak knee flexion torque. As a tentative
approach for future implementation, we developed and validated
off-line a controller based on regression-based models, i.e., linear
regression and neural network.

When comparing both models, we obtained a better
estimation of the peak torque with the neural network than
with the linear regression. However, despite the higher
complexity and capacity of modeling embedded non-linearity
between input and output variables, the performance of the
neural network did not remarkably surpass the performance of
the linear regression model.

Considering the predictions generated by the regression models,
we consider that these models can be implemented to design adaptive
control strategies that automatically tune the peak knee flexion torque
based on the maximum vertical displacement estimated by IMUs for

participants that have a moderate degree of gait function, i.e., gait
speed higher than 0.7 m/s (Salbach et al., 2004). However, the quality
of the predictions for the peak knee torque was considerably worse for
the participants with worse levels of gait function, i.e., gait speed lower
than 0.7 m/s. None of the models could provide good predictions of
the peak torque parameter based on the maximum vertical
displacement for all the participants, despite the fact that the
majority of the more impaired participants had a moderate to
strong correlation between these variables, i.e., r = 0.6–0.78. Future
studies should focus on finding other biomechanical descriptors that
have a higher correlation with a wider range of participants and
validating more complex regression models that might better capture
the population heterogeneity observed.

Our proposed approach complements other automatic methods
found in the literature, which adapt control parameters based on
joint kinematic errors (Fricke et al., 2020a) or normal ground
reaction forces (Blaya and Herr, 2004). These methods adapt the
control parameters in a discrete and sequential way, starting from a
predefined level of assistance and changing the assistance level by a
predefined amount at each iteration. On the contrary, the controller
proposed here can adapt without predefining the initial conditions
or amplitude of the change for each iteration.

Controllers that use optimization rules to get the optimal set of
parameters have evolved highly in recent years (Ding et al., 2018;
Díaz et al., 2022; Slade et al., 2022). However, human-in-the-loop
parameter optimization is still far from being applicable for
individuals with neurological impairments due to the long
walking times that are required for the algorithms to converge
(Nguyen et al., 2019; Siviy et al., 2020). The results and
methodology of the present study can potentially be used in
combination with human-in-the-loop algorithms to reach faster
convergence to the optimal set of control parameters for clinical
populations.

4.4 Limitations

The presented work has a number of limitations that can guide
future work in this field. The exploratory findings presented and
discussed here should be interpreted with caution due to the small
and heterogeneous sample. Although the proposed method has the
potential to be implemented in other clinical conditions leading to
hemiplegia, the noticeable differences in the gait patterns of the
participants and compensatory movements made it difficult to
generalize the results. Future studies should include larger
population sizes with similar gait functions to further
demonstrate the feasibility of this approach.

The participants had not tested the different peak knee flexion
torque levels in a random order, thus the order of the experimental
conditions might have affected the results of this study. However,
note that during sessions 2–5, the participants had been already
trained with the different torque levels. Moreover, we believe that the
variability resulting from the heterogeneity in motor function
between participants most likely had a higher impact than the
fixed order of the experimental conditions.

Hardware limitations were also notable in the estimation of the
spatiotemporal metrics. The selection of the hardware and location
of the IMUs were based on the ones used in the exoskeleton of this
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study. Moreover, there are other commercial IMUs that have a
higher sampling frequency and accuracy, which might have
provided better results.

For the selection of the control model, we could have used more
complex models, i.e., deep neural networks, than the proposed
regression models for the estimation of the exoskeleton torque
parameter, which might have exhibited a higher performance.
However, the use of these models would have required a
comprehensive analysis of the tuning of the hyperparameters that
was out of the scope of this feasibility study. Future work should
explore other models that might better capture the heterogeneity of
the post-stroke gait to adapt the exoskeleton torque and their
implementation in real time.

5 Conclusion

We implemented and evaluated a method to estimate
spatiotemporal metrics in six post-stroke participants while walking
overground and on a treadmill, by using a pair of low-cost IMUs placed
on the shanks. The estimations at the stride level were sufficiently
reliable to apply thesemetrics for real-time adaptive control applications
on post-stroke gait. Subsequently, we studied the relationship between
the peak knee flexion torque parameter of a knee exoskeleton and
spatiotemporal metrics estimated by the shank-worn IMUs. The
maximum vertical displacement was the metric that had the highest
correlation with the peak knee flexion torque parameter of the
exoskeleton for the different gait function levels of the participants
and strong correlation coefficients with the data from the optical
motion-tracking system. Finally, we performed an offline validation
of two machine learning models, i.e., linear regression and neural
network, to adapt the peak knee flexion torque based on variations
of the maximum vertical displacement estimated by the shank-worn
IMUs. Although the neural network presented a better performance
than the linear regression, this difference was not remarkable. Real-time
implementation is still an open path for future development, but our
preliminary results have demonstrated the feasibility of this approach to
design adaptive control strategies for lower limb exoskeletons for people
with moderate impairments in gait function due to stroke. Future work
will include the comparison of control strategies that automatically
adapt the control parameters versus the standard manual tuning.
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