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Introduction: Inherited retinal dystrophies (IRDs) can be caused by variants in
more than 280 genes. The ATP-binding cassette transporter type A4 (ABCA4)
gene is one of these genes and has been linked to Stargardt disease type 1 (STGD1),
fundus flavimaculatus, cone–rod dystrophy (CRD), and pan-retinal CRD.
Approximately 25% of the reported ABCA4 variants affect RNA splicing. In most
cases, it is necessary to perform a functional assay to determine the effect of these
variants.

Methods: Whole genome sequencing (WGS) was performed in one Spanish
proband with Stargardt disease. The putative pathogenicity of c.6480-35A>G
on splicing was investigated both in silico and in vitro. The in silico approach was
based on the deep-learning tool SpliceAI. For the in vitro approach we used a
midigene splice assay in HEK293T cells, based on a previously established wild-
type midigene (BA29) containing ABCA4 exons 46 to 48. Through the analysis of
WGS data, we identified two candidate variants in ABCA4 in one proband: a
previously described deletion, c.699_768+342del (p.(Gln234Phefs*5)), and a
novel branchpoint variant, c.6480-35A>G. Segregation analysis confirmed that
the variants were in trans. For the branchpoint variant, SpliceAI predicted an
acceptor gain with a high score (0.47) at position c.6480-47. A midigene splice
assay in HEK293T cells revealed the inclusion of the last 47 nucleotides of intron
47 creating a premature stop codon and allowed to categorize the variant as
moderately severe. Subsequent analysis revealed the presence of this variant as a
second allele besides c.1958G>A p.(Arg653His) in an additional Spanish proband in
a large cohort of IRD cases.

Conclusion: A splice-altering effect of the branchpoint variant, confirmed by the
midigene splice assay, along with the identification of this variant in a second
unrelated individual affected with STGD, provides sufficient evidence to classify
the variant as likely pathogenic. In addition, this research highlights the importance
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of studying non-coding regions and performing functional assays to provide a
conclusive molecular diagnosis.
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branchpoint variant, midigene splice assay, whole genome sequencing, ABCA4, Stargardt
disease

1 Introduction

Inherited retinal dystrophies (IRDs) are a clinically complex and
heterogenous group of visual impairment disorders that can result in
progressive vision loss and eventual blindness. Today, there are
more than 280 genes that have been associated with IRDs (https://
web.sph.uth.edu/RetNet/home.htm).

ABCA4 is among the most commonly mutated genes associated
with IRDs (Quazi and Molday, 2014; Perea-Romero et al., 2021). The
gene encodes the ATP-binding cassette transporter type A4 (ABCA4), a
retina-specific protein that is expressed in the outer segments of
photoreceptors and functions to process the metabolites of vitamin
A in the visual cycle (Sun et al., 1999; Tsybovsky et al., 2010; Molday,
2015). Dysfunction of ABCA4 leads to the accumulation of cytotoxic
products (lipofuscin) in the photoreceptors and retinal pigment
epithelium and can manifest in different phenotypes such as
Stargardt disease type 1 (STGD1), fundus flavimaculatus, cone–rod
dystrophy (CRD), and pan-retinal CRD (Allikmets et al., 1997; Cremers
et al., 1998; Rozet et al., 1999; Maugeri et al., 2000; Cremers et al., 2020).

A genotype–phenotype correlation model was proposed to explain
the wide range of phenotypes associated with biallelic pathogenic
variants in ABCA4. This genotype–phenotype correlation model
links the residual activity of the ABCA4 protein to the severity of
retinal dystrophy (van Driel et al., 1998; Maugeri et al., 1999). The
model categorizes variants as deleterious (no activity; null allele), severe,
moderately severe, or mild (also mentioned as hypomorphic). Some
mild variants, such as c.5603A>T (p.(Asn1868Ile)), when in transwith a
severe variant, show incomplete penetrance (Runhart et al., 2018).
Patients with two severe variants or null alleles present with pan-retinal
CRD, while a severe variant combined with a moderately severe variant
results in CRD. On the other hand, a combination of a severe and mild
variant or two moderately severe variants gives rise to classic STGD1
(Cremers et al., 2020). A combination of a severe variant with a mild-
incomplete penetrant variant most often results in late-onset STGD1.

More than 2,300 unique variants have been reported for ABCA4
(http://www.lovd.nl/ABCA4) since being first reported in 1997
(Allikmets et al., 1997; Cornelis et al., 2017; Cornelis et al., 2022;
Cornelis et al., 2023). A wide variety of causative genetic defects have
been reported that include missense and nonsense variants, indels,
canonical, non-canonical splice site defects, and deep-intronic
variants. Approximately 25% of these variants affect RNA
splicing by altering one or more of the key splicing elements
(Khan et al., 2020; Corradi et al., 2022).

The splicing process is a complex phenomenon that involves a
large number of proteins with various interactions between the cis
and trans elements. The cis elements are the DNA sequences that
define exons, introns, and other regulatory sequences necessary for
proper splicing. The branchpoint sequence (BPS) is one of the key
cis-acting elements, together with the canonical 5ʹ splice donor site
(SDS) and the canonical 3ʹ splice acceptor site (SAS). The BPS is a

short degenerate motif typically located upstream from the SAS and
followed by a cytosine- and thymidine-rich sequence called the
polypyrimidine tract. The BPS is recognized by proteins involved in
the formation of the spliceosome complex and is thought to play a
key role in positioning the spliceosome at the correct location for
efficient splicing. Additionally, there are exonic and intronic
regulators that act as enhancers or silencers (Anna and Monika,
2018; Tang et al., 2020).

In recent years, causative variants in cis elements, which include
the BPS, have been described to disrupt pre-mRNA splicing, leading
to dysfunctional proteins and retinal disease (Leman et al., 2020;
Corradi et al., 2022; Fadaie et al., 2022; Reurink et al., 2023). In silico
prediction tools can identify potential splicing variants and their
putative effect, but lack accuracy for novel intronic variants outside
of the splice site consensus sequence (Ohno et al., 2018; Rowlands
et al., 2021). However, the introduction of SpliceAI provides an
accurate prediction for deep-intronic variants (Riepe et al., 2021).
According to the ACMG guidelines, however, these tools only serve
as indicators of splicing aberrations and are not standalone evidence
for determining pathogenicity (Richards et al., 2015). Experimental
studies, such as the minigene splice assays, are crucial for
determining the functional impact of variants that affect RNA
splicing and increasing our knowledge of these variants. These
studies enable accurate classification of the severity of variants
and, together with the genotype–phenotype correlation model,
provide conclusive clinical diagnoses, appropriate genetic
counseling, and information about disease progression.

In this study, we describe the pathogenicity of a near-exon
aberrant RNA (NEAR) splice variant, c.6480-35A>G in ABCA4,
which alters the BPS upstream of exon 48 at its most critical position.
We explore the effect of c.6480-35A>G using a midigene splice assay
and show the relevance of assessing branchpoint motif regions
in IRDs.

2 Materials and methods

2.1 Clinical evaluation

The participants were clinically examined by an experienced
ophthalmologist. The clinical diagnoses were based on
ophthalmological examinations, which included assessment of visual
acuity, detailed fundoscopic examination, fundus photography, fundus
autofluorescence (FAF), and optical coherence tomography (OCT), and
electrophysiological evaluations, which included full-field flash
electroretinography (ERG) and multifocal ERG, following the
International Society for Clinical Electrophysiology of Vision
standards (McCulloch et al., 2015).

All procedures performed in this study involving human
participants received approval from the ethical standards of the
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Ethics Committee for Drug Research in the Basque Country, Spain
(CEIm-E), and the Ethics Committee of Fundación Jiménez Díaz
University Hospital (CEIm-FJD) and were performed in accordance
with the 2013 Declaration of Helsinki or comparable ethical
standards. Prior to this study, informed consent was obtained
from all participants or their legal representatives.

2.2 Whole genome sequencing

A proband was diagnosed with STGD1 at the Donostia
University Hospital and without a previous genetic diagnosis. To
identify the genetic defect for this individual, whole genome
sequencing (WGS) was performed. DNA was provided by the
Basque Biobank (www.biobancovasco.org) and was processed
following standard operation procedures. WGS was performed by
BGI on a BGISeq-500 using a 2 × 150 base pairs (bp) paired-end
module, with a minimal median coverage per genome of 30-fold.
The Burrows–Wheeler Aligner V.0.7814 (Li and Durbin, 2009) was
used to map the WGS data to the human genome build GRCh38/
hg38.

Single-nucleotide variants (SNVs) and small indels (<50 bp)
were called using the Genome Analysis Toolkit HaplotypeCaller
(McKenna et al., 2010). The SNVs and indels were annotated using
an in-house developed pipeline based on Variant Effect Predictor
(VEP V.91) and GENCODE V.42lift38 basic gene annotations.
Annotations included chromosomal location and position, reads,
percent of variation, variant type (deletion, insertion, and
substitution), gene component (e.g., intron, exon, splice site, 5′-
UTR, 3′-UTR, and intragenic), protein effect (e.g., missense,
synonymous, frameshift, and in-frame), various in silico
prediction scores (e.g., CADD_PHRED, REVEL, and SpliceAI),
Gene Ontology description, gene and disease OMIM description,
gene regulation, expression data, and population frequency
databases (gnomAD and in-house variant frequency whole
exome sequencing/WGS data), among others.

Structural variants (SVs) were called using the Manta structural
variant caller (Chen et al., 2016), based on read-pair signals (split reads
and discordant read pairs) and read-depth signals (copy number
changes), and the default parameters were used. The copy number
variants (CNVs) were called using the Canvas Copy Number Variant
Caller (Roller et al., 2016), based on read-depth evidence, and the default
parameters were used. SVs and CNVs were annotated using an in-house
developed pipeline based on ANNOVAR and GENCODE
V.42lift38 basic gene annotations. Annotations included chromosomal
location and position, zygosity, type (e.g., deletion, duplication), gene
overlap and component (e.g., intronic, exonic, intragenic), gene and
disease OMIM description, gene boundary start and end, percentage
overlap, and frequency of population frequency databases
(1000 Genomes and in-house variant frequency SV data), among others.

2.3 Variant prioritization and selection

The WGS data were filtered and prioritized in two steps. First, an
automatized in-house pipeline in RStudio V.4.1.3 (RStudio Team, 2020)
was used, followed by amanual prioritization of the remaining variants.
The SNVs and indels, from coding and non-coding regions, were

filtered on the basis of a minor allele frequency of <1% in the gnomAD
database v.2.1 (Karczewski et al., 2020) and an in-house variant
frequency in the whole exome sequencing/WGS database from
Radboudumc, which included 708 control samples. Nonsense, stop-
or start-codon altering, frameshift, in-frame, missense, and (canonical)
splice site variants were selected for detailed interrogation. Missense
variants were prioritized based on score thresholds of different in silico
prediction tools: CADD_PHRED (range: 1–99; predicted
pathogenic ≥15) (Rentzsch et al., 2019) and REVEL (range: 0–1;
predicted pathogenic ≥0.3) (Ioannidis et al., 2016). All coding and
non-coding variants, were filtered on the splice, NEAR, splice, and
deep-intronic variants were filtered on the basis of the splice predicting
tool SpliceAI delta score (range: 0–1; predicted pathogenic ≥0.2)
(Jaganathan et al., 2019) for gain or loss of a SDS or SAS. The
Alamut™ Visual Plus 1.4 software was used as a visual aid to
identify the position in which SpliceAI delta scores were predicted
and characterize the genomic context of the variant, such as BPSs.
Coding SVs and CNVs were filtered based on a minor allele frequency
of <1% in the 1000 Genomes database (Zheng-Bradley et al., 2017).
Inversion and duplication events were only considered when disrupting
an IRD-associated gene (https://web.sph.uth.edu/RetNet/home.htm,
accessed 1/11/2022), i.e., when at least one breakpoint was located
within the respective gene. Compound heterozygous or homozygous
candidate variants (recessive) or heterozygous candidate variants
(dominant) that overlapped with IRD-associated genes were selected
for validation and segregation analysis.

2.4 Midigene splice assay

The interrogation of a putative causal splice site variant, c.6480-
35A>G in ABCA4 (GenBank: NM_000350.2), was carried out using a
midigene splice assay. A previously created wild-type midigene
construct (BA29) was used that contained ABCA4 exons 46–48 in
the pDONR201 vector (Invitrogen) using Gateway cloning
(Sangermano et al., 2018). The splice assay was performed in
accordance with the previously described protocol (Sangermano
et al., 2018; Corradi et al., 2022). In short, a construct harboring the
c.6480-35A>G variant was generated through site-directedmutagenesis
from the wild-type midigene construct followed by Gateway cloning.
Subsequently, the wild-type and mutant constructs were transfected
separately in HEK293T (Human Embryonic Kidney, ATCC# CRL-
3216) cells. Transfection of the mutant construct was performed in
duplicate using polyethylenimine (PEI) as a transfection reagent. After
48 h of incubation, RNA was collected using the NucleoSpin RNA kit
(MACHEREY-NAGEL, Düren, Germany), and the transcripts were
analyzed by reverse transcription polymerase chain reaction (RT-PCR)
with primers located in exons 46 and 48, using the iScript cDNA
Synthesis Kit (Bio-Rad, Hercules, CA, United States). RT-PCR was
performed as follows: 2 min at 94°C, followed by 35 cycles of 30 s at
94°C, 30 s at 58°C, and 5 min at 72°C, with a final extension step of
2 min at 72°C. The RT-PCR product mixture was separated on a 2%
agarose gel, and the product was verified by Sanger sequencing. Details
on the primers used for mutagenesis, RT-PCR, and Sanger sequencing
are presented in Supplementary Table S1. After agarose gel
electrophoresis, a semi-quantification analysis of the ratios between
different RNA products was carried out using the Fiji software
(Schindelin et al., 2012) as previously described (Corradi et al., 2022).
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3 Results

3.1 Clinical findings

Pedigrees of the two studied families of Spanish origin with
candidate variants in ABCA4 are shown in Figure 1. Both probands
presented with advanced STGD1 (Family A and B). An overview of the
clinical characteristics is provided in Figure 2 and Table 1.

Proband A:II-6 (Figure 2A) had an onset of visual complaints at
the age of 21 years and was diagnosed with STGD1, with a mean
visual acuity of 1.8 logMAR at the age of 67 years. The FAF images
showed patchy areas of hypo-autofluorescence in the posterior pole
with peripapillary sparing. OCT revealed atrophy of the outer retina
layers and a loss of photoreceptors in the foveal region. The fundus
images showed macular, posterior pole, and mid-peripheral
chorioretinal atrophy, without flecks and with bone spicules in

FIGURE 1
Pedigrees of two unrelated individuals analyzed in this study. Arrows indicate the proband in each family.

FIGURE 2
Ophthalmic features of compound heterozygous retinopathy cases carrying c.6480-35A>G. Fundus autofluorescence (upper panel), OCT (middle
panel), and color fundus (lower panel) for left (OS) and right (OD) eyes. (A) Proband A:II-6 carrying c.699_768+341del p.(Gln234Phefs*5) as the second
allele. (B) Proband B:II-1 carrying c.1958G>A p.(Arg653His) as the second allele, years, yrs.
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the mid-periphery. ERG of the proband at the age of 53 years
showed severely altered cone and rod responses (extinguished in
the right eye). The abnormal cone and rod responses progression to
a CRD diagnosis. Unfortunately, we had no access to any
ophthalmologic data nor was the DNA of the affected brother
available to confirm segregation.

Proband B:II-1 (Figure 2B) was diagnosed with STGD1 at the
age of 41 years, through FAF, OCT, and fundus examination
(Supplementary Figure S1). An ophthalmic examination at the
age of 48 years revealed a normal visual acuity (0 logMAR), with
severe constriction of the visual field, suggesting foveal sparing.
Multicolor and FAF images showed diffuse retinal atrophy and
hypo-autofluorescence involving the whole retinal posterior pole
and mid-periphery. The OCT OD image showed the foveolar area
with identifiable external retinal layers in less than the central
100 microns, and the OCT OS image showed severe disturbances
in the foveal photoreceptors line and the presence of cystic spaces.
ERG revealed moderate–severe alterations in cones and severe
alterations of rod responses, suggesting advanced STGD1.

3.2 Identification of c.6480-35A>G in ABCA4
by whole genome sequencing

To study potential candidate variants in IRD-associated genes,
we performed WGS in proband A:II-6. This case remained
genetically unexplained after previous genetic testing through a
gene panel containing 316 IRD-associated genes (Ezquerra-
Inchausti et al., 2018) and CGH arrays. In total, 5,055,143 SNVs/
indels were detected through WGS. From 151,997 variants with a
gnomAD AF ≤1% in the general population, 559 variants were
considered potentially pathogenic, as they met our inclusion criteria
as a nonsense, stop- or start-codon altering, frameshift variant, in-
frame insertion or deletion, potentially pathogenic missense, and
(canonical) splice site variants. From 559 variants, no homozygous
variants were identified, and 16 heterozygous SNVs/indels were
located in IRD-associated genes. Next, 10,536 SVs and 1,307 CNVs
were called by Manta and Canvas, respectively, of which 689 SVs
and 255 CNVs overlapped a coding region and had an AF ≤1% in
the 1000 Genomes database. From 93 SV/CNVs spanning an IRD-
associated gene, only one SV had at least one breakpoint within an
IRD-associated gene. Collectively for the SNV and CNV/SV data,
this yielded one single compound heterozygous situation in the
ABCA4 gene.

A novel intronic variant c.6480-35A>G (chr1(GRCh38):
g.93998145T>C) was observed, which was absent from the
control populations in gnomAD and located outside the SAS
consensus sequence, which implies a potential impact on
additional splicing elements like the BPS. Moreover, c.6480-
35A>G alters the recognition score for the branchpoint
algorithm, embedded in Alamut Visual Plus (range: 0–100) from
91.48 in the wild-type to zero in the mutant as a result of the removal
of the branchpoint “A” nucleotide from the motif (Figure 3A upper
panel). The c.6480-35A>G variant has little to no effect on splicing
of the canonical SAS, as shown by the Splice score prediction
algorithms. For the cryptic SAS at position c.6480-47, NNSPLICE
predicts a 4.9% higher score than the wild-type situation,
GeneSplicer predicts a 12.1% lower score, and no changes in theTA
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score values of MaxEntScan and SpliceSiteFinder-like. Nevertheless,
the SpliceAI algorithm predicts a significant strengthening of the
cryptic SAS in intron 47 (47 nt upstream of the canonical SAS) with
delta scores of 0.47 and a loss of the canonical SAS of exon 48, with a
delta score of 0.02 (Figure 3B lowel panel). The SV consisted of a
deletion of 411 bp, c.699_768+341del; p.(Gln234Phefs*5) in ABCA4
spanning 70 bp of exon 6 and 341 bp of intron 6 as was previously
identified in the Spanish population (Del Pozo-Valero et al., 2020).

The clinical/whole exome sequencing data from a Spanish
cohort (the Fundación Jiménez Díaz cohort) of 52 probands with
Stargardt disease and 26 probands with CRD, and one likely
pathogenic or pathogenic variant in ABCA4 were investigated for
the presence of c.6480-35A>G. This analysis revealed a second case,
proband B:II-1. This individual carried the c.1958G>A;
p.(Arg653His) variant, a known likely pathogenic variant.
Segregation analysis confirmed that in both families, the variants
were compound heterozygous as available unaffected relatives
carried one of these two variants in a heterozygous state.
Additional analysis of the whole exome sequencing data of
1,935 genetically unexplained cases did not reveal probands
carrying the variant of interest.

3.3 Midigene splice assay results

To assess pathogenicity of c.6480-35A>G, a midigene splice
assay was performed (Figure 4). HEK293T cells were transfected
either with a wild-type midigene construct spanning ABCA4 exon
46–48 or a mutant construct carrying c.6480-35A>G within the
same region.

After RNA isolation and RT-PCR analysis of the individual
midigenes, a predicted 378 nt fragment was detected corresponding
to the ABCA4 wild-type mRNA, for the wild-type. In addition, a
285 nt fragment showing exon 47 skipping of ABCA4 mRNA was
observed, resulting in an in-frame deletion of 31 amino acid residues
(p.(Ser2129_Lys2160delinsArg)). In the mutant midigenes, a 425 nt

fragment (~67% of the PCR product) was observed in addition to the
wild-type fragment (~30% of the PCR product) and a minimal
contribution of the exon 47 skipping event. Sanger sequencing
verified that the 425 nt fragment corresponded to the inclusion of
the last 47 nt of intron 47 at the 5′ start of exon 48, likely due to the
activation of a cryptic SAS at position c.6480-47, as predicted by
SpliceAI. This inclusion results in a frameshift that includes a
premature stop codon along with conventionally spliced mRNA
(p.[Phe2161Profs*3,=]).

4 Discussion

In this study, we identified a novel pathogenic branchpoint
variant, c.6480-35A>G, in ABCA4 using WGS and a subsequent
dedicated midigene splice assay. The variant abolishes the putative
branchpoint of intron 47, leading to a 47 nt retention of intron
47 due to the activation of a cryptic SAS. The severity of a variant can
be determined by the percentage of correct RNA remaining in the
midigene splice assay in HEK293T cells (Sangermano et al., 2018;
Cremers et al., 2020). The midigene splice assay revealed a
moderately severe (range: 20%–40% normal RNA, F.P.M.C.,
unpublished data) effect for c.6480-35A>G as 30.4% of the wild-
type fragment remained alongside the mutant fragments after semi-
quantification analysis. This knowledge is important for
consideration of disease presentation and prognosis as the
residual activity of the ABCA4 protein correlates with the
severity of ABCA4-associated retinopathy.

The genotype–phenotype correlations in our study cohort also
suggest the effect of variant c.6480-35A>G as moderately severe
(likely pathogenic based on the ACMG classification). Different
phenotypes were observed in the two probands carrying the variant
c.6480-35A>G. In particular, A:II-6, who carries the variant in trans
with c.699_768+341del; p.(Gln234Phefsp5), showed a more severe
phenotype associated with STGD1 and additional degeneration of
the cone and/or rod photoreceptor cells over time, leading to a

FIGURE 3
In silico prediction scores of the c.6480-35A>G variant. Schematic representation of the intron 47–exon 48 boundary sequence of ABCA4,
branchpoint, and splice prediction in the wild-type (WT; upper panel) and c.6480-35A>G (MUT; lower panel) situation. The branchpoint algorithm
predicts the abolishment of the branchpoint. SpliceAI predicts a 0.47 increase in the probability of activation of a cryptic acceptor site in intron 47 (47 nt
upstream of the canonical acceptor site).
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phenotype that more closely resembles CRD. The variant c.699_
768+341del is a null variant, is classified as severe and was previously
associated with both STGD1 and CRD (Del Pozo-Valero et al.,
2020). According to our data, individuals with STGD1 who have one
severe variant in combination with one moderately severe variant
may progress to CRD. Therefore, additional ophthalmologic
assessments, which include ERG, should be taken into account.
B:II-1, who carries c.6480-35A>G in trans with c.1958G>A;
p.(Arg653His), showed a milder phenotype associated to late-
onset STGD1. The variant c.1958G>A has been previously

associated with STGD1 (Jiang et al., 2016; Sung et al., 2019;
Garces et al., 2020; Ma et al., 2021). Moreover, it has been
previously classified to have a mild/moderate effect by Garces
et al. (2020) and a severe effect by Cornelis et al. (2022). The
phenotypic assessment of the proband B:II-1 suggests a
moderately severe effect of c.1958G>A.

Only recently, the first BPS variants associated with IRDs have
been identified in BBS1 (Fadaie et al., 2022) and ABCA4 (Corradi
et al., 2022), while the recognition of the BPS is crucial for the
formation of the lariat structure prior to intron excision from pre-

FIGURE 4
Overview of midigene assay results of variant c.6480-35A>G in HEK293T cells. (A) Schematic representation of wt midigene (BA29_WT) where the
position of the variant is indicated by an arrow. (B) Gel image of RT-PCR products of wild-type and mutant constructs. The rhodopsin exon 5 (RHO ex5)
RT-PCR was used as a control for transfection efficiency. Schematic representation of the three RT-PCR products identified in the gel. Wt midigene
reveals the expected 378 nt wt fragment (Fragment 2) and the exon 47 skipping fragment (Fragment 3). Mutant midigene reveals a partial intron
47 inclusion of 45 nt 5ʹ (Fragment 1) and 30.4% of the remaining wt fragment (Fragment 2). Fiji software was used for a semi-quantification of the
fragments in the mutant construct. (C) Sanger sequence analysis of the RT-PCR fragments. The chromatograms show the breakpoints in all fragments.
* Heteroduplex fragment.
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mRNA. Identification of pathogenic BPS variants may be hampered
by the challenges of recognition of the BPS sites due to its
localization and the conserved motif of BPSs. While the majority
of BPSs have been identified in a window of 18–44 nt upstream of
the SAS, BPSs located up to 400 nt away from the SAS have also been
found (Gooding et al., 2006). The limited number of experimentally
validated wild-type and mutated BPSs has posed challenges in
developing effective tools to predict the impact of variants
upstream of SASs. Alamut Visual Plus prediction tools such as
NNSPLICE indicated an increase of 4.9% for the cryptic SAS at
position c.6480-47, while GeneSplicer indicated a reduction of 12.1%
at position c.6480-47. However, the branchpoint prediction
incorporated in Alamut Visual Plus showed a predictive score for
the wild-type (91.5), which is completely abolished in the mutant.
Moreover, SpliceAI accurately predicted partial intron retention as
confirmed by our in vitro splice assay, which highlights that SpliceAI
proves to be effective in predicting the impact of BPS variants on
splicing.

To assess the effect of the variant, in vitro splice assays using
HEK293T cells have been previously shown to accurately
recapitulate splice defects affecting consensus splice site
sequences at the exon–intron junctions, as well as most
variants that generate new splice sites or enhance cryptic
splice sites in introns, leading to pseudo-exon inclusion, exon
elongation, or intron retention (Sangermano et al., 2018;
Bauwens et al., 2019; Valero et al., 2019; Westin et al., 2021;
Viering et al., 2022). The midigene assay in this study effectively
demonstrated that the c.6480-35A>G variant resulted in an
altered splicing pattern. However, we also observed exon
47 skipping in wild-type mRNA. It remains to be determined
whether this is a natural exon skipping event or an artifact due to
the lack of retina-specific factors in HEK293T cells and the
artificial nature of the midigene system. Therefore, the
analysis of retina mRNA, photoreceptor precursor cells, or
retinal organoids generated from induced pluripotent stem
cells derived from patient offer a more relevant context for
observing the variant’s effects (Vig et al., 2020; Mullin et al.,
2021).

To date, there are no FDA-approved therapies for ABCA4-
associated retinopathy, but several experimental treatments are
being studied. Antisense oligonucleotide (AON)–based
therapeutic strategies have shown effectiveness in modulating
splicing and obtaining correct transcripts in ABCA4 in several
studies (Albert et al., 2018; Garanto et al., 2019; Sangermano
et al., 2019; Tomkiewicz et al., 2021; Kaltak et al., 2023).
Nevertheless, the use of AONs to treat the effects of c.6480-
35A>G could potentially result in its binding to the region
upstream of the canonical SAS that may disrupt regulatory
motifs and the binding of auxiliary splice proteins.
Additionally, recent studies have shown the efficiency of the
CRISPR/Cas9 system in correcting variants in the ABCA4 gene
without off-target genomic alterations (De Angeli et al., 2022;
Siles et al., 2023). These are promising areas of research that
could potentially lead to effective treatments for ABCA4-
associated retinopathy, but more research is required to
determine their safety and effectiveness in clinical trials.

In conclusion, we have identified a novel variant in ABCA4,
c.6480-35A>G, which disrupts a predicted branchpoint, leading to

inclusion of 47 nt in the mRNA resulting in protein truncation. This
variant was observed in two unrelated individuals of Spanish
descent. We determined that c.6480-35A>G can be classified as
moderately severe. In combination with a deletion with a severe
effect, it underlies STGD1 progressing to CRD in proband A:II-6. In
proband B:II-1, this variant, in trans with a moderately severe
missense variant, led to late-onset STGD1. Furthermore, this
study emphasizes the significance of investigating non-coding
regions and conducting functional assays to establish a better
molecular diagnosis.
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