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Childhood medulloblastoma is a malignant form of brain tumor that is widely
classified into four subgroups based on molecular and genetic characteristics.
Accurate classification of these subgroups is crucial for appropriate treatment,
monitoring plans, and targeted therapies. However, misclassification between
groups 3 and 4 is common. To address this issue, an AI-based R package called
MBMethPred was developed based on DNA methylation and gene expression
profiles of 763 medulloblastoma samples to classify subgroups using machine
learning and neural networkmodels. The developed predictionmodels achieved a
classification accuracy of over 96% for subgroup classification by using 399 CpGs
as prediction biomarkers. We also assessed the prognostic relevance of prediction
biomarkers using survival analysis. Furthermore, we identified subgroup-specific
drivers of medulloblastoma using functional enrichment analysis, Shapley values,
and gene network analysis. In particular, the genes involved in the nervous system
development process have the potential to separate medulloblastoma subgroups
with 99% accuracy. Notably, our analysis identified 16 genes that were specifically
significant for subgroup classification, including EP300, CXCR4, WNT4, ZIC4,
MEIS1, SLC8A1, NFASC, ASCL2, KIF5C, SYNGAP1, SEMA4F, ROR1, DPYSL4,
ARTN, RTN4RL1, and TLX2. Our findings contribute to enhanced survival
outcomes for patients with medulloblastoma. Continued research and
validation efforts are needed to further refine and expand the utility of our
approach in other cancer types, advancing personalized medicine in pediatric
oncology.
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1 Introduction

Medulloblastoma (MB) is the most prevalent malignant form of
brain tumor among children, accounting for approximately 20% of
all central nervous system (CNS) malignancies. The pathological
features of MB are heterogeneous, and its emergence in the
cerebellum is attributed to genetic and epigenetic alterations that
disrupt critical pathways in cerebellar development (Northcott and
Dubuc, 2012). According to theWorld Health Organization (WHO)
classification of CNS tumors, the following four major subgroups
have been identified based on molecular and genetic characteristics:
wingless (WNT)-activated, sonic hedgehog (SHH)-activated, and
numerically designated non-WNT/non-SHH, representing Groups
3 and 4 (Louis et al., 2016; Northcott et al., 2019; Louis et al., 2021).
Accurate classification of childhood MB and its subclasses is critical
for selecting appropriate treatment, monitoring plans, preventing
tumor progression, and reducing mortality rates. In addition, the
accurate classification of MB subgroups plays a vital role in
developing targeted therapies for each specific subclass
(Ramaswamy et al., 2016; Yan et al., 2020).

Advancements in multi-omics, including genomics,
transcriptomics, epigenomics, and proteomics, have significantly
contributed to the reporting of the biological and clinical relevance
of subgroups in MB (Northcott and Dubuc, 2012; Northcott et al.,
2017; Capper et al., 2018; Sharma et al., 2019). Transcriptomic
analysis can identify medulloblastoma subgroups, but it has
limitations in capturing the microenvironment and impact of
modifications on gene expression, as well as dealing with
technical variations, noisy data, and incomplete transcriptome
coverage. DNA methylation profiling is more reliable in
accurately classifying medulloblastoma subgroups (Korshunov
et al., 2017; Gomez et al., 2018). Moreover, later studies use
integrative clustering methods, such as similarity network fusion,
to analyze multiple data types in conjunction for improved results.
However, these methods may not account for intratumor
heterogeneity, which can lead to misclassification of subgroups
(Northcott and Shih, 2012; Cavalli et al., 2017; Northcott et al.,
2017; Alharbi et al., 2020).

Recently, various other methods have been explored for the
accurate classification of medulloblastoma subgroups, including an
AI-based pipeline that uses histopathological and textural images
(Attallah and Zaghlool, 2022), radiomics-based machine learning
models (Karabacak et al., 2022), and one-class logistic regression
machine learning that integrates gene expression and DNA
methylation data (Lian et al., 2019). While featuring certain
limitations, such as smaller sample sizes, limited diverse datasets,
and the need for high-quality images, these methods hold great
potential for improving the diagnosis and treatment of
medulloblastoma. The current gold standard for accurate MB
subgroup classification is genome-wide transcriptional and
methylation arrays, with high accuracy for WNT and SHH
subgroups (Ramaswamy et al., 2016). On the other hand,
classification based on immunohistochemistry (IHC) and MRI
has also been utilized for subgrouping. However, the challenges
associated with standardization and lack of specificity in clinical
settings have limited its effectiveness (Ramaswamy et al., 2016; Yan
et al., 2020). The classification of Group 3 and Group 4 tumors is
particularly challenging due to their overlapping molecular features,

low incidence of recurring mutations, and recurrent chromosomal
alterations (Cavalli et al., 2017). To overcome this issue, integration
of multi-omics data (including DNA methylation, gene expression,
and clinical features) and application of machine learning
algorithms for the development of accurate classification models
are required (Hovestadt et al., 2020). Therefore, our study aims to
develop an artificial intelligence (AI)-based framework to classify
MB subgroups using publicly available DNA methylation data.
Furthermore, our framework integrates DNA methylation and
gene expression data. The relevance of our prediction biomarkers
was further examined using Gene Ontology analysis, survival
analysis, Shapley values, and network analysis.

2 Materials and methods

2.1 Data collection

We collected DNA methylation profiles of pediatric
medulloblastoma patients from multiple Gene Expression
Omnibus (GEO) datasets, including GSE85212 (N = 763),
GSE130051 (N = 1390), GSE90496 (N = 390), GSE54880 (N =
276), GSE109379 (N = 128), and GSE75153 (N = 91) (Table 1). All
the above-mentioned methylation data were profiled using the
Illumina Infinium HumanMethylation450 platform. In addition,
we also included gene expression data that matched the DNA
methylation data from the GEO series GSE85217 (N = 763)
profiled using Affymetrix Human Gene 1.1 ST Array.

2.2 Methylation data preprocessing

We downloaded raw data files in “idat” format for all the
aforementioned GEO datasets and assessed their quality using
the minfi Bioconductor package (Aryee et al., 2014a).
Subsequently, we conducted the following preprocessing procedure:

a) We assessed the signal quality using the detectionP function
from the Bioconductor minfi package. We then calculated the
p-values for each CpG probe across all samples. Probes with a
p-value >0.05 in over 5% of samples were removed from
subsequent analysis.

b) As all samples used in the current study were from the
cerebellum, we used the preprocessQuantile function from the
minfi package to normalize the data. We excluded CpG probes
related to sex chromosomes and probes associated with single
nucleotide polymorphisms (SNPs). On average, the total number
of remaining probes was 420,000.

c) The methylation beta values ranging between 0 and 1 were
calculated using the getBeta function from the Bioconductor
minfi package. Briefly, such values were obtained based on the
methylated and unmethylated probe intensities using formula
M/(M + U + 100) (Bibikova et al., 2011); M and U stand for fully
methylated and fully unmethylated intensities, respectively.

d) To deduce missing demographic information, including age and
sex, we employed the methyAge algorithm and the predictedSex
function from the Enmix (Xu et al., 2021) and minfi (Aryee et al.,
2014) packages, respectively. This allowed us to create a
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summarized demographic view of the data types used in the
current study.

2.3 Integration of DNAmethylation and gene
expression data using similarity network
fusion (SNF)

In our study, we utilized the similarity network fusion (SNF)
technique (Wang et al., 2014) proposed by Wang et al. to integrate
the DNA methylation dataset with gene expression data and to
further generate new labels. SNF allows for the identification of
similarity networks, enabling the creation of the most appropriate
labels for the methylation dataset using spectral clustering. To this
end, we combined 763 samples from the methylation dataset
(GSE85212) with the same number of samples from the gene
expression dataset (GSE85217). The data integration was
performed using the following parameters: 51 nearest neighbors,
sigma = 0.85, and 120 iterations. As our study focused on
medulloblastoma, which is characterized by the four subgroups,
we set the cluster number to four and used the result of spectral
clustering as the ground truth labels. We converted the cluster
numbers into subgroups by comparing the sample number from
the fused dataset and actual labels. Next, we evaluated the
performance of the fused network by calculating the normalized
mutual information (NMI) score, ranging from 0 to 1. AnNMI score
of 1 indicates that the fused network leads to the same labels as the
actual labels, while a score of 0 indicates the opposite.

2.4 Feature selection

Feature selection is a critical step in machine learning, as it
allows for the identification of the most relevant features, resulting in
decreased prediction model error rates and computational time. In
this study, we utilized a random forest model (RF) to train the top
5,000 most variable CpG probes obtained from Median Absolute
Deviation (MAD) through the mad function in the stats package. To

this end, we grew 300 trees using the RF model and determined the
importance of each probe across all subgroups using the varImp
function from the caret package.

2.5 Survival analysis

To evaluate the prognostic potential of prediction biomarkers,
we conducted an overall survival analysis by adapting the MethSurv
webtool pipeline (Modhukur et al., 2018; Modhukur, 2019). We
utilized a multivariate Cox proportional hazards model to associate
the methylation levels of each biomarker with patient survival using
age, sex and MB subgroups as covariates. Patients were divided into
high and lowmethylation groups based on a cut-off point such as the
mean, median, or upper and lower quantiles. The specific cut-off
values were determined based on models with high hazard ratios
(HRs), maximizing the difference in survival outcomes between the
groups. Next, we evaluated the goodness of fit of the Cox model
using both the likelihood-ratio (LR) test and the Wald test.

2.6 Class imbalance correction

To overcome the challenge posed by imbalanced sample sizes for
each MB subgroup in the methylome data, we implemented a
technique called synthetic minority oversampling (SMOTE)
(Chawla et al., 2002) using the DMwR package (Torgo, 2016).
SMOTE generates synthetic samples by interpolating between
existing minority class samples.

2.7 Data clustering

We utilized t-distributed stochastic neighbor embedding
(t-SNE), a non-linear dimensionality reduction technique using
the Rtsne package (Van Der Maaten and Hinton, 2008), to
reduce the high-dimensional space to the most informative
variables. The resulting cluster labels from the previous spectral

TABLE 1 Overview of datasets used in the current study from GEO Series: Testing, training, validation, and integration Dataset. Age and sex were predicted for
datasets with missing metadata information.

Dataset GEO accession Total
samples

Age (years)
(mean ± SD)

Gender (%
male)

Country References

Training/
Testing

GSE85212a 763 10.43 ± 9.43 65.65 Canada Cavalli et al. (2017)

Integration GSE85217,
GSE85212

763 10.43 ± 9.43 65.65 Canada Cavalli et al. (2017)

Validation GSE130051 1390 5.78 ± 10.53 66.14 Europe, North America and Asia-
Pacific

Sharma et al. (2019)

Validation GSE90496 390 36.15 ± 6.27 60.26 Germany Capper et al. (2018)

Validation GSE54880a 276 8.27 ± 4.75 63.04 Germany Hovestadt et al.
(2013)

Validation GSE109379 128 36.75 ± 6.84 60.47 Germany Capper et al. (2018)

Validation GSE75153 91 11.5 ± 18.39 59.78 Canada -

aSeries with original metadata.
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clustering step were applied to identify four subgroups in our
dataset, which were visualized in a three-dimensional (3D) plot
using the rgl package (Adler et al., 2003). To explore the distribution
of beta values, we used the ComplexHeatmap R package (Gu et al.,
2016) to generate heatmaps.

2.8 AI-based models to classify MB
subgroups

Our aim was to address the multiclassification challenge of
accurately classifying medulloblastoma (MB) subgroups by
leveraging the DNA methylation levels as a key feature. To do
this, we used a diverse set of machine learning algorithms. The six
algorithms employed were random forest (RF), naive Bayes (NB),
K-nearest neighbor (KNN), support vector machine (SVM),
extreme gradient boosting (XGB), and linear discriminant
analysis (LDA). Furthermore, to capture the intricate nonlinear
relationships, we incorporated an artificial neural network (ANN)
model. Since the ensemble-based algorithms RF and XGB combine
the predictions of multiple weak models to improve overall
performance, we included those models in our study. On the
other hand, NB operates as a probabilistic model, employing
Bayes’ theorem to calculate the likelihood of class membership
based on the independent features. KNN is classified as a
nonparametric supervised learning algorithm, meaning that it
does not make explicit assumptions about the underlying data
distribution and defers computations until prediction. SVM can
function either as a linear or as a nonlinear model, using a
hyperplane or kernel trick to separate classes in the feature space.
LDA is a linear model that projects data onto a lower-dimensional
space to maximize class separation, aiding classification (Ray, 2019).
The utilization of diverse machine learning algorithms in this
classification conundrum enables a comprehensive evaluation of
their efficacies, fostering heightened precision and resilience of the
classification model. Additionally, ensemble methods (RF and XGB)
can reduce variance and bias, while linear models (SVM and LDA)
provide interpretability of the results (Sheth et al., 2022). Moreover,
the ANN model is well known for its capability to learn complex
nonlinear relationships between features. Unlike linear models,
ANNs consist of interconnected nodes or neurons organized in
layers, enabling them to capture intricate patterns and interactions
in the data (Grossi and Buscema, 2007).

To train the abovementioned machine learning prediction
models, we split the data into the training and test sets with a
ratio of 0.8 for machine learning models using the sample. split
function from the caTools package. Furthermore, we performed
cross-validation in ten random folds (k = 10) using the createFolds
function from the caret package (Kuhn, 2008).

The RF model was trained using the Random Forest package
(Liaw and Wiener, 2002) with 300 trees and six as the maximum
number of nodes. The SVM and NB models were trained using the
e1071 package (Meyer, 2014), and a threshold of 0.8 was defined for
NB to convert probabilities into subgroups. The KNN model was
trained using the class package (Venables and Ripley, 2013) with
three nearest neighbors, and the LDA model was trained using the
lda function from the MASS package.

We implemented ANN models using the Keras package in R
with TensorFlow 2.10 (Abadi et al., 2016). The data were split into
training, testing, and validation sets with ratios of 0.6, 0.2, and 0.2,
respectively. The ANN model had four layers: input, two hidden
layers, and output, with neuron counts of 40, 30, 10, and 4. ‘Leaky
ReLU’ activation was used for the first three layers, and softmax was
used for the output layer.

To prevent overfitting, we applied regularization techniques,
including dropout (50%, 40%, and 10% rates), L2 regularization on
the second layer (regularizer_l2 = 0.009), and early stopping after
five patients. The model was optimized using the categorical cross-
entropy loss, stochastic gradient descent (SGD) optimizer,
200 epochs, batch size of 16, learning rate of 0.03, decay of
0.00006, momentum of 0.05, and Nesterov momentum.

To optimize the computational training time, we utilized the
mclapply function from the parallel package to run the machine
learning models in parallel on available CPUs. The training was
performed on an Ubuntu machine equipped with an Intel Core i5-
6200U processor and 16 GB RAM.

2.9 Performance evaluation

In our study, we evaluated the performance of each classification
model using standard metrics, which included accuracy, sensitivity,
specificity, precision, F1-score, and area under the curve (AUC) as
described by similar studies (Le et al., 2017; Le et al., 2022). Briefly,
the performance metrics were computed as follows:

Accuracy � TP + TN( )/ TP + TN + FP + FN( )
Sensitivity � TP/ TP + FN( )
Precision � TP/ TP + FP( )
F1score � 2 × TP( )/ 2 × TP + FP + FN( )

Here, true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN) indicate whether the model predicted
correctly or incorrectly. We also computed the AUC from the pROC
package (Robin et al., 2011). The AUC score, presents the degree of
separability between the classes.

2.10 Model visualization

To plot the training and testing results of a classifier, we designed
a custom R script. Initially, the dataset was partitioned into a
training set and a test set. Subsequently, principal component
analysis (PCA) was conducted on the training and testing sets
separately using the preProcess function from the caret package,
enabling the extraction of two primary components that captured
the most significant variability in the data. Following this, the
training and test sets were transformed using the derived PCA
outcomes. A grid structure was then constructed, encompassing
values pertaining to the two principal components. Utilizing the
trained classifier, labels are predicted for the grid set. Moreover, a
color mapping scheme was employed to associate colors with the
predicted and actual subgroups, enhancing the interpretability of the
resulting plot.
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2.11 Gene set enrichment analysis

To investigate the molecular function of the predicted CpG
biomarkers and their relevance to the MB subgroups, we
performed gene enrichment analysis. To annotate the CpGs
with the genes, we utilized the minfi and
IlluminaHumanMethylation450kanno.ilmn12.hg19 packages.
The resulting genes were used as the input for the
gprofiler2 package (Kolberg et al., 2020) to identify their gene
ontology (GO) terms in the biological process (BP), KEGG, and
Reactome pathways. To determine statistical significance, we used
the false discovery rate (FDR) with a threshold of p-value <0.05.

2.12 Explaining the effect of each feature on
the model output

To interpret the contribution of each identified biomarker to theMB
subgroup prediction, we used the Shapley value, which is a local
interpretation method in IML (Interpretable Machine Learning). Since
the machine learning models employed in this study cannot directly
elucidate the relationship between CpG probes and their target class, we
employed the Shapley value to provide human-understandable
explanations of the models’ results. The Shapley value is computed as
the average marginal contribution of a CpG probe or gene beta value
across all possible coalitions. For a single prediction of eachMB subgroup,
it randomly changed the value of each beta value from zero to the actual
value of the sample and calculated the prediction for all patterns of
changes due to the addition of each CpG. We used the iml package
(Molnar, 2018) to calculate the Shapley values. To perform the Shapley
analysis, we first trained an ANNmodel with all converted gene symbols
from the functional enrichment step and the respective parameters as
described in the iml package. Following the prediction on the training set,
we used the prediction variable as input to the Shapley function to explain
four samples of the training set belonging to each subgroup.

2.13 Network analysis

In this study, we utilized the igraph package (Csardi and Nepusz,
2006) to perform gene network analysis and investigate the relationship
between the predicted genes. To identify clusters of genes that are highly
correlated, we computed the Pearson correlation coefficient between
each pair of genes and generated an adjacency matrix. We filtered out
any edges that formed loops or had multiple connections, as well as
edges with a Pearson correlation value less than or equal to 0.6 or genes
with fewer than two adjacent edges. Additionally, we scaled the size of
each gene according to its methylation values by a factor of 10 to
enhance the readability of the network. We then utilized Prim’s
algorithm to convert the graph adjacency object into a minimum
spanning tree. Finally, we identified highly correlated gene clusters
using a function called cluster_edge_betweenness.

3 Results

In this study, we used a combination of data integration and AI-
based techniques to effectively classify subgroups of

medulloblastoma. The methodology used in this study is
presented in Figure 1 and involves the following six main steps:

(i) Collection of data from Gene Expression Omnibus (GEO),
followed by pre-processing and processing steps;

(ii) Implementation of similarity network fusion (SNF) to establish
new class labels by integrating DNA methylation and gene
expression data;

(iii) Median Absolute Deviation (MAD) analysis was applied to
select informative prediction biomarkers, followed by
random forest (RF) analysis for feature selection.
Furthermore, survival analysis was performed based on
the prediction biomarkers.

(iv) Construction of AI-based prediction models following
Synthetic Minority Oversampling Technique (SMOTE)
application;

(v) Evaluation of the models using multiple parameters, including
accuracy, sensitivity, precision, AUC, and F1-score;

(vi) Gene Ontology (GO) analysis was used to functionally
annotate the selected genes.

We further conducted gene network analysis and interpreted the
classifier decision by utilizing Shapley values. The subsequent
sections provide detailed results from each of the steps
mentioned above.

3.1 Integration of gene expression and
methylation data through similarity network
fusion

In this study, using similarity network fusion (SNF), we
identified four distinct clusters in both the gene expression and
methylation datasets (Supplementary Figures S1A, B). We then
fused the resulting networks to obtain a comprehensive view of
the data (Supplementary Figures S1C). The spectral clustering
results on the fused network revealed two clusters (belonging to
groups 3 and 4; Supplementary Figures S1C) with slightly different
samples from the actual clusters (GSE85212) with a high NMI score
of 0.926. Using the class labels obtained from SNF and
implementing SMOTE, we addressed class imbalance, particularly
in the minority subgroup (WNT = 70), by increasing the number of
WNT samples to 210, resulting in a total of 910 samples
(Supplementary Figures S2). Additionally, for the selection of the
top 399 probes as features for prediction, we employed the random
forest feature selection method among the 5,000 most variable
probes identified using the median absolute deviation (MAD)
method. This two-step process allowed us to first identify the
5,000 most variable probes based on MAD and then further
reduce them to the top 399 probes using random forest feature
selection (Supplementary Data S1).

The t-SNE visualization revealed (Figure 2A) only a minor
overlap between groups 3 and 4; additionally, only one sample
from theWNT cluster appeared in the SHH subgroup. Furthermore,
we generated a heatmap of the CpG biomarkers to examine the
distribution of methylation beta values across all subgroups
(Figure 2B), in which a distinct methylation pattern among
subgroups is notable.
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3.2 Performance evaluation of the
prediction models for medulloblastoma
subgroup classification based on DNA
methylation profiles

In our study, we employed six robust machine-learning
algorithms, namely, SVM, KNN, NB, RF, XGB, and LDA, along
with an artificial neural network, to predict medulloblastoma
subgroups based on DNA methylation samples using
399 predictive biomarkers. As a result of the fusion process, a
subset of samples (n = 16) had their labels switched
(Supplementary Table S1). These new labels predominantly
belonged to the Group 3 and Group 4 subgroups, accounting for
14 out of the 16 samples. These switched labels were utilized
specifically for training the model. However, during the validation
process, the confusionmatrices were constructed based on the original
labels from validation sets and predicted labels. For testing and
training, we utilized the dataset from GSE85212, while multiple
datasets were used for validation. Detailed information regarding
the testing/training and validation datasets can be found in Table 1.

The overall performance of the classifiers based on the validation
set (GSE90496) is presented in Table 2. Briefly, the ANN model
achieved the highest accuracy of 99.25%, followed by SVM with
99.50% accuracy. However, the KNN, NB, RF, XGB, and LDA
models also achieved high accuracy ranging from 97.80% to 99.35%.

Since the focus of our study was the classification of MB
subgroups, we evaluated the performance of each model,
considering the different MB subgroups, across multiple

validation datasets. Notably, all tested classifiers exhibited
exceptional performance on the GSE90496 validation set,
exceeding 0.92 in accuracy, precision, sensitivity, F1-Score,
specificity, and AUC (Table 3; Figure 3A; Supplementary Figure
S3). We specifically monitored the performance of the prediction
models on the challenging Group 3 and Group 4 MB subgroups. The
SVM, RF, and ANN models achieved excellent performance, with
accuracy, precision, sensitivity, F1-Score, specificity, and AUC
exceeding 0.96 (Table 3; Supplementary Table S2). Other models,
including KNN, NB, LDA, and XGB, also demonstrated comparable
performance, with accuracy, precision, sensitivity, F1-Score,
specificity, and AUC ranging from 0.88 to 0.99 (Table 3;
Supplementary Table S2; Supplementary Figure S3).

Furthermore, we visualized the ability of the classifiers based on
the training and test sets, as shown in Figures 3B,C, using Principal
Component Analysis (PCA) based on XGB as the reference model.
The PCA plot revealed a clear separation between MB subgroups.
Thus, the classifiers successfully captured the underlying variability
and discriminating features among the different MB subgroups.

Across the different validation sets, our models consistently
displayed higher performance. For example, on the
GSE130051 dataset, the NB model emerged as a top-performing
classifier with accuracy exceeding 0.96, while other models achieved
accuracy ranging from 0.91 to 0.95 (Supplementary Tables S3, S4).
The ANN model demonstrated robust performance on the
GSE54880 dataset, achieving an accuracy of 0.97 with minimal
misclassifications (Supplementary Tables S5, S6). On the
GSE109379 dataset, the ANN and RF models performed

FIGURE 1
Schematic representation of the workflow presented in this study. The workflow includes the following steps: (1) preprocessing and integration of
methylome and gene expression data; (2) similarity network fusion (SNF) to establish the new class labels; (3) MAD analysis for selecting informative
prediction biomarkers and feature selection and survival analysis; (4) applying SMOTE for correction of class imbalance and construction of AI-based
prediction models; (5) evaluation of the prediction models; and (6) Gene Ontology (GO) analysis for functional annotation of the prediction genes,
where gene network analysis and Shapley values are used to understand the classifier results.
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exceptionally well, achieving accuracy above 0.97, while the SVM,
XGBoost, and KNN models also exhibited favorable performance,
albeit with slightly lower precision and sensitivity for Groups 3 and 4

(Supplementary Tables S7, S8). Finally, for the GSE75153 dataset, all
models performed comparably well, with accuracy above 0.97
(Supplementary Tables S9, S10).

FIGURE 2
Visualization of the training data. (A)Distributed stochastic neighbor embedding (t-SNE) plot shows the presence of four distinct subgroups (colored
dots) of medulloblastoma in the dataset. (B) A heatmap representation of the 910 samples depicting each subgroup is shown. The colors in the heatmap
represent the levels of DNAmethylation, with red indicating higher methylation levels and blue indicating lower methylation levels. The CpG biomarkers
revealed a unique methylation pattern in groups 3 and 4, while the WNT and SHH subgroups displayed a distinct pattern.

TABLE 2 Overall performance metrics for each model using GSE90496 as a validation set.

Model Accuracy Precision Sensitivity F1.Score Specificity AUC

RF 0.9935 ± 0.005 0.98675 ± 0.013 0.988 ± 0.01 0.9875 ± 0.011 0.9955 ± 0.004 0.98 ± 0

SVM 0.995 ± 0.004 0.98875 ± 0.013 0.99125 ± 0.008 0.98975 ± 0.009 0.9965 ± 0.003 0.986 ± 0

XGB 0.9895 ± 0.005 0.979 ± 0.02 0.96875 ± 0.023 0.97325 ± 0.014 0.993 ± 0.005 0.973 ± 0

NB 0.9935 ± 0.005 0.98575 ± 0.017 0.9895 ± 0.01 0.9875 ± 0.011 0.99575 ± 0.004 0.983 ± 0

LDA 0.978 ± 0.017 0.95875 ± 0.032 0.95625 ± 0.04 0.9575 ± 0.036 0.9845 ± 0.012 0.928 ± 0

KNN 0.9885 ± 0.009 0.97775 ± 0.019 0.9765 ± 0.022 0.97725 ± 0.02 0.99175 ± 0.007 0.961 ± 0

ANN 0.9925 ± 0.078 0.98475 ± 0.17 0.98475 ± 0.17 0.98475 ± 0.17 0.9945 ± 0.058 0.995 ± 0
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In summary, our analysis revealed slight variability in the
performance of different prediction models across a diverse range
of validation sets, with an average accuracy exceeding 0.96.

3.3 Biological and clinical significance of the
prediction biomarkers

We performed an overall survival analysis on 399 prediction
biomarkers after adjusting for the covariates age, sex and sugroups
using the methodology adapted from MethSurv (Modhukur et al.,
2018; Modhukur, 2019). We found that all 399 prediction
biomarkers showed a significant association with patient survival
(log rank test p-value <0.05). The top biomarkers with the lowest p

values included CBFA2T3, PRDM16, TRIM65, KIAA0182, SEMA4F,
OR6N1, RPTOR, KIAA0415, SAG, and TTC15 (Figure 4;
Supplementary Figure S4, and Supplementary Data S2).

To further gain biological insights into the prediction
biomarkers, we performed functional enrichment analysis. We
annotated each probe with its gene symbol and excluded CpGs
without gene annotations. For CpGs with duplicated gene names, we
calculated the median value. The latter resulted in a total of
239 unique gene symbols, which were used as input for
gprofiler2 (Peterson et al., 2020). Our analysis identified the
20 most significant biological processes (adjusted p-value <0.05)
in which the selected genes were enriched (Supplementary Figure
S5). Some of these biological processes included nervous system
development, neurogenesis, neuron projection development, and

TABLE 3 Performance metrics of each model for MB subgroup classification using GSE90496 as a validation set.

Subgroup Accuracy Precision Sensitivity F1-score Specificity AUC Model

Group3 0.987 0.962 0.974 0.968 0.99 0.98 RF

Group4 0.987 0.985 0.978 0.982 0.992 0.98

SHH 1 1 1 1 1 0.98

WNT 1 1 1 1 1 0.98

Group3 0.99 0.962 0.987 0.974 0.99 0.986 SVM

Group4 0.99 0.993 0.978 0.985 0.996 0.986

SHH 1 1 1 1 1 0.986

WNT 1 1 1 1 1 0.986

Group3 0.982 0.938 0.974 0.955 0.984 0.973 XGB

Group4 0.987 0.985 0.978 0.982 0.992 0.973

SHH 0.997 0.993 1 0.996 0.996 0.973

WNT 0.992 1 0.923 0.96 1 0.973

Group3 0.987 0.95 0.987 0.968 0.987 0.983 NB

Group4 0.987 0.993 0.971 0.982 0.996 0.983

SHH 1 1 1 1 1 0.983

WNT 1 1 1 1 1 0.983

Group3 0.959 0.907 0.883 0.895 0.978 0.928 LDA

Group4 0.956 0.935 0.942 0.939 0.964 0.928

SHH 0.997 0.993 1 0.996 0.996 0.928

WNT 1 1 1 1 1 0.928

Group3 0.977 0.947 0.935 0.941 0.987 0.961 KNN

Group4 0.977 0.964 0.971 0.968 0.98 0.961

SHH 1 1 1 1 1 0.961

WNT 1 1 1 1 1 0.961

Group3 0.985 0.961 0.961 0.961 0.99 0.995 ANN

Group4 0.985 0.978 0.978 0.978 0.988 0.995

SHH 1 1 1 1 1 0.995

WNT 1 1 1 1 1 0.995
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differentiation. To evaluate the effectiveness of the enriched genes,
we employed a neural network as our optimal model to analyze
genes associated with the top 20 biological processes. The neural
network consisted of five layers with 50, 30, 20, 10, and 4 neurons
and a learning rate of 0.03. We trained each gene set ten times and
computed the average performance results. Although all models
produced similar outcomes with AUC scores above 0.9, the nervous
system development process consisting of 49 genes had the highest
mean AUC score of 0.995 (Supplementary Figure S6; Supplementary
Table S11).

3.4 Explaining feature effects on model
output through Shapley values

To investigate the individual impact of the prediction genes (N =
49) on the model performance, we computed the Shapley values for
the trained neural network model. Each gene with its corresponding
beta values and their contribution in terms of Shapley values on the
ANN model across different subgroups are shown in Figure 5.
Briefly, maroon color indicates a positive effect, and blue denotes
an adverse effect.

For example, we found that ZIC4’s hypermethylation state (beta
value = 0.882) has a highly positive impact on the model’s ability to
predict Group 3 but has a negative effect on the WNT subgroup. At
the same time, ZIC4 has a low negative impact on the model’s ability
to forecast SHH and Group 4 subgroups. Additionally, we identified
other genes, such as ARTN and SLC8A1, which have a positive
contribution to the model’s ability to predict Group 3, with beta
values equal to 0.847 and 0.327, respectively.

Furthermore, we observed that higher methylation levels of the
CXCR4 and MEIS1 genes and lower methylation levels of NFASC
had a positive impact on the ANN model’s ability to predict the
Group 4 subgroup. In the WNT subgroup, ASCL2, SYNGAP1,
RTNR4L, and NFASC gene hypermethylation status, as well as
KIDINS220 and S100A10 gene hypomethylation, had a highly
positive impact on prediction. For the SHH subgroup, we found
that higher methylation levels of SLC8A1 and lower methylation
levels of ROR1, CXCR4, and RTN4RL1 had a high contribution to
the prediction.

3.5 Network analysis

We conducted network analysis using the methylation beta
values of 49 genes enriched in the nervous system development
process identified based on the functional enrichment analysis
(Supplementary Figure S5; Supplementary Table S11). The
resulting network revealed 41 genes with a Pearson correlation
coefficient greater than 0.6, distributed among six distinct clusters
(Figure 6A). To evaluate the classification ability of each cluster’s
genes, we trained artificial neural network (ANN) models for each
cluster. However, upon assessing the performance of the individual
models on the test data (Figure 7A), we observed that some models

FIGURE 3
Machine learning model’s performance in predicting
medulloblastoma subgroups: The result for validation cohort
GSE90496 and XGBoost model results. (A) The performance of the
top threemodels’ on the validation cohort GSE90496 (n = 390) is
displayed (see Supplementary Figure S3 for other models). The X-axis
represents various metrics, including accuracy, precision, sensitivity,
F1-Score, specificity, and AUC. Eachmetric is represented by a bar plot
using different colors, indicating the corresponding percentage.
These metrics were calculated separately for each subgroup,
highlighting the accurate classification ofWNT and SHH subgroups, as
well as some misclassifications within Groups 3 and 4. (B) The training
result for the XGBoost model is shown. The distinct decision
boundaries for each subgroup are denoted by various colors. (C) The
testing result for the XGBoost model performance is displayed. Similar
to the training results, distinct decision boundaries are depicted for
each subgroup using different colors.
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exhibited poor performance for certain subgroups. To address this
limitation, we devised a unique strategy to enhance the model’s
performance. Specifically, we incorporated genes from other clusters
into each model until we achieved improved performance
(Figure 7B). This iterative process allowed us to leverage the
collective predictive power of multiple gene clusters, ultimately
leading to enhanced classification accuracy. The performance of
each model on the test data is shown in Figure 7A, where all models
except for cluster 3 exhibited poor performance. To improve the
model’s performance, we gradually added genes from other clusters
to each model until the performance improved (Figure 7B).
Accordingly, we confirmed the significance of ARTN and WNT4
for Group 3 and WNT subgroups, respectively. These genes suggest
possible associations with their respective subgroups, highlighting
their importance in driving molecular characteristics and prognostic
outcomes. Building upon these findings, we integrated ARTN,
WNT4, EP300 and ROR1 into the gene list of cluster 4, resulting
in improved performance for cluster 1.

Furthermore, by adapting a similar procedure, we intended to
improve cluster 5, which initially exhibited the lowest performance.
To achieve this, we incorporated the additional genes RTN4RL1,
TLX2, ARTN, WNT4, EP300, and ROR1 into the existing gene list
from cluster 5. Additionally, cluster 6 was improved by using the same

gene list as cluster 5. However, for cluster 3, we included SEMA4F,
SLC8A1, CXCR4, SYNGAP1, NFASC, andMEIS1 in the existing list of
significant genes, thereby improving its predictive power.

Figure 6B displays the beta values associated with the predicted
prognostic genes. Furthermore, Table 4 provides a comprehensive
list of these significant genes, highlighting their functional
annotations and their relevance to each molecular subgroup.

4 Discussion

Accurate classification of molecular subgroups in
medulloblastoma (MB) is vital for initiating appropriate
treatment plans. In our study, we utilized a comprehensive
approach integrating data and AI-based methods and utilized
synthetic sample generation using SMOTE to address limited
data and maintain class balance. Our developed prediction
framework, MBMethPred, was designed explicitly for
medulloblastoma subgroup classification using DNA methylation
data. MBMethpred incorporates multiple AI models to enhance
accuracy, processing speed, ease of use, and user-friendliness.

Compared to the molecular-based MB subgroup classification
methods (Schwalbe et al., 2013; 2017; Korshunov et al., 2017; Capper

FIGURE 4
Kaplan–Meier plots depicting the effect of the top six prediction biomarkers (log-rank test <0.05). Methylation groups are dichotomized by higher
and lowermethylation groups based on a cut-off point such as themean, median, or upper and lower quantiles. The X-axis denotes survival time in years,
and the Y-axis denotes the probability of patient survival.
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et al., 2018; Gomez et al., 2018; Korshunov et al., 2019; Sharma et al.,
2019; Rathi et al., 2020) (Supplementary Table S12), MBMethPred
demonstrates several distinctive characteristics and advantages.
Previous studies (Schwalbe et al., 2013; Korshunov et al., 2017;
Schwalbe et al., 2017; Capper et al., 2018; Gomez et al., 2018;
Korshunov et al., 2019; Sharma et al., 2019) employed a single
classifier, in contrast to MBMethPred, which applies multiple
classifiers. While MBMethPred achieves an AUC score above
0.99, the primary focus of Capper et al.’s (2018) study was the
classification of central nervous system tumors, rather than focusing
on medulloblastoma. Furthermore, it lacked an accuracy score
specifically for medulloblastoma. Similarly, Sharma et al.
exclusively concentrated on the classification of Groups 3 and
4 subgroups. Additionally, both Korshunov et al., 2017 and

Korshunov et al. (2019) utilized smaller sample sizes (N =
239 and N = 78, respectively) compared to MBMethPred’s
sample size of 910 samples. Likewise, Korshunov et al. (2019)
solely focused on classifying the WNT subgroup. Moreover,
Rathi et al. (2020) and Gomez et al. (2018) reported accuracies
ranging between 85% and 100% using a single classifier, which is
lower than the accuracy achieved by MBMethPred with multiple
classifiers. In contrast, Attallah and Zaghlool (2022) utilized
histopathology images and achieved 100% accuracy (Attallah and
Zaghlool, 2022). However, there is limited availability of
histopathological images and a lack of precision (Kim et al.,
2022). This approach may restrict its widespread applicability. In
this context, MBMethPred remains an accessible and valuable
alternative for medulloblastoma subgroup classification

FIGURE 5
The contribution of each gene in predicting every MB subgroup. Each plot title corresponds to an associated group where we computed Shapley
values. The Y-axis represents genes with their beta values, while the X-axis demonstrates the genes’ contribution to the ANN model based on the phi
value.
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complemented by its robust performance and comprehensive
evaluation in comparison to the existing methods.

Our study comprehensively evaluated the models’ effectiveness
in classifying MB subgroups using multiple validation datasets.
Although slight variations were observed in the performance of
prediction models across different datasets, the overall high
performance observed in our study strengthens the reliability and
generalizability of the models. Thus, incorporating multiple
validation sets and prediction models is essential for robust
evaluation of model reliability.

Gene-specific effects on model prediction were identified
using Shapley values, offering insights into the contributions of

specific genes to subgroup classification. Additionally, survival
analysis identified significant associations between the identified
biomarkers and survival outcomes in MB patients. Moreover, the
biomarkers with significant survival outcomes correlated with
previously reported oncogenes. For example, the CBFA complex,
which includes CBFA2T3 (Hendrikse et al., 2022; Gorini et al.,
2023), is suggested to play a critical role in tumor development
through its interactions with epigenetic modifiers, contributing to
the pathogenesis of medulloblastoma. Similarly, the study by
Menyhárt et al. (2019) demonstrated epigenetic changes in the
RPTOR gene, along with other identified biomarkers, in
classifying non-WNT/non-SHH medulloblastomas. These

FIGURE 6
Gene network analysis and heatmap plot of the beta values associated with the prognostic genes. (A) Gene network representation of 41 out of
49 genes enriched in the nervous system development process, showing the correlation between genes belonging to six distinct clusters. The size of the
vertices represents the beta values of the genes with a Pearson correlation coefficient above 0.6. (B) Methylation statuses (hypo in blue, hyper in red) of
significant genes for the precise prediction of MB subgroups.

Frontiers in Genetics frontiersin.org12

Sharif Rahmani et al. 10.3389/fgene.2023.1233657

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1233657


findings suggest that the identified biomarkers hold the potential
for predicting patient prognosis and guiding treatment decisions.

Our functional enrichment analysis highlighted the association
between the model performance and biological relevance. For
instance, EP300 encodes a histone acetyltransferase protein that
activates the expression of genes critical for the development and
progression of medulloblastoma (Northcott et al., 2017). CXCR4 has
been suggested to be the oncogenic driver of MB (Amarante et al.,
2018). In addition, SYNGAP1 is a GTPase-activating protein that is

known to cause cognitive deficits by inducing alterations in
glutamatergic neurotransmission (Berryer et al., 2016). Finally,
WNT4 is a member of the Wnt signaling pathway and has been
associated with the pathogenesis of WNT and SHH subgroups
(Taylor et al., 2012). Thus, the functional insights gained from
our study may contribute to identifying potential therapeutic targets
for each medulloblastoma subgroup.

Finally, network analysis considered correlations among genes
enriched in nervous system development and identified distinct

FIGURE 7
Performance evaluation of ANN models for predicting MB subgroups. (A) Prediction outcomes of MB subgroups using genes within each cluster
derived from the network analysis. (B) Performance improvement of the ANN model by including additional genes in the existing gene list within each
cluster, resulting in the creation of a new cluster designated by the prime symbol.
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clusters with potential relevance to medulloblastoma. Moreover,
training a separate artificial neural network model for each cluster
improved the classification accuracy by gradually incorporating
genes from different clusters. Thus, our integrative approach
enhances the understanding of the complex molecular
heterogeneity underlying medulloblastoma and provides a basis
for further research.

It is important to acknowledge some limitations of our study.
Although we utilized gene expression profiles for data integration
and further implemented SNF to define the new labels, our
prediction models exclusively rely on the DNA methylation
datasets. However, it is worth highlighting that the availability
and accessibility of additional datasets, especially those including
diverse patient populations, are currently limited, potentially
impacting the generalizability of our findings. Therefore, further
research in this direction is highly warranted to explore the clinical
applicability of our study.

In conclusion, we developed a robust classifier for
medulloblastoma subgroup classification. Moreover, our
functional enrichment analysis offers valuable insights into the
molecular pathogenesis of medulloblastoma. Survival analysis
enables the evaluation of prognostic relevance for individual
biomarkers. By identifying key genes in medulloblastoma
subgroup classification and their functional relevance, our study
provides insights into disease stratification. While our approach has
the potential to be adapted for subgroup prediction in other cancer
types, it requires careful validation and adaptation to specific
datasets to ensure its reliability. Despite the underlying
limitations, our findings contribute to the advancement of

medulloblastoma research, with the potential to improve patient
outcomes.
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TABLE 4 Predicted key prognostic genes associated with molecular subgroups of medulloblastoma.

Gene name SHH WNT Group 3 Group 4 Function

EP300 ✓ Histone acetyltransferase; regulates cell proliferation and differentiation

CXCR4 ✓ ✓ ✓ Chemokine receptor with high expression in breast cancer cells

WNT4 ✓ Involved in oncogenesis and developmental processes, such as embryogenesis

ZIC4 ✓ Transcription factor; involved in cerebellum development

MEIS1 ✓ Plays a crucial role in normal development

SLC8A1 ✓ ✓ ✓ Sodium-calcium exchanger

ASCL2 ✓ Transcription factor; involved in the determination of the neuronal precursors in the peripheral nervous
system and the central nervous system (CNS)

NFASC ✓ ✓ Cell adhesion

KIF5C ✓ ✓ Transport of cargo in CNS

SYNGAP1 ✓ ✓ ✓ Ras GTPase; regulates synaptic plasticity and neuronal homeostasis

SEMA4F ✓ Neural development

ROR1 ✓ ✓ ✓ ✓ Neurite growth in CNS

DPYSL4 ✓ ✓ Development of the enteric nervous system (in mouse)

ARTN ✓ Supports the survival of several peripheral neuron populations and at least one population of dopaminergic
CNS neurons

RTN4RL1 ✓ ✓ ✓ Negative regulation of axon regeneration

TLX2 ✓ ✓ Transcription factor; involved in development of the enteric nervous system
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