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The phytomicrobiome:
solving plant stress tolerance
under climate change

Abdul Latif Khan*

Department of Engineering Technology, University of Houston, Houston, TX, United States
With extraordinary global climate changes, increased episodes of extreme

conditions result in continuous but complex interaction of environmental

variables with plant life. Exploring natural phytomicrobiome species can

provide a crucial resource of beneficial microbes that can improve plant

growth and productivity through nutrient uptake, secondary metabolite

production, and resistance against pathogenicity and abiotic stresses. The

phytomicrobiome composition, diversity, and function strongly depend on the

plant’s genotype and climatic conditions. Currently, most studies have focused

on elucidating microbial community abundance and diversity in the

phytomicrobiome, covering bacterial communities. However, least is known

about understanding the holistic phytomicrobiome composition and how they

interact and function in stress conditions. This review identifies several gaps and

essential questions that could enhance understanding of the complex interaction

of microbiome, plant, and climate change. Utilizing eco-friendly approaches of

naturally occurring synthetic microbial communities that enhance plant stress

tolerance and leave fewer carbon-foot prints has been emphasized. However,

understanding the mechanisms involved in stress signaling and responses by

phytomicrobiome species under spatial and temporal climate changes is

extremely important. Furthermore, the bacterial and fungal biome have been

studied extensively, but the holistic interactome with archaea, viruses,

oomycetes, protozoa, algae, and nematodes has seldom been studied. The

inter-kingdom diversity, function, and potential role in improving

environmental stress responses of plants are considerably important. In

addition, much remains to be understood across organismal and ecosystem-

level responses under dynamic and complex climate change conditions.
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Introduction

According to the Intergovernmental Panel on Climate Change (IPCC; https://

www.ipcc.ch/), the accumulation of atmospheric CO2 entraps solar radiations, which

can then be emitted back to the earth’s surface – increasing the global temperature. This, in

turn, leads to the development of a pattern of climate modification termed the Global
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Climate Change (Abbass et al., 2022). Climate changes due to

greenhouse gas (GHG) emissions have influenced the soil

systems, natural plant productivity, and health (Koneswaran and

Nierenberg, 2008). The increased atmospheric CO2 is due to

extensive industrialization, urbanization, and natural resource use

patterns, drastically creating an imbalanced environmental system

(Zandalinas et al., 2021). CO2 levels have risen by 40% (~414.72

parts per million concentrations) – higher than in the pre-industrial

era (Dlugokencky et al., 2018). These changes have influenced

global rainfall, temperature patterns, and variable soil chemistry,

considerably impacting the associated natural bioresources (plants

and microbes) across terrestrial ecosystems. Climate-based changes,

such as increasing or decreasing temperature and lack or over-

abundance of water, can change the soil nutrients and essential

chemicals, creating an imbalance in the ecosystem’s cycling system

(Van Den Heuvel et al., 2020). It has been estimated that an increase

of 3°C to 4°C would cause a reduction in plant productivity by 15 to

35% by the end of the 21st century (Tayade et al., 2018). Other

abiotic stresses (flooding, salinity, and heavy metals) have been

estimated to reduce plant productivity by 51–82% (Cooke and

Leishman, 2016). These changes have hindered the desired

natural productivity of plants and their responses to combating

abrupt climate changes. Also, this has threatened food security and

human use values for future human generations.

Plants respond to external environmental stimuli by changing

their biochemical and physiological relationship. Since microbes

have been associated with plants throughout their life cycle,

therefore, any small developmental or metabolic change also

influences them. Microorganisms are the silent wheel that

functions as the cradle of plant growth, stress signaling, and

responses in terrestrial ecosystems. The microbes’ composition,

structure, and richness are variable across different environmental

systems and associations with host plants. These microbes live as

endophytic (inside) or epiphytic (outside) modes of life with

mutualistic, commensal, or parasitic relationships. “Microbiome

refers to the total genetic material of microbial communities

associated with plants in either of these modes and associations”

(Hassani et al., 2018), whereas ‘holobiome’ or ‘holobionts’ is a sum

of genomic material of host and associated biota – including all

prokaryotic and eukaryotic organisms (Hassani et al., 2018; Lyu

et al., 2021). A newer concept of ‘eco-holobionts’ argues

exponentially regarding the ecological or ecosystem-based

interaction of microbiome to identify plant-soil-animal-

environmental functionalities (Singh et al., 2020; Wani et al., 2022).

More recently, the phytomicrobiome has been considered a

“second functional genome” in addition to the host plant’s genome

(Leach et al., 2017). A phytomicrobiome is a total sum of all

microorganisms that successively develop relationships with

plants during their growth stages. Although bacterial and fungal

biomes have been studied extensively, some of the missing links of

holistic interactions of archaea, viruses, oomycetes, protozoa, algae,

and nematodes have seldom been studied together for their

functional roles (Figure 1). The phytomicrobiome can provide a

sustainable climate-smart plant growth and production solution to

enhance abiotic stress tolerance. However, the responses of the

phytomicrobiome depend upon the plant’s genotype and ability to
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cope with stress factors (Trivedi et al., 2022). Microbiome diversity

and abundance have been significantly correlated with plants’

ability to grow in a specific environmental system (Leach et al.,

2017; Trivedi et al., 2020). However, more basic knowledge is

required to understand this dynamic and complex plant-biotic

interaction. For example, there have been more than ~5,000

reports related to the human microbiome till the year 2022.

Comparatively, in the case of plant sciences, these are very low,

i.e., above 800 studies in SciFinder.

Phytomicrobiome envelopes a diversity of disciplines

encompassing biotechnology, genomics, microbiology, plant

physiology, food sciences, agriculture, bioeconomy, informatics,

and medical sciences. Though there is a sharp increase in

utilizing a holistic microbiome approach, the concept and

required skills continuously evolve. Due to the advances in

sequencing technologies and machine learning methods, a

significant shift has been noticed from amplicon-based

community analysis to in-depth molecular processes. Strategies

such as metagenome-assembled - genomes, genome–resolved -

metagenomics, genome-wide association, meta-transcriptomics,

and genome editing for synthetic communities have recently

gained attention (Khan et al., 2020; Trivedi et al., 2020; Chouhan

et al., 2021). However, more needs to be understood across different

ecological and environmental dynamics and changing global

climates (Figure 1). To increase plant growth and production

while reducing the environmental impact of the whole process,

sustainable utilization of phytomicrobiome diversity can be an

essential part of achieving stress tolerance (Chawade et al., 2018;

Afridi et al., 2022).
Phytomicrobiome diversity
and function

The earth’s microbial diversity and richness have been estimated

as ~1 trillion (1012) species distributed in 30 orders (Locey and

Lennon, 2016; Thompson et al., 2017; Thaler, 2021). Contrarily, the

Earth Microbiome Project has predicted that microbial diversity can

be nearly 10 million species globally. The very least percentage of

microbial diversity or function is known in both cases. The same is

true for the availability of genomic sequence and culture stocks.

Hence, a greater need exists to explore unique phytomicrobiomes

and identify keystone species of extreme environments for potential

agricultural benefits. The phytomicrobiome is an essential aspect of

plant life where a continuous interaction of neutral-microbiomics

(microbe with least functional role), patho-microbiomics (pathogens

with antagonistic role), and core-microbiomics (functional

microbiome) happens in the context of spatial or heterogeneous

richness (Khan et al., 2020; Trivedi et al., 2020). The core

microbiome is a significantly abundant microbial taxonomy in a

given habitat. It performs a multi-factorial function, including plant

growth promotion, abiotic stress controls, and defense against

pathogens and pests in a robust manner (Xiong et al., 2020; Jiang

et al., 2022).

In phytomicrobiome settings, microbes can range from

bacteria, fungi, archaea, protozoa, oomycetes, viruses, nematodes,
frontiersin.org
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and algae. The degree of diversity (alpha–community scale and

beta–between species) of the microbiome is important for plant

growth (Pang et al., 2021; Andermann et al., 2022). The microbial

function (production of metabolites and enzymes, nutrient

mobilization and uptake, reproduction, and metabolic activities)

are delicately interwind and complex in the phytomicrobiome setup

(Trivedi et al., 2022). The diversity and function go side by side and

vary significantly in a typical environmental setting (Figure 1). For

example, the rhizosphere compartment will possess a higher

diversity of microbes than the phyllosphere. Similarly, a

significant variation in diversity and function has been proposed

from bulk soil into rhizospheric soil and then root parts. The bulk

soil provides a seed bank for plant expansion, selection, and

recruitment of microbial diversity. Conversely, the phyllosphere

(stem, secondary shoots, leaf, flowers, and seeds or fruits) has been

the least studied. The recent literature suggests that microbial

abundance sharply reduces from rhizosphere to phyllosphere

(Pantigoso et al., 2022). This abundance can also be dependent

on the host genotype and growth stages. The environmental settings

can drastically impact diversity and function. All the abiotic factors
Frontiers in Plant Science 03
(temperature, water, light, pH, etc.) dramatically impact

microbiome species’ recruitment and colonization patterns. Thus,

any abiotic stress factor, either long or short-term, low to severe, is

directly proportional to phytomicrobiome structure. Also, the

broad spectrum interactome of the phytomicrobiome with

phytobiome has been studied in crop segregation.

The plant growing in extreme environmental conditions

(xerophytes, halophytes, etc.) hosts a huge diversity of

phytomicrobiome species. Exploring extreme and unique

phytomicrobiome provides a pivotal resource for beneficial

naturally competent microbes that can help to improve crop

growth, productivity, and resistance against pathogenicity and

abiotic stresses (D’hondt et al., 2021; Lyu et al., 2021; Ali et al.,

2023). Several recent studies have shown that microbiome diversity

and function (Figure 1) are affected by the following:
i. Short or long-term abiotic affecters like temperature, water

(rainy or dry), soil chemistry, and nutrients cycling,

ii. Host’s type, developmental stage, and abilities of plants to

establish successful symbioses with the core microbiome,
FIGURE 1

Climate change due to the emission of GHGs and resulting global temperature and rainfall patterns significantly impacts the plant’s photosynthesis,
defenses, and yields. This drastically impacts soil health, microbial activities, nutrient mobilization, and uptake and secretion of signaling metabolites.
Thus, impacting both the phyllosphere and rhizosphere parts of the plant life. Phytomicrobiome members (bacteria, fungi, protozoa, oomycetes,
viruses, algae, and nematodes), on the other hand, drastically increase or decrease to respond to the change climatic changes (drought, heat, cold,
flooding, salinity, etc.). The structure, diversity, and function significantly shift from higher to low or low to higher for specific phytomicrobiome
players. For example, diversity can reduce from bacteria to viral species in a given phyllosphere and rhizosphere segment during abiotic stress. A
similar perspective has been considered for the degree of function and diversity from nematodes to algae in soil systems alongside bacterial and
fungal species during stress. The interactome of Abundance (A) vs. stress protection (S), function (F) vs. diversity (D), and genotype (G) vs.
environment (condition C) is extremely complex and dynamic. Thus, the lack or abundance of a specific class of phytomicrobiome players can
significantly impact a plant’s function and response to climatic stresses. (Created with BioRender.com).
frontiersin.org
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iii. Biotic affecters, such as the interactions of the core with

hub microbiota and keystone species or interactions with

pathogenic or commensals

iv. Soil size, type and surface, water, pH, and composition of

macro and micro-nutrients in the rhizosphere

v. Presence or absence of essential exudates (primary,

secondary, or specialized metabolites), enzymes

(extracellular), and substrates for the growth and

reproduction
Plants with a healthy phytomicrobiome provide a healthy soil

system that can better sequester several beneficial nutrients and

moisture compared with a poorly composed soil system (Figure 1).

This can broadly impact plant biomass production, yield, and

essential photosynthetic processes. A healthy phytomicrobiome

also offers higher resilience to climatic stresses through various

metabolites and enzymatic secretion in soil systems (Pang et al.,

2021). Indeed, the agri-microbiome is gradually progressing in

research; however, the phytomicrobiome and its niche in extreme

ecosystems have been the least explored (Pfeiffer et al., 2017).

Previous studies have evaluated the major players in a

microbiome, especially the bacterial biome from different soil

systems; however, little is known regarding exploring the depth of

the cumulative phytomicrobiome, populations, and function in

improving a crop’s resistance to stress (Mandakovic et al., 2018;

Araya et al., 2020; Astorga-Eló et al., 2020; Khan et al., 2020).

Exploring a unique trove of natural resources distributed across

unique ecosystems is necessary to create more base knowledge and

potential microbes for abiotic stress tolerance (Khanna et al., 2022).

Increasing our mechanistic understanding and real-world

experience of microbiome-plant interactions under drought,

salinity, and heat stresses offers enormous potential for increasing

the resilience of crops in such conditions (De Vries et al., 2020).

Looking at the current focus on plant-microbe interaction, we also

need to harness the stress tolerance mechanisms to improve plant

growth in extreme conditions and focus on increasing plant yields.

We propose that utilizing naturally growing plants in extreme

environments could be a vital resource of phytomicrobiome that

can offer prospective benefits to crop plants during extreme plant

growth conditions. For example, desert conditions cover over 30%

of the earth, and plant and microbial life are confronted with

extreme living conditions that depend significantly on scarce

water and nutrients from the soil. Xerophytic succulent plants

are the key players well-tailored to continuous episodes of abiotic

stresses (drought, heat, and salinity) (Ndour et al., 2020; Peguero-

Pina et al., 2020; Zeng et al., 2021). These extreme plants, due to

their peculiar anatomy, withstand severe stress and are often

unique in their (i) genetic makeup, (ii) physio-photosynthetic

responses, (iii) essential metabolites production, and (iv) core

microbial symbiosis (Griffiths and Males, 2017; Heyduk, 2021).

The symbiotic microbiota (bacteria and fungi) in the root

(rhizosphere) and shoot regions (phyllosphere) have been

recently proposed for their potential role in improving host life

and fitness (Khan et al., 2020; Trivedi et al., 2020; Sharifi

et al., 2022).
tiers in Plant Science 04
For example, the drought-promoting microbiome in desert

farming improved overall photosynthesis and plant biomass by

40% (Marasco et al., 2012). Several studies are reporting the

microbiomes of the Atacama desert (Araya et al., 2020; Contador

et al., 2020; Menéndez-Serra et al., 2020), Lejıá Lake (Mandakovic

et al., 2018), empty quarters Oman (Khan et al., 2020), Sonoran

desert (Andrew et al., 2012; Finkel et al., 2012; Gornish et al., 2020),

Mojave Desert (Pombubpa et al., 2020), saline lakes (Monegros

Desert, Spain) (Menéndez-Serra et al., 2020), the atmospheric

microbiome in the Eastern Mediterranean (Mazar et al., 2016),

and the seed-associated microbiome from Southern Chihuahuan

Desert (Menéndez-Serra et al., 2020). Some of the succulent and

arid land plant species recently analyzed for their microbiome are

the Agave species (Flores-Núñez et al., 2020), Aloe vera (Akinsanya

et al., 2015), cacti (Fonseca-Garcıá et al., 2016), pineapple (Putrie

et al., 2020), Aizoaceae (Pieterse et al., 2018), frankincense-

producing tree (Boswellia sacra) (Khan et al., 2016a; Khan et al.,

2017). These studies showed highly diverse rhizosphere

colonization with Actinobacteria, Proteobacteria, Firmicutes,

Actinobacteria, Acidobacteria, and Bacteroidetes (Citlali et al.,

2018; Flores-Núñez et al., 2020). These reports suggest that

microbial symbionts of these plants provide stress-protecting

benefits that could be replicated in agroecological settings. For

example, culturable microbial strains such as Preussia sp. BSL10

(Khan et al., 2016b) and Sphingomonas sp LK11 (Khan et al., 2014)

were isolated from xerophytic plants and were able to produce

beneficial metabolites (gibberellic acid and auxins). The inoculation

in mono-culture semi-sterile conditions significantly improved

plant growth and biomass. Currently, most studies have

mentioned microbial communities ’ (fungi and bacteria)

distribution, abundance, and diversity, where the role of other

microbiome players has been least identified (Finkel et al., 2017).

Below are some of the critical questions that still need to

be answered:
Q1: What core/hub/key phytomicrobiome species are

consistently present with plants exposed to extreme

climate changes?

Q2: How does a single or consortium of core-microbiome

species benefit a plant’s life?

Q3:What gene networks and biosynthetic pathways contribute

to plants’ survivability in stressed environments?

Q4: How does the phytomicrobiome help the host on a

prolonged and short-term basis?

Q5: How to replicate the essential benefits of core microbiome

into crop’s abiotic stress resistance from germination to

yield levels?

Q6: What molecular and metabolic networks assist successful

and long-term symbiotic relationships during climate

change with crops?
Although the key questions of a microbiome study and

environmental evaluation are well-defined, there is a dire need to

advance knowledge on above questions. The recent microbiome

literature, focuses more on the (i) “What is there”? and (ii) “What
frontiersin.org
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are they doing”? However, (iii) “what can they do” has been

frequently overlooked (Khan et al., 2020; Trivedi et al.,

2020) (Figure 2).

Specialized metabolites production
by phytomicrobiome – a trait to
counter stress tolerance

The phytomicrobiome players can help in nitrogen fixation,

soil carbon, and phosphorus cycling to improve root growth and

development (Kusari et al., 2012; Backer et al., 2018). The majority

of current literature shows that microbes have been known to

improve plant growth by (i) nutrient solubilization and uptake,

(ii) enzymes secretion, (iii) secondary metabolites, and (iv)

phytohormones production (Figure 2) (Pang et al., 2021). The

biochemical substance secretion and molecular signaling

mechanisms adopted by microbiome functioning play a key role

in host-stress responses. For example, phytohormones are

signaling molecules and chemical messengers that play an

essential role in plant growth and development (Hemelıḱová

et al., 2021). Phytohormones produced by microbes include

gibberellins (GA), auxin, cytokinin, salicylic acid, abscisic acid,

etc. Most GA-producing fungi belong to Ascomycetes and

Basidiomycetes (Takeda et al., 2015; Salazar-Cerezo et al., 2018;

Sharifi et al., 2022) and have been identified as plant growth

promoters during stress conditions. Most of these studies are

based on mono-culture conditions, and least is known on their

role in mix-community structures.
Frontiers in Plant Science 05
There are few examples of bacterial strains known for GA

production, whereas auxin production is more bacterial trait than

fungal. Still, some reports show GA production and related genes in

bacterial strains (Nett et al., 2017; Lemke et al., 2019). Despite some

major fungal species, the biosynthetic pathway of GA has yet to be

fully explained in both bacterial and fungal strains. Auxins, on the

other hand, are more known for bacterial production than fungal

and have been well explained for their biosynthetic gene clusters.

Unfortunately, there is a significant knowledge gap regarding

microbes’ axenic vs. holoxenic phytohormonal production

abilities and their function in mitigating climatic stress factors.

The prospect of such beneficial strain is exceptionally high for plant

responses to climate change. For example, biopriming of maize

seeds with GA-producing bacterial strains showed markedly

enhanced maize seedling tolerance to oxidative stress. This also

improved drought tolerance by up to 20% (Shaffique et al., 2022).

When the rhizobacterium Azospirillum brasilense was introduced to

the roots of Arabidopsis, the host plant displayed increased

endogenous abscisic acid (ABA) levels and drought tolerance

(Eichmann et al., 2021). Other reports suggested that GA

producers significantly reduced the ABA level during drought,

heat, and heavy metal stresses – indicating microbial role in

reprograming the immune stress responses (Khan et al., 2015;

Khan et al., 2020).

In the case of enzymes, one noteworthy exception is 1-

aminocyclopropane-1-carboxylate (ACC) deaminase, a bacterial

enzyme that helps maintain root growth by keeping a check on

the ethylene level (Ali et al., 2014). In stress conditions, plant

activates ACC synthase and or oxidase to increase ethylene
FIGURE 2

The Phytomicrobiome responds to host plant growth and stress tolerance by producing several signaling molecules. These secretomes directly
influence plant microbiome structure and diversity. Hence, each climate-induced stress factor would directly challenge the composition and
function of core-microbiome species associated with a host. Microbiome members’ associated plant growth and stress aversion defenses impact
critical aspects of plant life (growth, metabolism, resistance to stress, gene regulation, and biomass yield). This also impacts nutrient cycling,
transport, mobilization, and translocation inside plant tissues during optimal or stressful conditions. The core-microbiome function drastically
changes and shifts from the rhizosphere into the phyllosphere. (Created with BioRender.com).
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fpls.2023.1219366
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Khan 10.3389/fpls.2023.1219366
production, which can lead to reducing root growth activities –

causing declining plant production. In such conditions, the symbiotic

microbiome can produce ACC deaminase that helps down-regulate

ethylene levels, assisting the plant in escaping or minimizing stress

conditions (Jha et al., 2021). The ACCd activities can help improve

root colonization and combat pathogenic infections. Another

potentially important mechanism is the physical sheathing of the

root by either bacteria or mycorrhizae, protecting it from water loss.

Such a mechanism, which requires the establishment of dense

biomass on the root, necessitates compatibility with the plant’s

immune system. Effective biofilm formation on roots also strongly

depends on synergistic interactions among multiple microbial taxa

(Berendsen et al., 2018). Thus, consortia of single or multiple genera

can drastically reduce the negative impacts of stress–providing plant

growth-promoting effects (Finkel et al., 2020; Fitzpatrick et al., 2020;

Salvato et al., 2022). The inoculation of these fungal and bacterial

strains can improve plant biomass and stress resistance by

modulating antioxidant enzymes and growth-related gene

expression. Contrarily, the functions of phytohormone-producing

microbiome players in a consortium have been least known. How

microbial symbiosis and community structures intervene in the

signal-to-response potentials has not been elucidated yet.
Elucidating phytomicrobiome for
plant responses to climate change

According to comparative metatranscriptomics, the active

rhizosphere microbiome of wheat, oat, and pea has revealed

kingdom-level variations and functions (Turner et al., 2013). The

sorghum root-associated microbiome demonstrates enhanced

transcriptional activity of genes involved in glucose and amino acid

metabolism and transport in response to drought stress, primarily

due to changes in actinobacterial activity and function (Xu et al.,

2018). In soybean, the Bradyrhizodium and Gammaproteobacteria

(Proteobacteria phylum) were dominant and associated with crop

productivity during abiotic stresses (Chang et al., 2017). Similarly, the

Actinobacteria, Chloroflexi, Proteobacteria and Ascomycota,

Basidiomycota, and Mortierellomycota phyla were significantly

dominant in the soybean that was grown in different soil textures

(Trépanier (2019). Firmicutes are known to have anaerobic species,

which is most likely why they play a significant role during flooding

stress (Martıńez-Arias et al., 2022). Contrarily, the Proteobacteria are

more abundant in flooding with elevated CO2, which is known to

play a crucial role in abiotic stress environments (Vaishnav et al.,

2018). Recent studies have shown that taxa from a single genus or

family in the rhizosphere or phyllosphere of rice and Arabidopsis

plants offer increased drought stress tolerance (Finkel et al., 2020).

Furthermore, microbiome-mediated temperature tolerance has been

reported for maize (Tiziani et al., 2022), rice (Liu et al., 2023), wheat

(Chen et al., 2022), and Arabidopsis (He et al., 2022). In the

endospheric microbiome, the inoculation with endophytic bacteria

showed upregulation of cold stress tolerance-related genes

(Theocharis et al., 2012). Single species of bacterial endophytes are
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reported for the accumulation of cold stress-linked metabolites such

as essential sugars (starch), amino acids (proline), and phenolic

(catechol) compounds in plant tissues (Ayilara et al., 2023)

Microbial communities help soybean to solubilize silicon,

phosphorus and produce phytohormones and organic acids (Kang

et al., 2017). The microbe-mediated plant growth and stress tolerance

of individual microbial taxa have been long known, whereas how the

endospheric microbiome offers tolerance has yet to be

fully understood.

To identify the underlying mechanisms of microbiome-

mediated plant growth and stress tolerance, metagenomic and

metatranscriptomic profiling are used to discover the function

and metabolic pathways used during plant-microbe-stress

interactions. Such interactions and tools have recently helped

build microbial communities as drought stress biosensors were a

recent breakthrough (Zolti et al., 2020). Despite being a valuable

tool for understanding the roles of active members of plant-

associated microbiomes, poor correlations between transcription

and translation need the development of proteomic and

metabolomic approaches to supplement transcriptomics.

Metaproteomic studies of microbial communities from the

rhizosphere (Bona et al., 2019; Sharifi et al., 2022) and

phyllosphere of agricultural plants have provided direct insights

into their molecular phenotypes. The leading members of the

microbiome and the proteins found in distinct plant-associated

settings have shown remarkable stability in this limited research

(Knief et al., 2012; Bona et al., 2019).

Although metabolomic methods are rapidly being employed to

diagnose plant diseases and their etiological agents, their utility in

microbiome science still needs to be improved (Adeniji and

Babalola, 2020). According to early research, the rhizosphere

microbiome alters the phyllosphere metabolome, and these

alterations are linked to differences in insect feeding behavior

(Badri et al., 2013; Pantigoso et al., 2022). Changes in root

metabolome can shape specialized microbial populations,

affecting plant performance and plant-herbivore interactions in

the future (Huang et al., 2019). Small compounds from microbes

(organic acids, amino acids, sugars, volatiles) and plant exudates

(flavonoids, phenolics, terpenoids, phytohormones) that drive

plant–microbiome communications and interactions require

metabolome information to be detected and quantified (Trivedi

et al., 2020). Multi-omics (metabolome, ionome, microbiome, and

phenome) and integrated informatics were recently applied in an

agroecosystem to uncover intricate connections between plant

characteristics, metabolites, microbes, and minerals (Ichihashi

et al., 2020). We believe that better sample preparation (e.g.,

removal of host sequences for shotgun sequencing and

transcriptomics, as well as universal protein extraction for

proteomics), more datasets in the publicly available databases,

and the development of algorithms and computational tools for

data integration will allow multi-omics approaches to unlock the

genotype-phenotype spectrum in an agricultural setting to their full

potential. This will also help combat climatic change’s impacts on

crop production.
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Native synthetic communities and
plant growth promotion during stress

The phytomicrobiome relies more on amplicon and

metagenome sequencing and data analytic approaches. However,

in recent years metagenomics coupled with the culture-dependent

synthetic communities (SynComs) have arguably provided more

mechanistic insights (Ke et al., 2021). This is based on isolating and

identifying large-scale reconstruction of bacterial and fungal

cultures as SynCom. Recently both bottom-up and top-down

approaches have been proposed for identifying SynCom functions

(San León and Nogales, 2022). Such SynCom is screened via high

throughput for potential functions during climate-induced stresses.

Recent studies show that such approaches are highly beneficial in

comparing stressed and non-stressed phytomicrobiome functions.

Several recent examples illustrate the true potential of several PGPs

as SynCom. Many PGPs have been isolated and identified as

biofertilizers, biostimulants, and biocontrol agents. Both native or

non-native culturable SynCom and genetically modified microbes

have been extensively researched and used by Synlogic, Pivot Bio,

JOYN Bio, NOVOME Biotechnologies, 64-X, etc. However,

applying SynCom microbes to fields for commercial adoption has

been a challenge until now. This is likely because the more-resilient

existing microbial communities exclude the new microbes (De

Vries et al., 2018). One of the recent reviews focuses on

developing new microbes to sustainably support plant health,

defense, and productivity by understanding and isolating core-

microbiome species (Ke et al., 2021). Also, their large-scale

encapsulation and potential to be utilized as climate stress-

protective microbial communities have yet to be fully understood.

Knowledge derived from these studies may provide strategies for

using plant growth-promoting microbes in fields. Very soon,

rhizospheric and phyllosphere microbiome engineering strategies

will be adopted to increase sustainable agricultural production

(Backer et al., 2018), specifically climate-smart agriculture.

Similarly, to resolve these challenges, microbiome engineering

based on synthetic biology is catching the attention rapidly as a new

approach to developing synthetic microbial communities (modified

SynComs) (Kaminsky et al., 2019). Modified SynComs are consortia

of microbes synthetically designed to mimic the observed function

and structure with the natural microbiome. The aim is to minimize

the complexity of the community while retaining the biotic and

abiotic interactions of the host and microbes (Chouhan et al., 2021).

The SynComs are potentially delivered to specified locations or

organs of a plant at different growth stages by environmental

conditions. However, genetically modified microorganisms are

monitored strictly (Saad et al., 2020; Ke et al., 2021). In near future,

an engineered or synthetic microbiome will be a safe and sustainable

approach toward sustainable agriculture (Ke et al., 2021). However,

several biosafety, ethical and environmental issues, and hazards must

be considered. Attention should be paid to not impacting an

ecosystem’s natural vs. synthetic microbiome structure.

Thus, SynCom is a valuable approach to manipulating and

understanding natural communities. SynCom is also used to identify

plant genetic factors determining the assembly of the leaf or root‐
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associated microbial communities. But few studies have examined the

role of agroecological interactions of SynCom colonization. Microbial

inoculants are increasingly considered an effective complementary tool

in the context of agroecosystem sustainability and productivity (Liu

et al., 2022) However, the mechanisms that underpin positive impacts

on plant fitness remain poorly understood, constraining the

development and adoption of effective SynCom. Considering global

temperature changes, using beneficial SynCom can be an ideal strategy

to overcome the challenges of a sustainable agri-ecosystem. This can be

achieved through developing knowledge of phytomicrobiome

networks via multi-OMIC methods (Khan et al., 2015; Khan et al.,

2020; Trivedi et al., 2020). Thus, affecting the function of a single

microbe applied to a plant field (De Vries et al., 2018). Hence, in the

current era, instead “one-microbe-at-a-time” approach, alternative

SynComs can indicate a better prospect of function to survive the

agri-ecosystem environment (Zhuang et al., 2021). Although this field

is still progressing, one can still ask to what extent SynCom derived

from a natural microbiome effectively improves plant growth,

especially with the inclusion of abiotic stress factors (La Vega-

Camarillo et al., 2023). The current literature shows a significant

need to harness stress tolerance mechanisms to improve plant

biomass in extreme conditions (Van Der Heijden and Hartmann,

2016; De Vries et al., 2020). The concurrent molecular signaling and

the role of physio-genomic level responses of plants have been seldom

studied in the context of climate stresses and this also true of their

microbiome functions.
Conclusion and future prospective

In conclusion, the phytomicrobiome (either core, satellite, or key),

its dynamics in changing climatic conditions, and potential regulators

from extreme terrestrial environments can benefit the crop production

system. The phytomicrobiome knowledge can be extended to (i)

understand wild and cultivated microbiomes, (ii) integrate multi-

omics technologies and microbial cultures, (iii) elucidate

environmental variables and climate change, and (iv) cope with

agro-economy, plant production, and food security systems. The

ability of phytomicrobiome vs. phytobiome that largely cover micro

and macro organisms and provide a secondary sanctuary of microbial

species to transmit and translocate from one compartment into

another during symbiosis is essential to consider (Leach et al., 2017).

There is also a greater need to connect the loops of cross-kingdom

phytomicrobiome diversity and function with plants, especially during

changing environmental conditions. Further, a growing need exists to

associate synthetic communities that could augment crop stress

performance and nutrient cycling functionalities. Bioinoculums of

the native or synthetic microbiome and its diversity across different

crops can help establish more significant benefits of eco-friendlier

approaches to cope with plant stress tolerance. However, using the

reductionism approach, one must maintain a nature-friendlier and

native stress-fit microbiome to improve plant growth, development,

and yields during extreme heat, drought, and salinity-related stress

conditions. Large-scale modified SynComs can exponentially change

the natural microbiome diversity associated with plants. Hence,
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utilizing specific crops through a natural nutrient management system

that can improve CO2 capture and storage (CCS) will be an essential

strategy to overcome the impacts of climate change (Bajaj and Thakur,

2022; Mukherjee, 2022). Recent advances in functional genomics,

genome editing technologies, and metabolomics can help discover

new genes and pathways adapted by core-microbiome players that

could be highly beneficial for identifying plant growth-promoting

activities such as biocontrol, biofertilization, and biostimulation.

Utilizing network modeling, artificial intelligence, and the internet-

of-things based approaches can solve several bottleneck approaches in

large-scale field-level studies.
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Hemelıḱová, N., Žukauskaite, A., Pospisil, T., Strnad, M., DolezžAl, K., and Mik, V.
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