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Background and purpose: To develop and validate a deep learning-based 
automatic segmentation model for assessing intracranial volume (ICV) and to 
compare the accuracy determined by NeuroQuant (NQ), FreeSurfer (FS), and 
SynthSeg.

Materials and methods: This retrospective study included 60 subjects [30 
Alzheimer’s disease (AD), 21 mild cognitive impairment (MCI), 9 cognitively 
normal (CN)] from a single tertiary hospital for the training and validation group 
(50:10). The test group included 40 subjects (20  AD, 10 MCI, 10 CN) from the ADNI 
dataset. We propose a robust ICV segmentation model based on the foundational 
2D UNet architecture trained with four types of input images (both single and 
multimodality using scaled or unscaled T1-weighted and T2-FLAIR MR images). 
To compare with our model, NQ, FS, and SynthSeg were also utilized in the test 
group. We  evaluated the model performance by measuring the Dice similarity 
coefficient (DSC) and average volume difference.

Results: The single-modality model trained with scaled T1-weighted images 
showed excellent performance with a DSC of 0.989  ±  0.002 and an average 
volume difference of 0.46%  ±  0.38%. Our multimodality model trained with both 
unscaled T1-weighted and T2-FLAIR images showed similar performance with 
a DSC of 0.988  ±  0.002 and an average volume difference of 0.47%  ±  0.35%. 
The overall average volume difference with our model showed relatively 
higher accuracy than NQ (2.15%  ±  1.72%), FS (3.69%  ±  2.93%), and SynthSeg 
(1.88%  ±  1.18%). Furthermore, our model outperformed the three others in each 
subgroup of patients with AD, MCI, and CN subjects.

Conclusion: Our deep learning-based automatic ICV segmentation model 
showed excellent performance for the automatic evaluation of ICV.
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Introduction

Neurodegenerative disorders cause dementia and Alzheimer’s 
disease (AD) is the most common cause. AD initially presents as 
preclinical AD, progresses to mild cognitive impairment (MCI) due 
to AD, and eventually develops into AD dementia, following the 
trajectory of the so-called “AD-spectrum” (1). These AD spectrum 
diseases are associated with brain atrophy (2) and imaging biomarkers 
on MRI are important in diagnosing AD (3).

Intracranial volume (ICV), which is defined as the volume 
including the brain, meninges, and cerebrospinal fluid, is used to 
reduce the variability from different head sizes and adjust the 
percentiles of brain atrophy in neurodegenerative disorders (4). 
Several studies proposed automated brain extraction or skull stripping 
methods to calculate ICV by removing non-brain soft tissues 
including scalp, skull, and dura. These traditional methods include: 
Brain Surface Extractor (BSE) (5); Brain Extraction Tool (BET) (6); 
Brain extraction based on nonlocal Segmentation Technique (BeaST) 
(7); and Robust learning-based Brain Extraction system (ROBEX) (8). 
Recently, several studies applied deep learning techniques, particularly 
convolutional neural networks (CNN) (9, 10) and UNet architectures, 
and showed considerable performance. SynthSeg is the convolutional 
neural network that firstly segment brain scans of any resolutions and 
contrasts (11). It produces more accurate estimation of ICV, including 
the CSF spaces.

Currently, several MRI-based software programs for brain volume 
measurement have been developed for application in clinical fields (12). 
FreeSurfer (FS) (13) is a widely used freely available software and produces 
estimated ICV using the atlas scaling factor with images of an individual’s 
brain after transformation and registration using a 12-parameter affine 
transform (14). However, it requires considerable time and complex 
processes to analyze data and has been used mainly for research (15). 
NeuroQuant (NQ) (16) is a widely used software because it has a fast 
processing time and provides information regarding the cortices of both 
hemispheres and white matter volume (17). Recently, software using deep 
learning algorithms has been introduced with the approval of the Korean 
Ministry of Food and Drug Safety (K-FDA): InBrain (18, 19), DeepBrain 
(3, 20), and ASTROSCAN (12).

However, there are differences among several available software 
programs for determining volume measurements including total ICV 
(15, 16, 21–23). Previous studies have used brain extraction or 

skull-stripping techniques. However, only a few studies reported a 
direct segmentation method of ICV using deep learning based 
automatic method because automatic outlining of the exact CSF 
spaces dividing from adjacent structures is often complicated with 
using segmented images.

We aimed to develop and validate an UNet architecture based 
automatic segmentation method for determining the ICV using 
T1-weighted and T2-FLAIR MRI and to compare the accuracy of ICV 
segmentation with NQ, FS, and SynthSeg in patients on the AD 
clinical spectrum.

Materials and methods

Study population

The institutional review board approved this retrospective, single-
institution study with a waiver of informed consent. Patients who 
visited Asan Medical Center from March 2017 to October 2019 were 
retrospectively selected from their electronic medical records. The 
inclusion criteria were as follows: (a) patients who visited the memory 
clinic and were clinically diagnosed with AD or MCI or were 
cognitively normal (CN) and (b) patients who underwent brain MRI 
with a protocol for dementia. Of 810 potentially eligible patients, 29 
patients with poor image quality or other underlying pathologies 
causing memory impairment were excluded.

Among 781 patients, 60 subjects were randomly selected 
according to their hippocampus volume measured by commercially 
available deep learning-based software (VUNO MED-DeepBrain) to 
ensure an even distribution of the degree of hippocampal atrophy (3). 
The selected subjects were split randomly into training (n = 50) and 
validation (n = 10) sets. For the test set, we  randomly selected 40 
patients from Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
dataset (20 with AD, 10 with MCI, 10 CN) (Figure 1).

Patients with MCI and AD were diagnosed using 
neuropsychological evaluations based on the diagnostic guidelines of 
the National Institute on Aging–Alzheimer’s Association workgroups 
(24, 25). Patients without abnormalities on neuropsychological 
evaluations were classified as CN.

Image acquisition

A routine MRI protocol was acquired using a 3.0-T system 
(Ingenia CX; Philips Medical Systems, Best, Netherlands) with an 
eight-channel head coil. All patients underwent the MRI protocol for 

Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment; CN, 

cognitively normal; FS, FreeSurfer; NQ, NeuroQuant; ICV, intracranial volume; 

DSC, Dice similarity coefficient.

Highlights

- The single-modality model trained with scaled T1-weighted images showed excellent 
performance with a DSC of 0.989 ± 0.002 and an average volume difference of 
0.46 ± 0.38%.

- Our multimodality model trained with both unscaled T1-weighted and T2-FLAIR images 
showed similar performance with a DSC of 0.988 ± 0.002 and an average volume 
difference of 0.47% ± 0.35%.

- The overall average volume difference with our model showed relatively higher accuracy 
than NQ (2.15 ± 1.72%), FS (3.69 ± 2.93%), and SynthSeg (1.88 ± 1.18%).
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dementia in our institution, and 3D fast field echo (FFE) T1-weighted 
image and two-dimensional FLAIR image were used for ICV 
segmentation. The parameters of images were as follows: 3D FFE 
T1-weighted imaging [TR/TE = 6.5/2.9; slice thickness = 1 mm; field of 
view (FOV) = 211 × 256 × 256 mm; flip angle 9°], FLAIR imaging (TR/
TE = 9,000/125; slice thickness = 4 mm; inversion time = 2,500 ms; 
FOV = 220 × 220 mm).

Deep learning-based ICV segmentation 
model development and volumetry

At the preprocessing stage, an original input image (3D 
T1-weighted MRI image) was conformed to set voxel spacing (1.0, 1.0, 
1.0), image dimensions (256, 256, 256), and voxel intensity (between 
0.0 and 255.0) (unscaled images). We further evaluated the effects of 
the voxel intensity range on the segmentation performance by setting 
it between 0.0 and 1.0 (scaled images). We implemented additional 
augmentations such as random affine transformation to enhance the 
model performance during the training phase. Despite the 3D 
structure of the brain MRI scans, we exploited only axial slices to 
perform segmentation in a 2.5D setting. Given a conformed (256, 256, 
256) image (axes ordered by sagittal, axial, and coronal), we neglected 
the top and bottom 20 axial slices since there were no regions of 
interest. We  concatenated two adjacent slices on each slice input, 
regarding an input slice as a three-channel image.

The proposed deep learning model exploits the basic 2D UNet 
architecture (26) with a Resnet34 encoder, which is a widespread neural 
network architecture in medical image segmentation and has achieved 

state-of-the-art performance for several tasks. The model comprises an 
encoder-decoder structure and skip connections. The encoder extracts 
latent features from an input image, while the decoder generates a 
segmentation mask from the latent feature vector. Skip connection 
improves high-level feature learning. Moreover, the use of a residual 
structure in the encoder preserves more high-level features during the 
feature extraction process; therefore, it leads to a significant increase in 
segmentation performance in multimodal settings.

The 2D UNet model consists of five encoder and four decoder 
layers (Figure 2). The initial encoder layer consists of a convolutional 
layer with a kernel size of 3 × 3, followed by batch normalization 
and rectified linear unit (ReLU) activation, and a maxpooling layer 
to downsample the spatial features. The following encoder layers 
comprise multiple convolutions similar to the initial encoder layer, 
except for the skip connection, which facilitates more stable 
optimization. Furthermore, unlike the initial layer in which 
maxpooling comes at the end, the very first convolutions in the 
other encoder layers perform strided convolution to reduce the 
spatial dimension. Each decoder block exploits bilinear 
interpolation to double the spatial dimension while halving the 
channel dimension. Skip connection concatenates features from 
each encoder block and their corresponding decoder outputs. The 
terminal convolution squeezes the channel dimension to 2, which 
is the number of classes in our ICV segmentation task. The entire 
processing time was 5–10 s.

For the reference standard for the ICV, manual segmentation of 
each axial 3D T1-weighted image was performed by a board-certified 
diagnostic radiologist with 5 years of experience (P.S.S.) by drawing an 
outline of the dura. Another board-certified expert with 12 years of 

FIGURE 1

Patient flow diagram of this retrospective cohort. AD, Alzheimer’s disease; MCI, Mild cognitive impairment; CN, Cognitively normal; ADNI, Alzheimer’s 
Disease Neuroimaging Initiative.
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experience in diagnostic radiology (C.H.S.) confirmed the 
segmented areas.

Multimodal ICV segmentation

We also examined if training the model with multimodal data 
could improve the segmentation performance. For multimodal ICV 
segmentation, we  used both sagittal 3D T1-weighted and axial 
T2-FLAIR MRI images from each subject. While the preprocessing 
scheme for T1-weighted images was the same as for the single 
modality example, T2-FLAIR images were conformed into a 
256 × 256 × 35 image size, where the axial axis comes at the end. The 
voxel size of each T2-FLAIR image was adjusted to 0.8 × 0.8 × 5.0, and 
the voxel intensity was normalized between 0.0 and 255.0 or between 
0.0 and 1.0. We  retrieved true ICV annotations from T2-FLAIR 
images by registering 3D T1 ICV data tensor into the T2-FLAIR space.

During the training phase, three-channel 3D T1-weighted and 
T2-FLAIR MRI images were randomly sampled across the subjects. In 
particular, unlike 3D T1-weighted images, an axial slice of a T2-FLAIR 
MRI was repeatedly stacked three times to generate a three-channel input. 
All images were cropped into a 224 × 224 size to minimize unnecessary 
empty backgrounds. Afterward, we  implemented random geometric 
augmentations including image flipping and affine transforms 
[scale = (0.9, 1.1), translation percentage = (−0.1, 0.1), rotation 
angle = (−30°, 30°)]. Furthermore, we added random intensity transforms 
including blur, brightness contrast, gaussian noise, and shadow to 
reproduce noises often occur at MRI scans. All random transforms were 
applied with probability = 0.1, and we used the albumentation library for 
image augmentation (27).

Statistical analysis

Model performance was evaluated by measuring the Dice 
similarity coefficient (DSC) and average volume difference. The DSC 

was measured for the volumetric overlap between the manually and 
automated segmented volume. The volumetric DSC was calculated by 
the intersecting volume of two masks, normalized to their mean 
volume. The DSC ranges from 0 to 1, indicating more overlap close to 
1. The average volume difference was assessed by calculating the 
percentage difference between the manually segmented ICV and 
automated segmented volume by our proposed model, NQ, FS, and 
SynthSeg. ANOVA was performed to compare the measured volumes 
among the segmentation methods. The statistical analysis was 
performed using SPSS (version 21.0 for Windows; IBM Corp.), with 
p < 0.05 defined as statistically significant.

Results

Patient characteristics

A total of 60 subjects were randomly selected among the patients 
who met the inclusion criteria: 23 subjects were male (mean 
age ± standard deviation, 69 ± 14 years), and 37 subjects were female 
(mean age, 70 ± 12 years). Of these patients, 30 were clinically 
diagnosed with AD, 21 were diagnosed with MCI, and nine were 
classified as CN. The ADNI dataset included 40 subjects: 20 subjects 
were male (mean age, 71 ± 9 years), and 20 subjects were female 
(mean age, 71 ± 10 years). Of these patients, 20 were clinically 
diagnosed with AD, 10 were diagnosed with MCI, and 10 were 
classified as CN.

Performance of automated segmentation 
in calculating the ICV

The performance of our trained deep learning-based software was 
evaluated using T1-weighted images from the test dataset from the 
ADNI. Using the deep learning model trained with unscaled 
T1-weighted images only, the DSC was 0.982 ± 0.002. Compared with 

FIGURE 2

Model architecture of the proposed deep learning-based ICV segmentation model. The model exploits the basic 2D UNet architecture, which consists 
of five encoder and four decoder layers. Conv 3  ×  3, convolutional layer with a kernel size of 3  ×  3; BatchNorm, batch normalization; ReLU, rectified 
linear unit; MaxPool, maxpooling.
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the manually segmented ICV, the average volume difference was 
1.67% ± 2.87%. With scaled T1-weighted images, the DSC was 
0.989 ± 0.002, and the average volume difference was 0.46% ± 0.38%. 
Using the multimodal deep learning model trained with unscaled 
T1-weighted and T2-FLAIR images, the DSC was 0.988 ± 0.002, and the 
average volume difference was 0.47% ± 0.35%. With scaled T1-weighted 
and T2-FLAIR images, the DSC was 0.987 ± 0.003, and the average 
volume difference was 0.67% ± 0.61%. A comparison of the performance 
of the single-modality and multimodal deep learning models is shown 
in Table 1. The performance was also evaluated in each subgroup of AD, 
MCI, and CN using the deep learning model trained with scaled 
T1-weighted images and the multimodal model trained with unscaled 
T1-weighted and T2-FLAIR images. In the model trained with scaled 
T1-weighted images, the DSC in the AD, MCI, and CN subgroups were 
0.990 ± 0.002, 0.988 ± 0.002, and 0.989 ± 0.001, respectively. The average 
volume differences in the AD, MCI, and CN subgroups were 
0.41% ± 0.35, 0.50% ± 0.41, and 0.53% ± 0.41%, respectively. In the model 
trained with unscaled T1-weighted and T2-FLAIR images, the DSC in 
the AD, MCI, and CN subgroups were 0.989 ± 0.002, 0.987 ± 0.002, and 
0.987 ± 0.002, respectively. The average volume differences in the AD, 
MCI, and CN subgroups were 0.39% ± 0.31, 0.53% ± 0.43, and 
0.58% ± 0.34%, respectively.

Comparison of NQ, FS, SynthSeg, and our 
proposed model

The performance of NQ, FS, and SynthSeg software was evaluated 
using T1-weighted images from the test dataset from the ADNI. There 
were no statistically significant differences in the measured ICVs 
among the measurement methods. The overall average volume 
difference was 2.15% ± 1.72% with NQ, 3.69% ± 2.93% with FS, and 
1.88% ± 1.18% with SynthSeg. Using NQ, the average volume 
differences in the AD, MCI, and CN subgroups were 2.15% ± 1.54, 
1.84% ± 1.77, and 2.45% ± 2.12%, respectively. Using FS, the average 
volume differences in the AD, MCI, and CN subgroups were 
3.65% ± 2.86, 2.67% ± 2.03, and 4.78% ± 3.66%, respectively. Using 
SynthSeg, the average volume differences in the AD, MCI, and CN 
subgroups were 1.67% ± 1.01, 2.40% ± 1.17, and 1.75% ± 1.35%, 
respectively. A comparison of the measured volume and average 
volume difference in each subgroup with the three deep learning-based 
automatic segmentation models are shown in Table 2 and Figure 3.

Discussion

In this study, we developed and validated a deep learning-based 
automatic ICV segmentation model using axial 3D T1-weighted and 
T2-FLAIR MR images, which used not brain extraction or skull 
stripping techniques but direct segmentation with short processing 
time. Our model showed excellent performance in the measurement 
of the ICV in every subgroup of the AD clinical spectrum. There were 
differences in the measured ICV among the ICV segmentation 
software programs, and our model outperformed the others. 
Therefore, our deep learning-based automatic ICV segmentation 
model might be  considered for the accurate evaluation of brain 
atrophy in neurodegenerative disorders.

Numerous segmentation models have been developed and they have 
enhanced the performance of ICV segmentation. In this study, 
we compared the average volume differences with clinically available ICV 
segmentation software including FS, NQ, and SynthSeg. For this 
comparison, we selected our deep learning model trained with scaled 
T1-weighted images and unscaled T1-weighted and T2-FLAIR images, 
which showed better performance with the single-modality and 
multimodality models. All of the automated segmentation models and 
software programs showed no significant differences compared with the 
manually segmented ICV, suggesting good performance. The overall 
average volume difference in our model showed minimal differences with 
the manually segmented ICV (0.46% ± 0.38% in the single-modality 
model and 0.47% ± 0.35% in the multimodality model), demonstrating 
better accuracy than FS (3.69% ± 2.93%), NQ (2.15% ± 1.72%), and 
SynthSeg (1.88% ± 1.18%). Previous studies have compared NQ and FS 
and showed a high correlation (16, 17, 21, 28). The segmentation method 
of NQ is similar to that of FS, but it utilizes a different atlas, an independent 
code base, and separate methods for normalization of intensity and 
correction of gradient distortion to accommodate for scanner-specific 
acquisition-level differences (16). In contrast, our proposed segmentation 
model used an atlas-free deep learning model. With the addition of 
random augmentations, our deep learning model learned preprocessing 
and protocol-invariant features for ICV segmentation from training 
images. On the other hand, atlas-based models are inevitably sensitive to 
imaging protocols. Hence, the proposed model was less prone to 
overfitting than the other methods and thus demonstrated enhanced test 
accuracy. Another advantage of our model was the short processing time 
(5–10 s) compared with FS (7 h) and NQ (10 min) (16, 29). This advantage 
is essential for application in actual clinical fields.

TABLE 1 Performance of our proposed deep learning model trained with a single modality (T1-weighted images only) and multimodality (both T1-
weighted and T2-FLAIR images).

DSC (mean  ±  std) Max DSC Min DSC
Average volume 

difference (%)
Max volume 

difference (%)

Single modality

(Unscaled T1)
0.982 ± 0.002 0.994 0.919 1.67 ± 2.87 15.23

Single modality

(Scaled T1)
0.989 ± 0.002 0.993 0.986 0.46 ± 0.38 1.28

Multimodality

(Unscaled T1+FLAIR)
0.988 ± 0.002 0.992 0.983 0.47 ± 0.35 1.24

Multimodality

(Scaled T1+FLAIR)
0.987 ± 0.003 0.993 0.978 0.67 ± 0.61 2.88

DSC, Dice similarity coefficient; Max, maximum; Min, minimum; std, standard deviation.
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We also compared the average volume difference in the AD, MCI, 
and CN subgroups. Similar to the overall average volume difference, our 
model showed better accuracy than FS, NQ, and SynthSeg in each 
subgroup. In addition, both the single-modality and multimodality 
models showed a lower volume difference in the AD subgroup than in the 
MCI and CN subgroups. Our model used an atlas-free deep learning 
model, and this might have led to good performance despite atrophic 
changes in the brain parenchyma. As the ICV is used to adjust the degree 
of brain atrophy in patients with neurodegenerative disorders and not in 
normal patients, this can be another benefit for clinical application.

The DSC was calculated to provide a quantitative assessment of 
the performance of our segmentation model. The overall DSC of our 
model was 0.989 ± 0.002 in the single-modality segmentation model 
trained with scaled T1-weighted images only and 0.988 ± 0.002 in the 
multimodal segmentation model trained with both unscaled 
T1-weighted and T2-FLAIR images. As the DSC represents spatial 
overlap and reproducibility (30), our model demonstrated near 
complete spatial overlap and good reproducibility.

As deep learning algorithms advance, numerous algorithms for 
ICV segmentation have been developed. Ntiri et al. (22) compared the 
DSC of their segmentation model with those of other ICV extraction 

models and found values of 0.976 ± 0.016 and 0.960 ± 0.027 of 
iCVMapper and FS, respectively, using T1-weighted images. In 
addition, the DSC increased when using a multi-contrast network 
using T1-weighted, T2-weighted, and FLAIR sequences as inputs. In 
our study, the single-modality deep learning model trained with 
scaled T1-weighted images showed the best performance as the 
scaling of input data can achieve improvement in the training process. 
However, the performance of our multimodal deep learning model 
was not inferior to that of the single-modality model. In addition, 
although not included in the results of our study, the multimodal 
model showed robustness in various protocols and patient ages 
(Figure 4). Therefore, we expect the advantage of the multimodal 
model for clinical application, and further studies are needed.

Developing individual models for a single image modality is 
inefficient in clinical practice since initializing multiple models with 
limited hardware causes memory burden. Hence, a multimodal 
segmentation scheme is desired when a single task is performed on 
several types of images (sagittal 3D T1-weighted and axial T2-FLAIR 
images in our case). HyperDenseNet (31), for example, is a multimodal 
segmentation network for T1- and T2-weighted images that is 
designed for brain tissue segmentation. However, without 

TABLE 2 Comparison of the measured volume (mL) and average volume difference (%) in each subgroup for NQ, FS, SynthSeg, and our proposed deep 
learning model.

AD MCI CN Overall

Manual segmentation (mL) 1527.17 ± 165.76 1419.50 ± 163.47 1432.41 ± 162.79 1480.39 ± 164.51

Single modality (scaled T1) 

(mL)
1513.35 ± 167.78 1426.13 ± 162.20 1473.50 ± 158.52 1481.58 ± 164.04

Single modality (scaled T1) 

(%)
0.41 ± 0.35 0.50 ± 0.41 0.53 ± 0.41 0.46 ± 0.38

Multimodality

(unscaled T1+FLAIR) (mL)
1515.51 ± 169.37 1427.93 ± 164.66 1476.11 ± 163.73 1483.76 ± 166.58

Multimodality

(unscaled T1+FLAIR) (%)
0.39 ± 0.31 0.53 ± 0.43 0.58 ± 0.34 0.47 ± 0.35

NQ (mL) 1492.52 ± 163.44 1419.78 ± 156.36 1463.44 ± 174.20 1467.06 ± 163.00

NQ (%) 2.15 ± 1.54 1.84 ± 1.77 2.45 ± 2.12 2.15 ± 1.72

FS (mL) 1520.81 ± 156.69 1401.55 ± 175.42 1453.35 ± 203.61 1474.13 ± 176.66

FS (%) 3.65 ± 2.86 2.67 ± 2.03 4.78 ± 3.66 3.69 ± 2.93

SynthSeg (mL) 1534.56 ± 162.74 1456.51 ± 158.57 1498.41 ± 147.77 1506.01 ± 161.32

SynthSeg (%) 1.67 ± 1.01 2.40 ± 1.17 1.75 ± 1.35 1.88 ± 1.18

AD, Alzheimer’s disease; MCI, Mild cognitive impairment; CN, Cognitively normal.

FIGURE 3

Scatterplot of the correlation between the manually segmented ICV from the T1-weighted images in the test set and automated segmented ICV 
determined by our proposed model trained with scaled T1-weighted images only (A), unscaled both T1-weighted and T2-FLAIR images (B), FreeSurfer 
(C), NeuroQuant (D), and SynthSeg (E).
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sophisticated manipulations of the network architecture, we found 
that using the same architecture with the single-modality segmentation 
model was suitable enough for the multimodal ICV segmentation task.

There were several limitations in this study. First, although 
we randomly selected a small number of subjects from a single institution, 
there was still potential for selection bias. Second, we did not consider 
reproducibility with different MRI scanners or protocols. Several factors 
including MRI parameters, magnetic field strength, and scanner models 
can influence the results of volumetry. Particularly, FLAIR imaging used 
in our model can be  appeared variable based on the acquisition 
parameters. Third, we did not test other institutional data or perform a 
“real-world” external test. All training data used in our model originated 
from a single protocol from a single MRI scanner. Therefore, this is 
essential for application in an actual clinical setting. Further studies are 
warranted for validation.

Conclusion

Our deep learning-based automatic ICV segmentation model 
showed excellent performance in the automatic evaluation of the 
ICV. Our model might be considered for the accurate evaluation of 
brain atrophy in neurodegenerative disorders.
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FIGURE 4

Our multimodality deep learning model shows robustness in various protocols and patient ages. The multimodal model (right) shows advantages in 
enhanced T1-weighted images around hyperintense enhanced vessels (A) and images from a young patient without atrophy images (B) compared 
with the single-modality model (middle).
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