

UNIVERSIDAD PERUANA DE CIENCIAS APLICADAS

FACULTAD DE INGENIERIA

PROGRAMA ACADÉMICO DE INGENIERÍA DE REDES Y COMUNICACIONES

Diseñar una solucion de arquitectura en nube para reemplazar la arquitectura de servidores housing para pmp holding

TESIS

Para optar el título profesional de Ingeniero de Redes y Comunicaciones

AUTOR

Raúl Federico Neyra Rangel (0000-0003-4819-7036)

ASESOR:

Díaz Córdoba Aldo (0000-0003-2187-1254)

Lima, 23 de abril de 2021

DEDICATORIA
A la memoria de mi padre, Federico Américo Neyra Cornejo, por incentivarme a seguir progresando en mi vida profesional.

AGRADECIMIENTOS

Agradezco a mi madre, Susana Rangel del Risco, por el apoyo incondicional; así mismo, a Oscar Li Carrasco y PMP Holding por brindarme la información para realizar este libro de tesis.

RESUMEN

La presente tesis es una propuesta de solución para migrar de una infraestructura de

servidores en housing de PMP Holding a una solución cloud en IaaS. La infraestructura

actual se encuentra obsoleta por motivos de renovación de hardware, falta de recursos y el

desfase tecnológico por falta de soporte de las empresas proveedoras. Al evaluar la

infraestructura actual determinaremos el funcionamiento de la misma y se propondrá una

mejor utilización de los recursos. La infraestructura propuesta será evaluada en tres

proveedores de cloud para determinar cuál es la más conveniente según los requerimientos

propuestos. Se elegirá un proveedor ganador y se realizará una prueba de concepto para

para validar los objetivos plantados.

Palabras clave: Cloud Computing, housing, IaaS, infraestructura TI, costos.

ABSTRACT

This thesis is a solution proposal to migrate from a PMP Holding housing server

infrastructure to a cloud solution in IaaS. The current infrastructure is obsolete due to

hardware renewal reasons, lack of resources and technological lag due to lack of support

from supplier companies. When evaluating the current infrastructure, we will determine its

operation and propose a better use of resources. The proposed infrastructure will be

evaluated in three cloud providers to determine which is the most convenient according to

the proposed requirements. A winning supplier will be chosen and a proof of concept will

be carried out to validate the objectives set.

Keywords: Cloud Computing, housing, IaaS, IT infrastructure, costs.

ÍNDICE DE CONTENIDO

1	CAF	ÝTULO 1:	12
	1.1	Organización Objetivo	12
	1.2	Campo de Acción en la Organización Objetivo	15
	1.3	Situación Problemática	16
	1.4	Identificación del problema	17
	1.5	Objetivos	17
	1.5.	1 OBJETIVO GENERAL	17
	1.5.	OBJETIVOS ESPECÍFICOS	17
	1.6	Indicadores de Logro de los Objetivos	19
	1.7	Justificación del Proyecto	20
	1.8	Problema a resolver utilizando la solución de cloud computing	20
	1.9	Estado del arte	22
	1.9.	1 Historia del Cloud Computing	22
	1.9.	2 Concepto y características de cloud computing	23
	1.9.	Modelos de servicio del cloud computing	24
	1.9.	Modelos de despliegue de cloud computing	29
	1.9.	Principales proveedores de cloud computing	31
	1.9.	6 Cloud computing en el Perú	37
	1.9.	7 Visión a futuro del cloud computing	40
	1.9.	8 Casos de éxito de implementación de cloud computing en Perú	41
	1.9.	9 Conclusiones	44
2	CAF	ÝTULO 2: MARCO TEORICO	45
	2.1	Fase previa a la migración	45
	2.2	Fase de migración	46
	2.3	Fase posterior a la migración	47
	2.4	Consideraciones a tomar al elegir un proveedor de cloud computing	47
	2.4.	Procesos y solidez del negocio	47
	2.4.	2 Soporte administrativo	48
	2.4.	Funcionalidad y procesos técnicos	48
	2.4.	4 Prácticas de seguridad	49
3	CAF	ÝTULO 3: ANÁLISIS DEL PROBLEMA	50
	3.1	Situación actual:	50
	3.2	Análisis del problema.	53

	3.3	Registro de interesados:	54
	3.4	Recopilación de requerimientos:	54
	3.4.	1 Requerimientos de Gerencia:	54
	3.4.	2 Requerimientos de TI:	55
	3.5	Requerimientos Asociados	56
4	CAI	PÍTULO 4: DESARROLLO DE LA SOLUCIÓN	57
	4.1	4.1 Análisis detallado de cada servidor virtual:	57
	4.2	Análisis total de la infraestructura actual:	65
	4.3	Soluciones evaluadas:	67
	4.3.	1 Azure:	67
	4.3.	2 AWS:	73
	4.3.	3 OPTICAL NETWORKS:	75
	4.4	Comparación entre proveedores	78
5	CAI	PÍTULO 5: VALIDACIÓN DE RESULTADOS	81
	5.1	Objetivo específico 1:	81
	5.2	Objetivo específico 2:	81
	5.3	Objetivo específico 3:	83
	5.4	Objetivo específico 4:	83
6	CON	NCLUSIONES Y RECOMENDACIONES	90
	6.1	Conclusiones	90
	6.2	Recomendaciones	90
7	BIB	ELIOGRAFÍA	91

ÍNDICE DE FIGURAS

Figura 1.Diferencias entre los modelos de servicio cloud y on premise. Adaptado de "IaaS", por IBM,	2019.29
Figura 2. Tipos de modelo de despliegue en cloud computing. Adaptado de "Nube Hibrida", por Ca Tomás, 2018.	
Figura 3. Porcentajes de servicios de TI en los modelos de despliegue de cloud computing. Adaptac "Componentes más relevantes actualmente en el ámbito cloud", por Redacción Computing, 2018	do de
Figura 4. Cuadrante mágico de Gartner 2017. Adaptado de "Gartner para proveedores IaaS 2017", p. Rolle, 2018.	
Figura 5. Cuadrante mágico de Gartner 2018. Adaptado de "Gartner para proveedores IaaS 2018", p. Rolle, 2018.	
Figura 6. Cuadrante mágico de Gartner 2019. Adaptado de "Gartner IaaS 2019", por AWS, 2019	33
Figura 7. Comparativa de ingresos de los proveedores de cloud. Adaptado de "Radiografía de la inducloud publica", por Pietro M., 2019.	
Figura 8, Cuota del mercado de los principales proveedores de cloud. Adaptado de "La guerra del computing", por Reyes F., 2019.	
Figura 9. Fotografía de servicios cloud contratados en 2018 versus los esperados en 2020 a nive latinoamericano. Adaptado de "Hardware vs Cloud", por Caceres J., 2018.	
Figura 10. Fotografía de servicios cloud contratados en 2018 versus los esperados en 2020 a nivel l Adaptado de "Hardware vs Cloud", por Caceres J., 2018	
Figura 11. Porcentaje de compañías que esperan usar cloud computing en 2019. Adaptado de "Compadopting cloud for a mojority of IT needs", por Carpenter C.,2019	-
Figura 12: Diagrama de conectividad actual de PMP Holding	50
Figura 13: Diagrama de conectividad con Azure	68
Figura 14: Data center Azure alrededor del mundo	68
Figura 15: Latencia de data center Azure desde Perú	69
Figura 16: Tipos de servidores virtuales Azure	70
Figura 17: Tipo de servidores Azure recomendados para SAP R3	70
Figura 18: Diagrama de funcionamiento de ExpressRoute	73
Figura 19: Costo de servidores en AWS	74
Figura 20: Detalle de costo de solución en AWS	74
Figura 21: Características de solución para información histórica	75
Figura 22: Costo de solución para información histórica	75
Figura 23: Esquema de red propuesto	76
Figura 24: Esquema de conectividad directa hacia data center cloud	76
Figura 25: Características de servidor SRVPMPDEC03	84
Figura 26: Consumo de RAM del servidor SRVPMPDEC03 luego de restructuración	85
Figura 27: Características de Procesadores y RAM	86
Figura 28: Características de disco duros	87
Figura 29: Caracteriticas del servidor SRVPMPSAPPRO	87

Figura 30: Consumo de procesador	88
Figura 31: Consumo de RAM	89

ÍNDICE DE TABLAS

Tabla 1: Relacion de servidores fisicos	31
Tabla 2: Relación de servidores virtuales	52
Tabla 3: Relación de NAS	52
Tabla 4: Costo de infraestructura actual	52
Tabla 5: Lista de interesados	54
Tabla 6: Objetivos específicos relacionado a requerimientos e interesados	56
Tabla 7: Análisis de servidor SRVPMP03	57
Tabla 8: Análisis de servidor SRVPMP04	57
Tabla 9: Análisis de servidor SRVPMP05	58
Tabla 10: Análisis de servidor SRVPMP06	58
Tabla 11: Análisis de servidor SRVPMP07	59
Tabla 12: Análisis de servidor SRVPMP08	59
Tabla 13: Análisis de servidor SRVPMP12	59
Tabla 14: Análisis de servidor SRVPMP15	60
Tabla 15: Análisis de servidor SRVPMP16	60
Tabla 16: Análisis de servidor SRVPMP17	60
Tabla 17: Análisis de servidor SRVPMP18	61
Tabla 18: Análisis de servidor SRVPMP20	61
Tabla 19: Análisis de servidor SRVPMP22	62
Tabla 20: Análisis de servidor SRVPMPQV	62
Tabla 21: Análisis de servidor SRVPMPSAPPRO	62
Tabla 22: Análisis de servidor SRVPMPSAPDES	63
Tabla 23: Análisis de servidor SRVPMPQAS	63
Tabla 24: Análisis de servidor SRVPMPPSM	63
Tabla 25: Análisis de servidor SRVPMPI3	64
Tabla 26: Análisis de servidor SRVPMPTI	64
Tabla 27: Análisis de servidor SRVPMP19	64
Tabla 28: Análisis de servidor SRVPMPVC	65
Tabla 29: Servidores a eliminar	65
Tabla 30: Solución propuesta	67
Tabla 31: Costos de servidores en Azure	72
Tabla 32: Costo de solución de información histórica	72
Tabla 33: Costo de ExpressRouter	73
Tabla 34: Costo total de solución en Azure	73
Tabla 35: Total de recursos	77
Tabla 36: Características de servidores cloud	77

Tabla 37: Características de solución para información histórica	77
Tabla 38: Calculo de espacio de backup	78
Tabla 39: Costo de solución en Optical Netword	78
Tabla 40: Evaluación de proveedores según los requerimientos	80
Tabla 41: Infraestructura actual versus infraestructura propuesta	81
Tabla 42: Solución propuesta de servidores	82
Tabla 43: Porcentaje de cumplimiento de cada proveedor	83
Tabla 44: Versus de aprovechamiento de recursos del servidor SRVPMPDEC03	84

1 CAPÍTULO 1:

1.1 ORGANIZACIÓN OBJETIVO

La organización la cual se beneficiará con el proyecto es el grupo de empresas PMP Holding, el cual es una empresa de capitales peruanos conformada por PRECOR, SIGRAL, DEMTAC, MAXCO, CONSULTORIA Y ESTRATEGIA con el compromiso de desarrollar y suministrar el único y más completo sistema de construcción de acero, drywall, construcción de módulos. Compromiso mediante la búsqueda permanente de nuevas tecnologías orientadas a desarrollar nuestro sistema constructivo, ofreciendo alternativas de vanguardia que aportan beneficios a nuestros clientes de los sectores de construcción, minería, agroindustria, comercial, industrial, entre otros; tiene como visión "Ser líderes regionales suministrando soluciones constructivas innovadoras relacionadas al acero y de gran valor para nuestros clientes". Continuación detallaremos cada una de las empresas que conforma el holding:

PRECOR: fundada en 1982 con el compromiso de desarrollar y suministrar el sistema de construcción en acero a la medida de las necesidades de nuestros clientes.

Este compromiso se materializa mediante la búsqueda permanente de nuevas tecnologías orientadas a desarrollar nuestro sistema constructivo, ofreciendo alternativas de vanguardia que aportan beneficios a sus clientes de los sectores construcción, minería, agroindustria, comercial, industrial, entre otros.

Su misión es "Brindar soluciones constructivas no tradicionales relacionadas al acero, a distribuidores, contratistas, y constructores, con productos innovadores que generen un valor agregado a su negocio"; con la visión de "Ser el referente del mercado de soluciones de construcción no tradicionales relacionadas al acero".

A lo largo de más de 30 años en el mercado, han trabajado posicionando las principales familias de productos, como tubos y perfiles de acero, paneles metálicos con y sin aislante como referentes en el mercado, logrando un sólido liderazgo.

Cuenta con una moderna planta con una capacidad instalada para producir más de 160 mil toneladas métricas de planchas de acero al año. Planchas de acero con las que se elaboran variados productos como: coberturas, revestimientos, fachadas, muros, fachadas arquitectónicas, placas colaborantes, tubos, perfiles estructurales y accesorios metálicos en general.

Todos estos productos conforman el sistema de construcción en acero Precor. Un sistema que cuenta con más de 14 líneas de producción y más de tres mil productos en acero, que les permiten ofrecer soluciones constructivas seguras, innovadoras, económicas y acordes a la identidad corporativa y a las necesidades de cada empresa.

Producen paneles de acero con diferentes características de aislamiento, termicidad, luminosidad, forma, tamaño y color.

PRECOR cuenta con siete marcas posicionadas en el mercado de construcción en acero y en seco, logrando un sólido liderazgo con cada una de nuestras marcas: PRECOR, PRECOR RENT, SUPERCERCO, SUPERTECHO, PRECORFRÍO, EMSA Y CONSTRUTEK.

PRECOR: Fabricación y suministro de Sistemas de Construcción en Acero.

PRECOR RENT: Ofrece soluciones modulares para venta y alquiler, para tus proyectos como en construcciones de edificios, en campamentos mineros, industriales, entre otros. Nuestros módulos son reubicables y fáciles de transportar.

SUPERCERCO: Brindamos un sistema moderno e innovador de cerramientos estándar, siendo fabricados con paneles metálicos de acero Aluzinc y postes de acero estructural brindando un excelente componente de integración y seguridad.

SUPERTECHO: Coberturas y cerramientos de acero Aluzinc anti-fingerprint, conformada bajo el sistema ROLLFORMING. Nuestros productos TR3, TR4 XG y Perfiles, brindan la máxima calidad en coberturas y cerramientos para edificaciones con grandes beneficios.

PRECORFRIO: Conjunto de soluciones aislantes que requieran ambientes que precisen mantener un determinado régimen de temperatura constante de trabajo.

EMSA: Brindamos servicios de diseño y construcción para proyectos integrales priorizando las soluciones prefabricadas a los diferentes sectores de la economía en el mercado nacional e internacional.

CONSTRUTEK: Experto en soluciones constructivas de alta tecnología para la construcción en Drywall.

SIGRAL: Fundada en 1999 da el servicio de gestión integral de proyectos de construcción e ingeniería que incluye la gerencia, supervisión, asesoría y consultoría a lo largo de vida del proyecto. Su misión es "Prestar el servicio de gestión de proyectos de construcción, mediante un equipo profesional especializado y confiable, que asegure el desarrollo exitoso de los proyectos de nuestros clientes", teniendo la visión de "Ser reconocidos como la mejor empresa de gestión de proyectos de construcción en el Perú."

Su desempeño se rige por reconocidos estándares de calidad y el cumplimiento de la normativa y los requisitos aplicables, mediante una gestión que agrega valor y que se actualiza permanentemente sobre la base de la mejora continua de nuestros procesos.

A fines del año 2009 platearon la meta de implementar y certificar el Sistema de Gestión de Calidad de SIGRAL bajo la Norma ISO 9001 con el fin de formalizar los procesos y ser la guía para la mejora continua de los mismos, con la mira puesta en conseguir una creciente satisfacción de nuestros clientes. En el año 2011 lograron el objetivo y en julio de 2017 se obtuvo la recomendación para la certificación con la nueva versión ISO 9001:2015.

DEMTAC: Es el operador logístico del holding, ofrece los servicios de almacenamiento, trasporte y distribución de productos de construcción; operando con los más altos estándares de calidad y seguridad, llegando en el 2018 de sobrepasar la meta de los 500 días sin accidentes. Cuentan con un centro de distribución preparado para atender grandes volúmenes de despacho, teniendo como hito el 31 de julio de 2018 donde se despacho 630 toneladas en 24 horas, cubriendo así las expectativas de su cliente interno PRECOR.

Consultoría y Estrategia: Su función es proveer el back offcie a las demos empresas del grupo, es responsable de las áreas de Finanzas, Contabilidad, Legal, Tecnología de la Información y Recursos Humanos.

MAXCO: Esla la tienda retail del holding, es el canal de distribución directa al consumidor final, dedicada a la comercialización de productos y soluciones constructivas en acero y drywall, para la construcción y remodelación de todo tipo de proyectos.

1.2 CAMPO DE ACCIÓN EN LA ORGANIZACIÓN OBJETIVO

El campo de acción afecta a todas las empresas del holding de alguna u otra manera, a continuación, se detallará que procesos o servicios se verán afectados por cada una de las empresas:

PRECOR, los procesos de producción, almacén, cotización y ventas son soportados por el servidor de SAP R3; así mismo, los reportes del área comercial son realizados por el servidor de QlikView, por ultimo los archivos de todas las áreas son almacenados en el file server.

SIGRAL, para esta empresa es muy importante el almacenamiento de reportes, hojas de entrega e imágenes de sus proyectos ya que al contar con el ISO 9001 y teniendo la posibilidad de algún reclamo por para de un cliente, se tiene que tener un respaldo documentado de los procesos, toda esta información esta almacenada en el file server activo y en el file server histórico.

DEMTAC, su proceso de despacho esta soportado por el servidor de SAP R3.

MAXCO, sus procesos de cotización y ventas esta soportados por el servidor SAP R3.

Consultoría y Estrategia, los servicios que brinda a las demás empresas están sobre la arquitectura de servidores; el servicio de finanzas y contabilidad están en el servidor de SAP R3; el control y administración de planilla están sobre el servidor de Ofisis, el área de TI da los servicios de Helpdesk y administración del dominio, los cuales está sobre la arquitectura de servidores a migrar; por último, la información de todas las áreas está en el file server.

Y es así como la arquitectura actual de servidores en housing soporta los procesos de todo el holding.

1.3 SITUACIÓN PROBLEMÁTICA

PMP Holding adopto en 2011 una solución housing como solución de arquitectura de servidores, la cual estaba comprendida por 4 servidores físicos sobres los cuales se montaron 25 servidores virtuales, estos servidores virtuales usan el sistema operativo Windows Server 2008 R2; para su data histórica decidió contar con 3 NAS de 4 TB cada uno los cuales estaban en sus instalaciones. Como solución de copia de seguridad a la infraestructura de servidores se optó por un servicio de backup en cintas, pero este no incluye a los equipos NAS.

Los servidores físicos tuvieron una renovación de equipos en 2015, donde se decidió por un arrendamiento con HP por 5 años, proyectando las necesidades que se pudieran tener durante ese tiempo. Hoy en 2020 esta solución ya está al límite de sus capacidades y se tiene solicitudes de más recursos por parte de la empresa, sobre todo en disco para el almacenamiento en el file server.

Los recursos que se tienen actualmente están completamente asignados a los servidores virtuales actuales, se desea actualizar la versión del SAP para lo cual se necesita 50 GB de RAM, 1.5 TB de almacenamiento y 5 procesadores más de los que se tiene actualmente; requerimiento que la infraestructura actual no puede dar; así mismo, el almacenamiento en los servidores virtuales ya está al 95 %, almacenamiento total 12 TB, y en promedio anualmente la organización genera 1TB de información, por lo cual ya hay una necesidad de más capacidad de almacenamiento al corto plazo.

La gerencia de Administracion y Finanzas de la cual depende al área de Tecnología de la Información ha solicitado buscar soluciones que permitan una renovación tecnológica y a su vez reducir gastos.

1.4 IDENTIFICACIÓN DEL PROBLEMA

El arrendamiento de los equipos en los cuales está montada la arquitectura de servidores en housing ya venció, por lo cual no se cuenta con garantía por parte del proveedor, contratar una garantía extendida generaría un sobre costo y al estar descontinuados los equipos, en caso estos fallen, podríamos tener problemas con los repuestos. Microsoft ya no dará soporte ni publicará parches de seguridad el sistema operativo Windows Server 2008 R2, esta es la versión que tienen los servidores, lo cual deja a la infraestructura vulnerable a ataques por falta de parque de seguridad a futuro. No hay como complacer la demanda de más recursos solicitados por la organización y la información histórica no cuenta con un sistema de respaldo de información.

1.5 OBJETIVOS

1.5.1 OBJETIVO GENERAL

Diseñar una solución bajo la plataforma de cloud computing; para el grupo de empresas que integran PMP Holding; la cual soporte los servicios que actualmente tiene en su solución de servidores.

1.5.2 OBJETIVOS ESPECÍFICOS

- Realizar un análisis de las funciones que cumplen los servidores e identificar cuales participaran en el diseño de la solución de cloud computing.
- Diseñar una plataforma de servidores en cloud la cual soporte los aplicativos y servicios actuales, optimizando los recursos a usar como numero de servidores, procesadores, memoria y espacio de disco.
- Evaluar los distintos proveedores de cloud computing que se adecuan a la solución diseñada para la organización, acorde a los costos, seguridad, escalabilidad y alta disponibilidad.

•	Realizar ganador.	del	diseño	planteado	sobre	la	infraestructura	del	proveedor

1.6 INDICADORES DE LOGRO DE LOS OBJETIVOS

Objetivo Específico	Indicador de Logro	Métrica
Realizar un análisis de las funciones que cumplen los servidores e identificar cuales participaran en el diseño de la solución de cloud computing.	Reducir en un 30% los recursos usados actualmente versus los considerados para el diseño de cloud computing.	Comparativa de cantidad inicial y final de recursos asignados a la solución actual.
Diseñar una plataforma de servidores en cloud la cual soporte los aplicativos y servicios actuales, optimizando los recursos a usar como numero de servidores, procesadores, memoria y espacio de disco.	Identificar en la nueva plataforma los recursos que se adapten a la solución propuesta, estos recursos no deben de pasar de 15 servidores virtuales, 60 procesadores, 150 GB de RAM y 10 TB de almacenamiento.	Tabla de servidores indicando sus funciones dentro de la organización y detallando los recursos asignados a cada uno de ellos.
Evaluar los distintos proveedores de cloud computing que se adecuan a la solución diseñada para la organización, acorde a los costos, seguridad, escalabilidad y alta disponibilidad	Obtener más del 90% del puntaje en los criterios evaluados.	Cuadro comparativo entre los proveedores de cloud computing en base a los criterios de evaluación.
Realizar pruebas del diseño planteado sobre la infraestructura del proveedor ganador.	Validar que el diseño propuesto no supera los 60% de uso de procesador y 80% de RAM y la disponibilidad al 99.95%	Imágenes de consumo de recursos de los servidores

1.7 JUSTIFICACIÓN DEL PROYECTO

- La Gerencia de Administración de Finanzas busca aprovechar cada oportunidad que se presenta para adoptar nuevas tecnologías.
- El holding ha sufrido muchos cambios desde la implementación de la solución actual, desde 2010, es necesaria una revisión y optimización de la solución actual de servidores ya que esta está desfasada con la distribución actual de la organización.
- Se busca optimizas los gastos en el Área de IT, pagar por una solución a medida y escalable según las necesidades de la empresa; una de las características del cloud computing; es un punto para lograr el ahorro solicitado.
- El Área de TI necesita actualizar los servidores y sistemas operativos ya que estos están quedando sin garantía o soporte por parte de los proveedores.
- Migrar toda la infraestructura de servidores a cloud computing y evaluar su impacto; servirá como punto de referencia para futuras adopciones del cloud computing por parte de otras empresas.

1.8 PROBLEMA A RESOLVER UTILIZANDO LA SOLUCIÓN DE CLOUD COMPUTING

PMP Holding es un grupo de empresas que no cuenta un data center propio por lo cual tiene un servicio de hosting donde tiene montada su infraestructura de servidores, estos son 4 servidores físicos con sistema operativo Windows 2008 R2 en los cuales están montados 25 servidores virtualizados con VMware los cuales también usa como sistema operativo Windows 2008 R2; así mismo, cuenta 3 NAS con capacidad de 4TB destinada para la información histórica la cual no tiene respaldo en caso de desastre.

Tanto los servidores físicos como los NAS son arrendados a HP; este arrendamiento está a punto de vencer luego de 5 años dejando a estos equipos sin garantía y soporte por parte del fabricante; así mismo, el soporte por parte del Microsoft hacía el sistema operativo Windows 2008 R2 fue suspendido en febrero del 2020, esto quiere decir que de encontrarse alguna nueva vulnerabilidad la organización quedaría expuesta a ataques lo cual nos deja 3 alternativas:

- Comprar los equipos actuales y adquirir garantía y soporte extendido.
- Renovar los equipos dimensionando las futuras necesidades de recursos y migrar los servidores virtuales a estos nuevos equipos
- Migrar a una solución cloud computing acorde a las necesidades actuales de la organización.

Analizando las alternativas que tenemos para el problema planteado de la primera podemos indicar que, al mantener la infraestructura antigua esta nos podría generar problemas de fiabilidad que afectaría la disponibilidad de los servicios; así mismo, esta arquitectura actual está a punto de llegar a su máximo de almacenamiento limitando la escalabilidad a corto plazo, la versión del sistema operativo que usa ya no tiene soporte por parte de Microsoft y se tendría que gastar en actualizarlo.

La segunda alternativa nos obliga a dimensionar a futuro recursos, algo que no podemos saber a ciencia cierta; así mismo, estos recursos que no van a ser utilizados de inmediato generaran un gasto adicional en recursos no empleados.

Por último, la tercera alternativa de implementar toda la infraestructura de servidores en una solución cloud computing nos llevará a solicitar una infraestructura a medida evitando gastos innecesarios y con la posibilidad de solicitar más recursos según a la demanda; los proveedores de estos servicios tienen altos estándares en disponibilidad y seguridad, haciendo esta la alternativa la más adecuada para la organización.

Optar la cloud computing significa la posibilidad de ahorrar gastos al solo pagar por lo que se está consumiendo; a parte del ahorro que significa tener la misma infraestructura en cloud versus una on premise con las mismas características, la cual puede ser un ahorra de más del 20%; la conectividad con los recursos puede ser realizada desde cualquier parte del mundo lo cual se adapta a un requerimiento de la empresa de conectividad remoto; por último, aun no es común en Perú llevar toda la infraestructura de servidores a una solución cloud en este documento analizaremos la factibilidad de hacerlo.

El despliegue de la nueva infraestructura no puede exceder de 4 días calendarios, para evitar afectar los procesos de la organización y una posteríos pérdida económica por la indisponibilidad de los servicios.

1.9 ESTADO DEL ARTE

1.9.1 HISTORIA DEL CLOUD COMPUTING

Se piensa que este término cloud computing nace en los años 90, pero como concepto este nació en 1961 por John McCarthy, durante su discurso por el centenario del MIT, donde sugirió ver la computación como un sistema compartido, pensando en vender el uso del procesador, el disco duro y la memoria como si fuera otro servicio público.

La idea de alquilar tiempo de computación fue popular en los años 70 pero las limitaciones técnicas hacían complicada su práctica. A finales de los sesenta se ofrecían paquetes que incluían editores de texto, entornos de desarrollo para lenguajes de programación, paquetes de ofimática, almacenamiento de archivo y soluciones de impresión a cambio de un alquiler que iba en función del tiempo de conexión y el uso de los recursos.

En 1962 Joseph Carl Robnett Licklider (J.C.R. Licklider) introdujo la idea de miles de ordenadores interconectados para poder acceder a recursos y datos desde cualquier lugar. Meses después en abril de 1963 se presentó el esquema de una red de ordenadores interconectados para la Agencia de Investigaciones de Proyectos Avanzados de EEUU lo cual se convirtió con si implementación en ARPAnet, la precursora de la Internet que tenemos hoy.

En los 90 Internet se tenía un ancho de banda suficiente para soportar el cloud computing y fue en ese entonces cuando empezaron los primeros intentos por diseñar esta tecnología. Fue en 1996 cuando George Favaloro y Sean O'Sullivan, ejecutivos de Compaq Computer, usaron por primera vez el término "Cloud Computing" como un plan negocio.

En 2002, Amazon se percata de que solo utiliza el 15% de toda su estructura informática y lanza AWS (Amazon Web Services), un novedoso sistema de almacenamiento en la nube que permite al usuario ejecutar todo tipo de aplicaciones. De ahí en adelante la aparición de Microsoft Azure, Google Cloud o iCloud, por citar algunos ejemplos, han formado el ecosistema que tenemos hoy.

1.9.2 CONCEPTO Y CARACTERÍSTICAS DE CLOUD COMPUTING

Tras la evolución descrita anteriormente, el concepto de cloud computing se ha establecido en los últimos años y se consolida como nuevo paradigma de cálculo o escenario de plataformas TI.

Atendiendo a la definición dada por el NIST (*National Institute of Standards and Technology*), "el cloud computing es un modelo tecnológico que permite el acceso ubicuo, adaptado y bajo demanda en red a un conjunto compartido de recursos de computación configurables compartidos (por ejemplo: redes, servidores, equipos de almacenamiento, aplicaciones y servicios), que pueden ser rápidamente aprovisionados y liberados con un esfuerzo de gestión reducido o interacción mínima con el proveedor del servicio". ISO/ICE 17789:2014 define al cloud computing como "paradigma para permitir el acceso de red a un conjunto de recursos compartidos, escalables y elásticos, físicos o virtuales con aprovisionamiento de autoservicio y administración bajo demanda."

Cuando contratamos servicios de cloud computing seleccionamos una serie de recursos como servidores, almacenamiento, aplicaciones o equipos de comulaciones y los dimensionamos según nuestras necesidades. Este alquiler de recursos a medida tiene las siguientes características:

- Pago por uso: El precio del servicio varía en función de las necesidades del cliente de manera flexible.
- Acceso remoto: Como los recursos están en Internet, se puede acceder a ellos desde cualquier punto con conexión.
- Recursos compartidos: Los recursos están en reservas comunes, a excepción de nubes privadas, es decir que se comparte el hardware y software.
- Escalabilidad: Se pude redimensionar los recursos contratados de manera rápida y eficaz.
- Servicio supervisado: El control y optimización de los recursos van por parte del proveedor, siendo trasparente para el cliente.

1.9.3 MODELOS DE SERVICIO DEL CLOUD COMPUTING

Respecto a los modelos de servicio, el NIST distingue entre:

1.9.3.1 IaaS (Infraestructure as a Service):

Esta categoría proporciona servicios de infraestructura. Esto incluye la asignación de recursos informáticos y de almacenamiento, cuyo precio varía según el consumo. En otras palabras, pagas por lo que consumes. La empresa que los contrató nunca ha visto un dispositivo físico, pero pueden adquirir experiencia operativa mientras utilizan los servicios que necesitan. Un ejemplo de un proveedor conocido de este servicio es Amazon Elastic Compute Cloud.

Ventajas:

- Elimina los gastos de capital y reduce los costos operativos. IaaS evita el costo inicial de configurar y administrar un centro de datos local, lo que lo convierte en una opción económica para las nuevas empresas o para aquellos que desean probar nuevas ideas.
- Mejorar la continuidad del negocio y la recuperación ante desastres. Lograr una alta disponibilidad, continuidad comercial y recuperación ante desastres es muy costoso y requiere mucha tecnología y personal. Sin embargo, con el SLA adecuado, IaaS puede reducir este costo y permitir el acceso normal a aplicaciones y datos durante desastres o interrupciones.
- Rápida innovación. Una vez que decida traer un nuevo producto o innovación al mercado, puede preparar la infraestructura de TI necesaria en unas pocas horas o minutos, en lugar de los días o semanas (a veces meses) requeridos para la configuración interna.
- Responda más rápido a las condiciones comerciales cambiantes. Con IaaS, puede escalar rápidamente los recursos para adaptarse a la creciente demanda de aplicaciones (por ejemplo, vacaciones) y reducir los recursos nuevamente para ahorrar dinero cuando las actividades se ralentizan.

- Concéntrese en su negocio principal. IaaS permite a su equipo liberar energía para centrarse en el negocio principal de la organización en lugar de dedicar tiempo a la infraestructura de TI.
- Mejorar la estabilidad, confiabilidad y compatibilidad. Con IaaS, no es necesario mantener y actualizar el software y el hardware, y no es necesario solucionar los problemas del equipo. Con los contratos adecuados, los proveedores de servicios pueden garantizar que la infraestructura sea confiable y cumpla con los acuerdos de nivel de servicio.
- Mayor seguridad. Con el contrato de servicio adecuado, los proveedores de servicios en la nube pueden brindar seguridad para sus aplicaciones y datos, lo que puede ser mejor que lo que puede lograr en su entorno local.
- Proporcione a los usuarios nuevas aplicaciones más rápidamente. Dado que las aplicaciones se pueden desarrollar y entregar sin configurar primero la infraestructura, puede usar IaaS para proporcionarlas a los usuarios más rápido.

Escenarios IaaS habituales

- Desarrollo y pruebas. Los equipos pueden configurar y descomponer rápidamente entornos de desarrollo y prueba, reduciendo así el tiempo de comercialización de nuevas aplicaciones. Con IaaS, la expansión y la reducción de los entornos de desarrollo y prueba son más rápidas y con menores costos.
- Alojamiento de sitios web. El uso de IaaS para ejecutar un sitio web puede ser más económico que el alojamiento web tradicional.
- Almacenamiento, respaldo y recuperación. Las organizaciones evitan el gasto de capital necesario para obtener almacenamiento y la complejidad de administrar el almacenamiento, que generalmente requiere personal calificado para administrar los datos y cumplir con muchos requisitos legales. IaaS es muy útil para lidiar con demandas impredecibles y crecientes demandas de almacenamiento. También puede simplificar la planificación y la gestión de los sistemas de copia de seguridad y recuperación.

- Aplicación web. IaaS proporciona toda la infraestructura necesaria para admitir aplicaciones web, como almacenamiento, servidores web y de aplicaciones, y recursos de red. Cuando los requisitos de las aplicaciones son impredecibles, las organizaciones pueden implementar rápidamente aplicaciones web en IaaS y expandir o reducir fácilmente la infraestructura.
- Computación de alto rendimiento. La computación de alto rendimiento (HPC) en supercomputadoras, redes de PC o clústeres de PC ayuda a resolver problemas complejos que involucran millones de variables o cálculos. Por ejemplo, simulación de plegamiento de proteínas y terremotos, pronóstico del tiempo y clima, modelado financiero y evaluación del diseño de productos.
- Análisis de big data. El término "big data" se refiere a conjuntos de datos masivos que contienen patrones, tendencias y asociaciones con un gran potencial. La extracción de datos para encontrar o extraer estos patrones ocultos requiere una enorme potencia de procesamiento proporcionada de forma económica por IaaS.

1.9.3.2 PaaS (Plataform as a Service):

El servicio no requiere tecnología costosa para proporcionar una plataforma de desarrollo. El hardware y el software de este modelo son administrados por el proveedor de servicios, y los desarrolladores no necesitan preocuparse por el rendimiento del hardware y no necesitan preocuparse por las actualizaciones del sistema operativo, porque todo lo hace el proveedor de servicios. Los proveedores de soluciones PaaS más populares son Windows Azure y Google App Engine.

Ventajas:

- Reducir el tiempo de programación. Las herramientas de desarrollo de PaaS pueden reducir el tiempo dedicado a programar nuevas aplicaciones utilizando componentes de aplicación preprogramados integrados en la plataforma (como flujo de trabajo, servicios de directorio, funciones de seguridad, búsqueda, etc.).
- Agregue más funciones de desarrollo sin agregar personal. Los componentes de plataforma como servicio pueden aportar nuevas funciones a su equipo de desarrollo sin necesidad de profesionales.

- Más fácil de desarrollar para múltiples plataformas (incluidos dispositivos móviles). Algunos proveedores de servicios brindan opciones de desarrollo para múltiples plataformas, como PC, dispositivos móviles y navegadores, lo que hace que sea rápido y fácil desarrollar aplicaciones multiplataforma.
- Utilice herramientas complejas a precios asequibles. Gracias al modelo de pago por uso, las personas u organizaciones pueden utilizar software de desarrollo complejo y herramientas de análisis e inteligencia empresarial que no pueden pagar.
- Colaborar en equipos de desarrollo geográficamente dispersos. Dado que se accede al entorno de desarrollo a través de Internet, el equipo de desarrollo puede colaborar en el proyecto incluso si los miembros del equipo se encuentran en diferentes ubicaciones.
- Gestionar eficazmente el ciclo de vida de la aplicación. PaaS proporciona todas las funciones necesarias para soportar el ciclo de vida completo de las aplicaciones web: construir, probar, implementar, administrar y actualizar en el mismo entorno integrado.

Escenarios empresariales con PaaS habituales

- Marco de desarrollo. PaaS proporciona un marco que los desarrolladores pueden ampliar para desarrollar o personalizar aplicaciones basadas en la nube. De manera similar a la creación de macros en Excel, PaaS permite a los desarrolladores utilizar componentes de software integrados para crear aplicaciones. Incluyendo características de la nube como escalabilidad, alta disponibilidad y capacidades de tenencia múltiple, reduciendo así la cantidad de código que los desarrolladores deben escribir.
- Análisis o inteligencia empresarial. PaaS proporciona herramientas con servicios que permiten a las organizaciones realizar minería y análisis de datos, obtener información interna, descubrir patrones y predecir resultados para mejorar las predicciones, las decisiones de diseño de productos, el retorno de la inversión y otras decisiones comerciales.

 Servicios adicionales. Los proveedores de PaaS pueden proporcionar otros servicios que mejoran las aplicaciones, como el flujo de trabajo, el catálogo, la seguridad y la programación.

1.9.3.3 SaaS (Software as a Service):

Es el modelo más utilizado porque además de proporcionar servicios de software, también proporciona almacenamiento de información generada a partir del software. Las ventajas significativas de este modelo son la simplicidad de integración, costo y escalabilidad. La percepción de incidentes de seguridad y el almacenamiento de información en espacios físicos fuera de la propia empresa pueden considerarse desventajas. Entre los proveedores de este servicio, se pueden nombrar Google Apps, TurboTax, QuickBooks, Office 365.

Ventajas:

- Acceso a aplicaciones complejas. Para entregar aplicaciones SaaS a los usuarios, no
 es necesario comprar, instalar, actualizar o mantener ningún hardware, middleware
 o software. Con SaaS, incluso las organizaciones que no tienen los recursos para
 comprar, implementar y administrar la infraestructura y el software necesarios
 pueden usar aplicaciones comerciales complejas como ERP y CRM.
- Pague solo por el uso. También puede ahorrar dinero porque los servicios SaaS le permiten escalar o expandir los recursos verticalmente según el nivel de uso.
- Utilice software de cliente gratuito. Aunque algunas aplicaciones requieren complementos, los usuarios pueden ejecutar la mayoría de las aplicaciones SaaS directamente desde un navegador web sin descargar ni instalar ningún software. Esto significa que no tiene que comprar ni instalar software especial para los usuarios.
- Movilice a sus empleados fácilmente. Con SaaS, puede "movilizar" a sus empleados muy fácilmente, porque los usuarios pueden acceder a las aplicaciones y datos de SaaS desde cualquier computadora o dispositivo móvil conectado a Internet. No tiene que preocuparse por desarrollar aplicaciones que puedan ejecutarse en diferentes tipos de computadoras y dispositivos, porque su proveedor de servicios ya lo ha hecho. Además, no es necesario contratar personal calificado para gestionar

los aspectos de seguridad inherentes a la informática móvil. Los proveedores de servicios cuidadosamente seleccionados garantizarán la seguridad de sus datos, independientemente del dispositivo que utilice.

• Acceda a los datos de la aplicación desde cualquier lugar. Al almacenar datos en la nube, los usuarios pueden acceder a su información desde cualquier computadora o dispositivo móvil conectado a Internet. Además, cuando los datos de la aplicación se almacenan en la nube, si la computadora o el dispositivo del usuario falla, los datos no se perderán..

En la Figura 1, podemos ver las diferencias entre los tipos de servicios de computación en la nube, incluida la comparación con las soluciones locales tradicionales; preste atención al nivel de administración del dominio de TI de la empresa y al nivel de administración del proveedor de servicios:

Figura 1. Diferencias entre los modelos de servicio cloud y on premise. Adaptado de "IaaS", por IBM, 2019.

1.9.4 MODELOS DE DESPLIEGUE DE CLOUD COMPUTING

Los proveedores pueden ofrecernos los servicios cloud en tres modelos de despliegue:

1.9.4.1 Servicio en nube publica

Brinde el mismo servicio a varios clientes desde el mismo centro de datos; es decir, comparten recursos. Esto hace posible una gran escalabilidad. Los clientes utilizan servicios procesados en el mismo servidor y pueden compartir espacio en disco u otros recursos con otros clientes. El servicio de correo electrónico es un ejemplo obvio.

1.9.4.2 Servicio de nube privada

Los recursos son dedicados y entregados de forma privada a los clientes; si necesita más recursos, aún puede expandir los servicios de manera flexible; los proveedores garantizan separar los recursos arrendados de otros clientes; en comparación con las nubes públicas, controlan la seguridad de los datos Y la privacidad tiene ventajas, pero su costo es más alto.

1.9.4.3 Servicio de nube híbrida

Es una combinación de nube pública y nube privada con una única gestión, como alquilar el servicio CRM en la nube pública, pero alquilar el servicio ERP en la nube privada, para que podamos proteger los datos sensibles, el proveedor puede gestionar el CRM para mantenerlo en línea y supervisar la carga.

Figura 2. Tipos de modelo de despliegue en cloud computing. Adaptado de "Nube Hibrida", por Cabacas Tomás, 2018.

En el Informe Español de Cloud Computing 2019 realizado por la consultora Quint Wellinton Redwood, podemos ver los servicios prestados en el campo de TI de las organizaciones que están desplegando soluciones de Cloud Computing en forma porcentual en la Figura 3:

Figura 3. Porcentajes de servicios de TI en los modelos de despliegue de cloud computing. Adaptado de "Componentes más relevantes actualmente en el ámbito cloud", por Redacción Computing, 2018.

1.9.5 PRINCIPALES PROVEEDORES DE CLOUD COMPUTING

En torno al tema de este documento, en la siguiente tabla mágica de Gartner, los mayores proveedores de infraestructura IaaS como nivel de servicio son Amazon, Microsoft y Google liderados por Amazon y sus servicios AWS de Amazon Web Services. Figuras 4, 5 y 6; podemos ver la tendencia de desarrollo de esta ventaja y sus competidores:

Figura 4. Cuadrante mágico de Gartner 2017. Adaptado de "Gartner para proveedores IaaS 2017", por The Rolle, 2018.

Figura 5. Cuadrante mágico de Gartner 2018. Adaptado de "Gartner para proveedores IaaS 2018", por The Rolle, 2018.

Figura 6. Cuadrante mágico de Gartner 2019. Adaptado de "Gartner IaaS 2019", por AWS, 2019.

El vicepresidente de ingeniería de Google Cloud Eyal Manor estima que el negocio de la computación en la nube crece cada año y que el 80% de la carga de trabajo actual del servidor aún no está en la nube. Es decir, las empresas que prestan este servicio tienen mucho margen de crecimiento. En comparación con 2017, la Figura 7 tiene un crecimiento del 46% (aproximadamente US \$ 80,4 mil millones). Es Amazon, que tiene una participación de mercado del 32%. Podemos ver la comparación anterior en la siguiente figura:

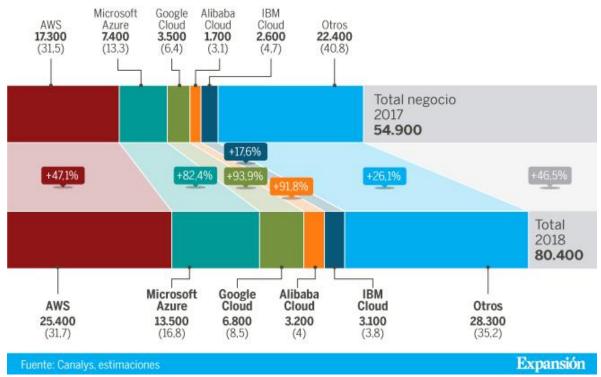


Figura 7. Comparativa de ingresos de los proveedores de cloud. Adaptado de "Radiografía de la industria de cloud publica", por Pietro M., 2019.

Vamos a hacer un repaso a cada uno de los tres principales competidores en el negocio de la nube como son AWS, Microsoft Azure y Google Cloud Platform, figura 8, para descubrir en qué se diferencian y cuáles son sus ventajas y desventajas.

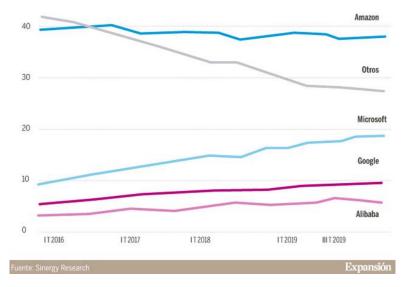


Figura 8, Cuota del mercado de los principales proveedores de cloud. Adaptado de "La guerra del cloud computing", por Reyes F., 2019.

1.9.5.1 Amazon AWS

Los servicios en la nube de Amazon son claramente el jugador dominante, proporcionando una gran cantidad de servicios de TI para empresas y desarrolladores. En los últimos diez años, ha sido el líder indiscutible de los proveedores de servicios IaaS. Además de proporcionar diversas herramientas para administradores y desarrolladores de sistemas, su objetivo siempre ha sido reemplazar la infraestructura tradicional de cualquier empresa de TI.

Todo comenzó con EC2, Elastic Compute Cloud, que permite "alquilar" y expandir máquinas virtuales en la nube, y solo pagar por el tiempo de procesamiento, mientras es compatible con Linux y Windows. Tiene una gran cantidad de configuraciones y opciones, lo que brinda a los usuarios la capacidad total de instalar cualquier software en estas computadoras. Ha evolucionado a imágenes prediseñadas de algunos de los servidores y servicios más comunes. Empresas como Bitnami aportan gran parte del mercado de herramientas para simplificar esta tarea y crear nuevos modelos de negocio como proveedores de utilidades en la nube. Otro servicio de Amazon más famoso es Amazon S3, que es un servicio de almacenamiento ampliamente utilizado que puede ser utilizado por todo tipo de usuarios, desde sitios web hasta repositorios de archivos. Casi todos los archivos o imágenes de Internet provienen de allí o de uno de sus CDN asociados. Elastic Block Storage (EBS) o Elastic Domain System (EFS) se han unido a este servicio para crear archivos de datos más complejos. Tampoco olvidaremos la base de datos: Database Services (RDS), DynamoDB NoSQL o RedShift que impulsan la interconexión de servicios y el registro de información.

1.9.5.2 Microsoft Azure

Aunque Microsoft dio un salto inmediato con su infraestructura basada en servidores Windows Server, Office, SQL Server, Sharepoint o .Net, ingresó tarde al mercado de la nube. Al reutilizarlo para implementarlo en la nube, Azure es el producto estrella.

El beneficio de admitir Azure puede ser que muchas empresas implementan y preparan todo el ecosistema de software de Microsoft en Windows. La inclusividad casi omnipresente de Azure permite que cualquier servicio de Microsoft se utilice fácilmente en la infraestructura en la nube de Microsoft sin causar demasiada fricción. La mayor parte de

la computación en la nube de Microsoft se basa en máquinas virtuales y es compatible con Linux, Windows Server, SQL Server, Oracle, IBM o SAP. Al igual que AWS, tiene un directorio de configuración extenso. Además, Azure tiene una infraestructura basada en Kubernetes y Docker Hub, y puede usar contenedores que se pueden escalar de forma independiente sin preocuparnos por las máquinas virtuales que necesitamos. De hecho, la megatendencia de casi todos los proveedores de la nube.

En términos de almacenamiento, Azure ofrece soluciones, como Blob Storage para información no estructurada, almacenamiento en cola para grandes cantidades de información, almacenamiento de archivos para recursos compartidos y almacenamiento en disco como HDD / SDD para la empresa

l igual que AWS, tiene muchos tipos diferentes de bases de datos, como bases de datos SQL, bases de datos MySQL y PostgreSQL. Además de TableStorage y Cosmos DB como NoSQL.

1.9.5.3 Google Cloud

Desde que Google introdujo Kubernetes en su propia plataforma, se ha convertido en el estándar de facto. Por tanto, una de sus principales oportunidades de negocio es el uso generalizado de contenedores en la nube, más que la comercialización específica de máquinas virtuales.

En lo que respecta a Google Cloud Platform, Google aplica todo su conocimiento para ampliar y equilibrar la infraestructura del sistema a gran escala proporcionando herramientas que son lo más similares posible a las herramientas que utiliza internamente. De esta forma, sus principales productos destacan en el uso de BigData, herramientas de análisis o aprendizaje automático.

Debido a que Google Cloud Platform se unió tarde al negocio de IaaS, el catálogo de productos es limitado, su enfoque histórico no está en el campo comercial o la infraestructura del centro de datos falta en muchas regiones como AWS o Azure, por lo que Google Cloud Platform y sus dos principales competidores lejos lloran. El uso típico de GCP todavía es experimental o como segundo proveedor para ahorrar el costo de ciertos servicios auxiliares.

Para las bases de datos en la nube, quizás lo más importante sea su sistema de almacenamiento de objetos unificado Cloud Storage, su caso de éxito es que Spotify almacena y proporciona música a través de su infraestructura. Como base de datos NoSQL, descubrimos que BigTable y BigQuery se utilizan ampliamente en BigData en la Data Science.

1.9.6 CLOUD COMPUTING EN EL PERÚ

La tendencia de adopción de la nube continúa extendiéndose y es reconocida en diferentes modelos de negocio. De hecho, si se compara 2017 con 2016, la factura por servicios de nube privada en Perú aumentó un 16,8%, mientras que la factura por servicios de nube pública, la de más rápido crecimiento, aumentó un 44,2%.

Algunos puntos interesantes son que las empresas con infraestructura optan por mover gradualmente aplicaciones satélite como correo electrónico, colaboración, CRM o recursos humanos antes que aplicaciones centrales más complejas. Por otro lado, las empresas que no tienen tanto hardware empresarial están comenzando a ver el mayor atractivo de establecer planes de trabajo en la nube, logrando así ahorros a corto plazo en la gestión y mantenimiento o actualizaciones de la infraestructura técnica.

Los resultados en América Latina (tomando en cuenta Argentina, Brasil, Colombia, Chile, México y Perú) muestran que a partir de 2018, el modelo con mayor tasa de adopción representó el 59% de la gestión del centro de datos en las instalaciones de los usuarios, de los cuales el 50% correspondió a operaciones internas tradicionales y el 9% de la inversión empresarial en nube privada. La subcontratación representó el 41%, la subcontratación tradicional representó el 16,2%, la nube administrada privada representó el 14,5% y la nube pública el 10,2%

Las expectativas para 2020 indican que la asignación de recursos en los sitios de los usuarios disminuirá, especialmente en las operaciones internas tradicionales. Esta proporción sigue siendo del 40,2% (Figura 9), pero lo más llamativo es el aumento de la subcontratación (considerando la nube publica 15,5% y nube privada alojada (18,9%). Esto está totalmente en línea con la fuerte actividad que hemos visto de los proveedores regionales, asumiendo que el alcance del proyecto es cada vez más amplio.

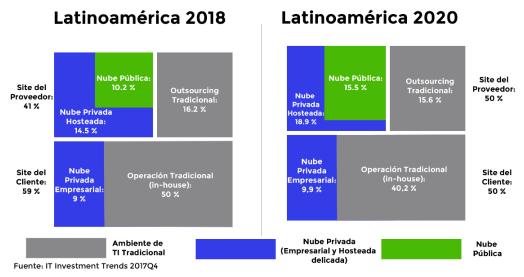


Figura 9. Fotografía de servicios cloud contratados en 2018 versus los esperados en 2020 a nivel latinoamericano. Adaptado de "Hardware vs Cloud", por Caceres J., 2018.

En Perú, aunque existen algunas diferencias, se pueden observar tendencias similares. A partir de 2018, la cantidad de sitios asignados a los usuarios fue aún mayor, un aumento del 68%. Entre el 32% de la subcontratación, la nube pública representa el 5,4%, como se muestra en la Figura 10. Entre la subcontratación, la nube pública representa el 5,4%. Esto explica en cierta medida el enorme potencial de crecimiento del país en los próximos años y también nos ayuda a comprender la base relativamente baja para comenzar a utilizar la facturación en la nube pública.

Por otro lado, antes de 2020, el 15,2% de nube privada gestionada que apreciamos puede explicar con precisión los cambios en el modelo de compra, en el que se desplaza gradualmente de los usuarios finales a más canales, incluyendo no solo a los grandes proveedores locales, sino también a diferentes integradores. y pequeñas empresas que proporcionarán estos servicios en un entorno multinube con componentes híbridos más potentes. Finalmente, el 14.5% de la nube privada de la compañía está en línea con nuestra tendencia estimada de crecimiento de rotación del mercado de infraestructura. En esta tendencia, Perú todavía tiene espacio para el desarrollo en ciertas industrias y continuará utilizando infraestructura local en la próxima fase en equipos de alto rendimiento, como servidores de alta densidad o los denominados multinodos.

Figura 10. Fotografía de servicios cloud contratados en 2018 versus los esperados en 2020 a nivel Perú.

Adaptado de "Hardware vs Cloud", por Caceres J., 2018.

En el Perú tenemos una docena de proveedores que brindan el hosting virtual, otra forma de llamar al cloud computing, tanto en nube privada como en servicios de nube publica:

- AWS
- Azure
- Huawei Cloud
- Telefónica
- IBM
- GTD
- Optical Netword
- CenturyLink
- Claro
- Entel (Antes AméricaTel)

- Canvia
- Adexus
- FiberLux

1.9.7 VISIÓN A FUTURO DEL CLOUD COMPUTING

El crecimiento del mercado mundial de la computación en la nube es innegable, con una tasa de crecimiento anual de más del 30% en la facturación anual; la compañía considera esta tecnología como una reducción de costos, actualización tecnológica y todas las ventajas que trae la nube (como la rapidez escalabilidad, conectividad remota, etc.).

En la actual pandemia global, la computación en la nube tiene estas características; aislamiento en el hogar, inconvenientes y distancia social; a medida que las empresas buscan la continuidad del negocio en situaciones de emergencia, están acelerando la transición de los servidores de datos tradicionales a la migración de soluciones en la nube. El CEO de Microsoft, Satya Nadella (Satya Nadella), dijo que han logrado dos años de transformación digital en solo dos meses.

En el informe de Google sobre el futuro de la computación en la nube, el informe encuestó a 1,100 tomadores de decisiones empresariales y de TI de todo el mundo y descubrió que la tecnología se está desarrollando rápidamente en todo el mundo y encontró las siguientes tendencias:

Con el respaldo de un sólido soporte administrativo, la computación en la nube pasará a la vanguardia de la tecnología empresarial en la próxima década. A nivel mundial, el 47% de los participantes de la encuesta dijo que la mayor parte de la infraestructura de TI de su empresa ya utiliza computación en la nube pública o privada. Cuando preguntamos sobre el pronóstico para 2029, el número aumentó en 30 puntos porcentuales.

Figura 11. Porcentaje de compañías que esperan usar cloud computing en 2019. Adaptado de "Companies adopting cloud for a mojority of IT needs", por Carpenter C.,2019.

Fernando Grados, director de Dominio Consultores, dijo que en Perú, el 68% de las grandes y medianas empresas han obtenido servicios en la nube en 2019, y se espera un incremento del 17%, a pesar del impacto de la crisis económica, que crezca en 25 % por 2020.

1.9.8 CASOS DE ÉXITO DE IMPLEMENTACIÓN DE CLOUD COMPUTING EN PERÚ

Universidad ESAN

Hasta hace 4 años, ESAN todavía mantenía todos los servicios de información en su propio centro de datos ESAN Data, lo que significaba un mayor uso de hardware, espacio, profesionales y recursos. Sin embargo, debido al aumento en el número de estudiantes y la demanda de educación virtual, la infraestructura se ha vuelto insuficiente y se ven obligados a implementar soluciones de computación en la nube o servicios en la nube.

En el pasado, el sistema se veía afectado cuando el flujo de personas era alto, y en ocasiones no había suficiente espacio para subir materiales a la plataforma, y cuando se completaba el mantenimiento del centro de datos, el acceso al sistema de aula virtual o al El sistema de pago se paralizó temporalmente. . "La cantidad de estudiantes que acceden a las plataformas virtuales está aumentando. Creemos que necesitamos recursos físicos, pero en

comparación con las plataformas en la nube, el costo de gestión de la compra e implementación de estos recursos es alto, por lo que decidimos migrar la información a la nube". ESAN University System Dijo la gerente técnica de información Mariela Camargo.

La principal preocupación de ESAN es que pierde su velocidad de respuesta al mantener a los empleados y los recursos técnicos en el centro de datos de la misma universidad, por lo que es vital mantener el centro de datos activo las 24 horas del día para recibir soporte. Después de pasar la rigurosa prueba de la Semana Internacional, la Universidad ESAN conectó por primera vez a 3.000 usuarios a la plataforma virtual, implementando así plenamente los servicios de computación en la nube. Hoy, todas sus unidades e instituciones utilizan su sistema cloud.

• GRAMECO – Grupo Americano de Comercio

El grupo de empresas al que pertenecen Rosatel y Sushi necesita definir la infraestructura técnica para apoyar sus proyectos de planificación estratégica. Necesitan acortar el tiempo de respuesta, aumentar los índices de disponibilidad y consolidar la información sobre las operaciones regionales (Perú, Chile y México). Su infraestructura no les permite participar en estos proyectos.

Antes de decidir implementar la nube, GRAMECO trabajó con servidores distribuidos en 3 centros de datos con diferentes proveedores, lo que dificultaba la coordinación. La calidad de cada servicio es diferente, por lo que la empresa no ha alcanzado un equilibrio. Raúl Torres Mízuno, Gerente de TI de GRAMECO, dijo: "Los proveedores son inconsistentes con nuestra visión y con lo que queremos lograr".

Por lo tanto, decidieron migrar servicios desde alrededor de 70 ubicaciones y concentrar todas sus plataformas a nivel operativo, y conectarse con Americatel, GRAMECO y Americatel para ajustar de manera conjunta la escala de la infraestructura de acuerdo a las necesidades del caso.

GRAMECO necesita poder integrar sus oficinas en Chile y México. Además, se necesitan configuraciones específicas para ayudar a soportar altas tasas de asistencia para que las operaciones no se vean afectadas en caso de accidente. Por esta razón, se estableció un

diseño para asegurar que si la base de datos falla, hay una copia activa a la que se redirige la consulta.

• GASCOP – Gas Comprimido del Peru S.A.

La empresa alquila servicios de alojamiento para sus servidores físicos, pero deben asumir los costos de compra de hardware, como los costos de energía, espacio, internet, soporte y mantenimiento. Además, la empresa pagó manualmente las copias de seguridad del servidor en dispositivos físicos, lo que significó utilizar costosos dispositivos de almacenamiento para ir al sitio y coordinar el acceso a las instalaciones con el proveedor de la vivienda, lo que llevó mucho tiempo y no fue eficiente. La falta de eficiencia en la realización de copias de seguridad, junto con los costos crecientes que implica la posesión de equipos físicos, pone en riesgo la continuidad de la empresa.

Después de evaluar diferentes opciones en el mercado con otras nubes públicas y nubes locales, la empresa vio la oportunidad de desarrollar soluciones adaptadas a sus necesidades. Se propone una solución para crear un servidor virtual en la nube de Amazon Web Services en una red privada conectada a todas las sedes de la organización, que tiene características similares al servidor GASCOP actual.

Con la correcta implementación de los servicios en la nube, la empresa ahora no necesita realizar copias de seguridad manuales debido a la configuración de servidores virtuales (VPS), por lo que existe una copia de seguridad diaria y automática de la información todos los días, la cual también se almacena en la nube desde AWS. Al almacenar sus servidores en la nube, GASCOP no necesita asumir los costos de energía, espacio y mantenimiento de hardware y software, ahorra dinero, tiene una disponibilidad de servicio del 99,9% y puede ampliarse según las necesidades de la organización.

1.9.9 CONCLUSIONES

- Analizar la tecnología de cloud computing me ha permitido poder identificar oportunidades tecnológicas que se pueden implementar en cualquier organización adaptándose a sus necesidades.
- Este documento podrá brindar una guía a quienes deseen migrar su infraestructura on premise a un servicio en nube; evaluando las ventajas, desventajas, proveedores y visión a futuro de este servicio.
- Cloud computing es una tecnología en auge con una buena proyección hacia el futuro;
 en el 2017 en Peru el 25% de las empresas contaban con algún servicio en nube, para el 2020 se estimaba que esta estadística aumente al 50%, con la emergencia sanitaria que estamos viviendo en estos momentos los especialistas prevén un aumento aún mayor.
- Sus características de pago el uso y el escalamiento o elasticidad por demanda es muy atractiva para las empresas, ya que la implementación de cloud computing para reemplazar un data center on premise disminuiría el CAPEX y si bien se aumentaría un servicio al OPEX este gasto seria menor a la inversión en infraestructura on premise.
- Las amenazas y riesgos a los que están expuestos en este momento un data center on premise, que son asumidas por la organización; serían traspasados al proveedor de servicio de cloud computing para lo cual se debe de tener muy en claro los SLA de servicio.
- Se tiene una dependencia muy grande con el proveedor del servicio, ya que cada vez más los procesos de las organizaciones son digitalizados y son soportados por la infraestructura informática, migrar el data center on premise donde se procesan estas operaciones genera dicha dependencia.

2 CAPÍTULO 2: MARCO TEORICO

A menudo se preguntan cuáles son las mejores prácticas a la hora de migrar aplicaciones a la nube de forma rápida y fiable. Si bien la estructura organizacional y el negocio de cada empresa son diferentes, se han identificado una serie de modelos y prácticas, y estos modelos y prácticas tienden a repetirse en casi todos los casos:

2.1 FASE PREVIA A LA MIGRACIÓN

- Tener una comprensión clara de cómo interactuarán la tecnología y los negocios en el futuro. Piense en cómo su visión afectará la estrategia de TI de la organización y comuníquela. La capacidad de comunicar claramente por qué esta estrategia es importante para la organización es fundamental.
- Defina y comparta pautas generales sobre su modelo de gestión de la nube. Determine el puesto y las responsabilidades de cada miembro del equipo y asegúrese de que se cumplan los principios de seguridad de datos de la organización en términos de derechos de acceso y separación de poderes. Este plan ayuda a garantizar que se cumplan sus objetivos comerciales. Además, esto te permite incorporar los controles necesarios para incrementar el nivel de seguridad. Antes de otorgar acceso a los usuarios internos a su servicio en la nube, debe responder algunas preguntas: ¿Cuántas cuentas necesita? ¿Quién tendrá derecho a usar qué? ¿Cómo otorgará estos derechos de acceso? Al definir un modelo de gestión en la nube.
- Formar un equipo desde el inicio del proceso. Cuanta más tecnología tenga, más fácil será la transición. Cuanto más enriquecedoras sean las habilidades de su equipo, más fácil será evitar el miedo, la duda y la incertidumbre y eliminar las barreras a la migración. Este proceso debe tener lugar al principio de la transición y luego tomar decisiones sobre el futuro del ecosistema informático a nivel organizacional.
- Dedique tiempo y esfuerzo para definir cómo realizar operaciones en la nube.
 Analice qué procesos deben modificarse o rediseñarse, qué herramientas operativas

pueden ayudarlo y qué nivel de capacitación operativa se requiere. Analizar las operaciones desde el principio ayudará a lograr una perspectiva global y garantizará que el entorno esté alineado con la estrategia comercial general.

- Determine qué recursos informáticos tiene actualmente y qué recursos informáticos se incluirán en cada migración. Este proceso está diseñado para cuantificar y medir claramente el éxito de su adopción de la nube. Tómese el tiempo para determinar la herramienta de descubrimiento correcta para su proyecto y actualice el manifiesto de la aplicación. Esto simplificará la planificación del proyecto de migración y minimizará el riesgo de olvidar dependencias durante el proceso de migración.
- Elija el socio más adecuado para apoyar la transición. Qué proyectos deben tener métodos y estrategias de gestión de proyectos ágiles que satisfagan sus necesidades.

2.2 FASE DE MIGRACIÓN

- Empieza poco a poco. En otras palabras, busque el éxito a corto plazo. Cuanto más se adapte el equipo a los servicios en la nube, antes todos los involucrados verán los beneficios y más fácil será "vender" esta visión dentro de la organización. Por esta razón, la transparencia y la coherencia son importantes.
- Automatización. La automatización hace posible la agilidad de la nube. Tómese el tiempo para repensar su proceso y establecer un nuevo proceso para que la migración sea lo más automática posible. Si no es posible automatizar todos los aspectos, determine cuidadosamente qué aspectos son factibles y proporcione a su equipo las herramientas y el conocimiento necesarios para lograr estos aspectos.
- Piense en la nube como un elemento de transformación. Para ello, ajustará los procesos internos para que puedan afrontar este cambio tecnológico. Aproveche al máximo esta naturaleza transformadora para unir a todas las partes involucradas en este nuevo paradigma.
- Utilice servicios totalmente gestionados siempre que sea posible. Esto incluye servicios como Amazon RDS, AWS Directory Service y Amazon DynamoDB. Deje que AWS se encargue de las actividades de mantenimiento diarias y libere a su equipo para que se concentre en lo más importante: los clientes.

2.3 FASE POSTERIOR A LA MIGRACIÓN

- Supervise todo. Tener una estrategia de monitoreo integral garantizará que no pase por alto ningún detalle al crear una arquitectura robusta para su aplicación. Al considerar la compensación entre rendimiento y costo, la inteligencia basada en datos operativos ambientales le permitirá tomar mejores decisiones comerciales.
- Utilice herramientas de monitorización nativas en la nube. Actualmente, existen muchas herramientas para brindar información y monitorear aplicaciones en AWS (como New Relic, APPDYNAMICS, AWS CloudWatch Logs ...). Utiliza la herramienta que mejor se adapte a tu actividad.
- Aproveche la asistencia técnica de los proveedores de la nube. Los administradores de cuentas técnicos y los administradores de facturación que pertenecen al paquete de soporte empresarial en la nube son recursos útiles. Por lo tanto, los expertos en la nube pasarán a formar parte de su equipo de nube virtual, le proporcionarán un punto de contacto centralizado y recursos de comunicación, y representarán una fuente de valiosa información y asesoramiento técnico.

2.4 CONSIDERACIONES A TOMAR AL ELEGIR UN PROVEEDOR DE CLOUD COMPUTING

Decidir cuál será nuestro proveedor de cloud es una tarea que no podemos tomar a la ligera, ya que tendremos una gran dependencia a él, es por eso que Microsoft nos indica que debemos tener varios aspectos en cuenta:

2.4.1 PROCESOS Y SOLIDEZ DEL NEGOCIO

- Solidez financiera. El proveedor debe tener un historial de estabilidad y debe tener una solidez financiera con capital suficiente para operar sin problemas a largo plazo.
- Organización, gobernanza, planeamiento y administración de riesgos. El proveedor debe tener una estructura administrativa formal, directivas de administración de riesgos establecidas y un proceso formal para la evaluación de otros proveedores.

- Confianza. Debe estar de acuerdo con la compañía y sus principios. Compruebe la reputación del proveedor y vea quiénes son sus asociados. Averigüe su nivel de experiencia en la nube. Lea opiniones y hable con clientes que estén en una situación similar a la suya.
- Conocimiento empresarial y técnico. El proveedor debe comprender su negocio y lo que desea hacer, y debe ser capaz de alinearlo con su pericia técnica.
- Auditoría de cumplimiento. El proveedor debe poder validar el cumplimiento de todos sus requisitos a través de una auditoría externa.

2.4.2 SOPORTE ADMINISTRATIVO

- Contratos de nivel de servicio. Los proveedores deben tener capacidad para garantizarle un nivel de servicio básico que le satisfaga.
- **Informes de rendimiento.** El proveedor debe poder proporcionarle informes de rendimiento.
- Supervisión de recursos y administración de la configuración. Debe haber suficientes controles para que el proveedor pueda supervisar y hacer un seguimiento de los servicios que ofrece a los clientes y de los cambios que tengan lugar en sus sistemas.
- Facturación y contabilidad. Deben estar automatizadas para que pueda supervisar los recursos que utiliza y el costo, de forma que no se encuentre con facturas inesperadas. Debe haber también soporte para problemas relacionados con la facturación.

2.4.3 FUNCIONALIDAD Y PROCESOS TÉCNICOS

- Facilidad de implementación, administración y actualización. Asegúrese de que el proveedor cuenta con mecanismos que faciliten la implementación, administración y actualización de su software y sus aplicaciones.
- Interfaces estándar. El proveedor debe usar transformaciones de datos y API estándar para que su organización pueda crear conexiones con la nube fácilmente.

- Administración de eventos. El proveedor debe tener un sistema formal para la administración de eventos que esté integrado en su sistema de supervisión o administración.
- Administración de cambios. El proveedor debe disponer de documentación y procesos formales para la solicitud, el registro, la aprobación, las pruebas y la aceptación de cambios.
- Funcionalidad híbrida. Incluso si no planea usar una nube híbrida en principio, debe asegurarse de que el proveedor puede ofrecer este modelo. Tiene ventajas que quizá desee aprovechar más adelante.

2.4.4 PRÁCTICAS DE SEGURIDAD

- Infraestructura de seguridad. Debe haber una infraestructura de seguridad integral para todos los niveles y tipos de servicios en la nube.
- Directivas de seguridad. Debe haber establecidos procedimientos y directivas de seguridad integrales que controlen el acceso a los sistemas del proveedor y de los clientes.

3 CAPÍTULO 3: ANÁLISIS DEL PROBLEMA

3.1 SITUACIÓN ACTUAL:

PMP Holding cuenta desde el 2015 con una solución de red MPLS entre sus 4 sedes las cuales se conectan al data center donde se encuentran sus servidores en la forma de housing, figura 10.

DIAGRAMA WAN - PMP HOLDING

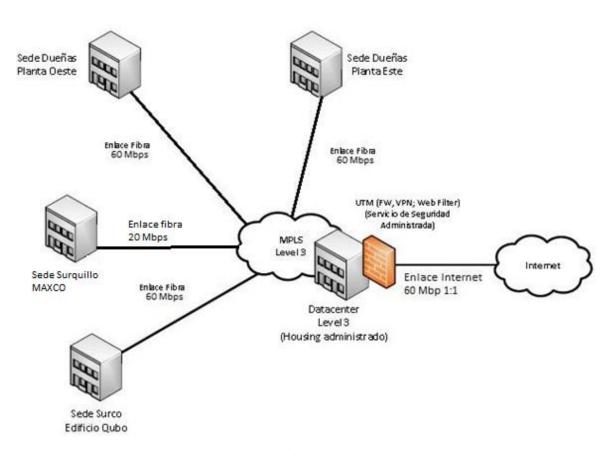


Figura 12: Diagrama de conectividad actual de PMP Holding

Esta solución de housing está comprendida de la siguiente forma:

Ítem s	Nombre del Servidor	Procesadores (CPUs)	Memoria RAM (GB)	Rol del Servidor	Licenciamiento de Sistema Operativo
1	ESXIPMP01	12	56	Host Vmware	Vmware vSphere Enterprise Plus 5
2	ESXIPMP02	12	56	Host Vmware	Vmware vSphere Enterprise Plus 5

3	ESXIPMP03	12	56	Host Vmware	Vmware vSphere Enterprise Plus 5
4	ESXIPMP04	12	56	Host Vmware	Vmware vSphere Enterprise Plus 5

Tabla 1: Relación de servidores físicos

La cual soporta los siguientes servidores virtuales:

Items	Nombre del Servidor	vCPU s	RAM (GB)	HD (GB)	Rol del Servidor	Licenciamiento de Sistema Operativo	BD
SRV01	SRVPMP03	4	8	140	UniFlow (Contador impresión)	Windows Server 2008 Ent x64 R2	
SRV02	SRVPMP04	4	4	160	S10, OFISIS (BD Planillas)	Windows Server 2008 Ent x64 R2	SQL Server 2008
SRV03	SRVPMP05	4	6	1142	File Server Qubo- Precor, Print Server CHEQUES Qubo	Windows Server 2003 Std x86	
SRV04	SRVPMP06	3	8	299	WSUS PMP / KAV Administrator	Windows Server 2008 Std x64 R2	
SRV05	SRVPMP07	2	4	80	Servidor SW Llaves digitales	Windows Server 2008 Ent x64 R2	SQL Server 2008
SRV06	SRVPMP08	4	4	180	FTP Server, Abacheq Emsa	Windows Server 2008 Ent x64 R2	
SRV07	SRVPMP12	2	2	236	BD Sql2005- Abacont, Data Empresitas, BSC, SAP Qubo	Windows Server 2003 Std x86	SQL Server 2008
SRV08	SRVPMP15	4	6	2490	File Server	Windows Server 2008 Std x64 R2	
SRV09	SRVPMP16	4	6	2260	File Server Histórico - Sigral	Windows Server 2008 Ent x86 R2	
SRV10	SRVPMP17	4	4	80	Active Directory Domain Server, DNS Server, DHCP	Windows Server 2012 Std x64 R2	
SRV11	SRVPMP18	4	6	80	Active Directory Domain Server, DNS Server, DHCP	Windows Server 2012 Std x64 R2	
SRV12	SRVPMP20	4	6	480	File Server Emsa	Windows Server 2003 Std x86	
SRV13	SRVPMP22	4	8	310	Sharepoint Foundation 2010	Windows Server 2008 Std x64 R2	Sharepoint Foundation 2010
SRV14	SRVPMPQV	4	12	230	Qlikview (Business Intelligence)	Windows Server 2008 Std x64 R2	

	TOTAL	89	152	11017			
SRV22	SRVPMPVC	2	8	55	Vcenter	Windows Server 2008 Std x64 R2	
SRV21	SRVPMP19	8	6	80	Veeam backup and replication	Windows Server 2012 Std x64 R2	
SRV20	SRVPMPTI	4	4	48	GLPI, OCS Inventory	CentOS 6.7 x86_64	MySQL
SRV19	SRVPMPL3	2	8	80	SMTP, LDAP Office365		
SRV18	SRVPMPSAPSM	2	8	332	SAP SOLMAN	Windows Server 2008 Ent x64 R2	Oracle 10g
SRV17	SRVPMPSAPQAS	2	4	850	SAP CALIDAD	Windows Server 2008 Ent x64 R2	Oracle 10g
SRV16	SRVPMPSAPDES	2	6	407	SAP DESASARROLO	Windows Server 2008 Ent x64 R2	Oracle 10g
SRV15	SRVPMPSAPPRO	16	24	998	SAP PRODUCTIVO	Windows Server 2008 Ent x64 R2	Oracle 10g

Tabla 2: Relación de servidores virtuales

Así mismo, se cuenta con tres NAS, para almacenar la data histórica, con las siguientes características:

Íte m	Nombre	Capacida d Efectiva
1	NAS 1	4 TB
2	NAS 2	4 TB
3	NAS 3	4 TB

Tabla 3: Relación de NAS

Toda esta infraestructura genera un costo mensual de \$ 8786.64 el cual se detalla en la siguiente tabla:

Concepto	Monto		
Alquiler de servidores a HP	\$	5,623.64	
Alquiler de NAS a HP	\$	63.00	
Servicio de Housting	\$	1,800.00	
Administración de SO	\$	1,300.00	
TOTAL	\$	8,786.64	

Tabla 4: Costo de infraestructura actual

3.2 ANÁLISIS DEL PROBLEMA

El estado actual de la infraestructura presenta los siguientes problemas para la organización:

- Los sistemas operativos, sobre los cuales están montados los servicios brindados a la organización, ya no cuentan con soporte por parte del proveedor; este escenario abre una puerta a los ataques informáticos, como por ejemplo el ramsomeare WannaCry que en mayo de 2017 infecto a cientos de empresas en más de 150 países, encriptando la información de las mismas y pidiendo rescate para la liberación de la misma, se estimo que su impacto en perdidas fue mayor a los 200 millones de dólares.
- Este tipo de arquitectura se tiene desde el 2011, desde esa fecha a el día de hoy en 2020 el holding ha sufrido muchos cambios a nivel estructural el cual no se ha reflejado en la solución de servidores y los servicios que soportan, por lo que se cree que los recursos informáticos no están siendo utilizados adecuadamente.
- La solución actual ya está al máximo de su capacidad, al 95% de almacenamiento, que en total tiene 12TB y al tener una infraestructura rígida a nivel de hardware los requerimientos de más recursos por pares de las empresas que conforman el holding no pueden ser atendidos a corto plazo, se tiene un crecimiento anual de 1 TB en almacenamiento; lo cual indica que no se podrá cumplir las necesidades del próximo año.
- La solución que se tiene para almacenar la información histórica no cuenta con respaldo en caso de desastre; si bien esta data es poco revisada, si es muy importante ya en algunas ocasiones tenemos reclamos por parte de clientes de ventas o proyectos antiguos que no ser resueltos tendían consecuencias legales y económicas para las empresas.
- El tiempo de arrendamiento y la respectiva garantía de los servidores físicos ya ha vencido, esto trae consigo que, si falla algún componente de los equipos, estos no podrán ser reparados por la garantía, teniendo que buscar alguna solución que ocasionaría un costo extra.

3.3 REGISTRO DE INTERESADOS:

El registro de interesados es un punto importante en el proyecto, para lo cual se elabora la siguiente matriz, que muestra el rol que cumple en el proyecto cada interesado, la expectativa, el nivel de influencia e interés en el proyecto de cada participante.

ID	NOMBRE DE INTERESADO	POSICION	ROL	EXPECTATIVAS	INFLUENCIA	INTERES
1	Gerencia de Administraci ón y Finanzas	Gerente	Patrocinador	Generar un ahorro significativo para el área	Alta	Alta
2	Jefe TI	Jefe	Director del proyecto Actualización de la infraestructura de servidores, cumplir con las necesidades de la organización		Alta	Alto
3	Gerencia General	Gerente	Alta dirección	Procienta		Alta
4	Analista TI	Analista	Miembro del proyecto	Miembro del Tener una infraestructura		Alto
5	Usuarios internos	Usuario final	Usuarios	Las solicitudes de más recursos en los servidores sean atendidas con rapidez	Bajo	Bajo

Tabla 5: Lista de interesados

3.4 RECOPILACIÓN DE REQUERIMIENTOS:

3.4.1 REQUERIMIENTOS DE GERENCIA:

RQ01: La solución propuesta debe de significar un ahorro mensual mayor al 20% del gasto actual.

RQ02: El tiempo de migración de plataforma no puede exceder los 4 días.

RQ03: Una vez aprobados los aumentos de recursos estos deben de ser aplicados en un máximo de 24 horas.

RQ04: Evitar costos ocultos en el servicio contratado, de ser posible que el costo mensual sea fijo.

RQ05: El contrato por el servicio no debe de ser mayor de 2 años.

3.4.2 REQUERIMIENTOS DE TI:

RQ06: Evaluar la infraestructura actual y determinar la utilidad de cada servidor en la estructura actual del holding.

RQ07: Proponer una solución en cloud computing que reemplace y actualice en su totalidad la infraestructura de servidores actual del holding.

RQ08: La solución propuesta debe de incluir las licencias de los sistemas operativos y base de datos a actualizar.

RQ09: La solución propuesta debe de contar con un sistema de backup que cumpla con la política de respaldo de la organización, el cual debe de incluir la información histórica.

RQ10: La escalabilidad de cualquier recurso en la solución propuesta debe se estar garantizado en un máximo de 24 horas.

RQ11: La disponibilidad de la solución tiene que ser de 99.95% o mayor.

RQ12: La latencia en la conectividad con la plataforma a elegir debe de ser la menor posible.

3.5 REQUERIMIENTOS ASOCIADOS

N°	Objetico Especifico	Requerimiento	Interesados
OE01	Realizar un análisis de las funciones que cumplen los servidores e identificar cuales participaran en el diseño de la solución de cloud computing.	RQ06	Jefe TI, Analista TI
OE02	Diseñar una plataforma de servidores en cloud la cual soporte los aplicativos y servicios actuales, optimizando los recursos a usar como numero de servidores, procesadores, memoria y espacio de disco.	RQ01, RQ07, RQ08, RQ09, RQ10	Jefe TI, Analista TI
OE03	Evaluar los distintos proveedores de cloud computing que se adecuan a la solución diseñada para la organización, acorde a los costos, seguridad, escalabilidad y alta disponibilidad.	RQ02, RQ03, RQ04, RQ05	Gerencia General, Gerencia de Administración y Finanzas, Jede TI, Usuarios internos
OE04	Realizar pruebas del diseño planteado sobre la infraestructura del proveedor ganador	RQ11, RQ12	Jefe TI, Analista TI

Tabla 6: Objetivos específicos relacionado a requerimientos e interesados

4 CAPÍTULO 4: DESARROLLO DE LA SOLUCIÓN

4.1 4.1 ANÁLISIS DETALLADO DE CADA SERVIDOR VIRTUAL:

Tomando como base la "Tabla 2: Relación de servidores virtuales" se analizó en detalle cada servidor y su función actual en la organización, de lo cual se obtuvieron los siguientes resultados:

	Nombre		SRVPMP03			
	Procesadores	3				
	% usado al mes		3.57			
	RAM (GB)		8			
	% usado al mes		43.32			
	DISCO	Total	C:	E:		
SRV01	Tamaño en GB	140	80	60		
	% de uso de disco	51.915	33.29	70.54		
	SO	Windows Server 2008 Ent x64 R2				
	Rol del servidor	Servidor de impresoras				
		Controlador de cuota de impresión				
		Los servicios brindados están vigentes, se				
	Conclusión	necesita actualizar el SO, los servicios				
	Conclusion	brindados usan al máximo los recursos				
		asignados.				

Tabla 7: Análisis de servidor SRVPMP03

	Nombre		SRVPMP	04		
	Procesador	4				
	% usado al mes		3.26			
	RAM (GB)		4			
	% usado al mes		88.72			
	DISCO	Total	C:	D:		
	Tamaño en GB	160	80	80		
SRV02	% de uso de disco	68.39	40.64	96.14		
	SO	Windows Server 2008 Ent x64 R2				
	BD	SQL Server 2008				
		S10				
	Rol del servidor	Ofisis – sistema de planillas				
		Sistema de control de asistencia				
		Es necesario una la actualización del SO y la				
	Conclusión	BD; aumentar la RAM y el espacio en la				
		unidad D	1 CDVDVD04			

Tabla 8: Análisis de servidor SRVPMP04

	Nombre		SRVPMP05					
	Procesador		4					
	% usado al mes			2.9				
	RAM (GB)			6				
	% usado al mes			51.23	8			
	DISCO	Total	C:	D:	E:	F:		
SRV03	Tamaño	1142	80	112	450	500		
SK V 03	% de uso de disco	73.15	56.15	90.15	98.79	87.68		
	SO	Windows Server 2003 Std x86						
	Rol del servidor	Servidor de Archivos						
		La información que contiene el servidor data desde el 2010, es						
	G 1 1/	necesario enviar la información antigua a la solución de						
	Conclusión	información histórico; la estructura del file server no está acorde a la estructura actual de la organización. Se tiene que actualizar el						
				-	-			
		SO y aumer		o en disco en	las unidades I	D, Е у F.		

Tabla 9: Análisis de servidor SRVPMP05

	Nombre	SRVPMP06				
	Procesador	4				
	% usado al mes		4.5			
	RAM (GB)		8			
	% usado al mes	39.31				
	DISCO	Total	C:	D:		
SRV04	Tamaño	299	80	219		
	% de uso de disco	31.98	53.45	10.51		
	SO	Windows Server 2008 Std x64 R2				
	Rol del servidor	Servicio de WSUS				
	1101 001 501 11001	Consola de administración de antivirus				
		Los servicios están vigentes, se detiene que				
	Conclusión	actualizar el SO, los servicios brindados usan				
		al máximo los r	ecursos asignado	os.		

Tabla 10: Análisis de servidor SRVPMP06

	Nombre	SRV	PMP07
	Procesador		3
	% usado al mes	3.37	
	RAM (GB)		4
SRV05	% usado al mes	53.10	
	DISCO	Total	C:
	Tamaño	80	80
	% de uso de disco	45.2 45.2	
	ver 2008 Ent x64 2		

BD	SQL Server 2008
Rol del servidor	Sistema de acceso de puertas magnéticas.
Conclusión	El servicio del sistema de acceso ya fue cambiado por otra solución, montado en el servidor SRVPMP04

Tabla 11: Análisis de servidor SRVPMP07

	Nombre	SRVPMP08					
	Procesador	4					
	% usado al mes		1.69				
	RAM (GB)	4					
	% usado al mes	57.62					
	DISCO	Total	C:	D:			
SRV06	Tamaño	180 80 100					
	% de uso de disco	35.45	43.7	27.19			
	SO	Windo	ws Server 2008	Ent x64 R2			
	Rol del servidor	FTP Sigral Sistema contable Abacheq EMSA					
		El servicio FTP es obsoleto, se tiene que buscar otra solución, EMSA es una empre					
	Conclusión						
			e ya no está activ ado esporádicam				

Tabla 12: Análisis de servidor SRVPMP08

	Nombre		;	srvpmp12		
	Procesador	2				
	% usado al mes			4.15		
	RAM (GB)	2				
	% usado al mes	79.60				
	DISCO	Total	C:	D:	E:	
SRV07	Tamaño	236	80	126	30	
SK VO7	% de uso de disco	75	36.58	100	88.42	
	SO	Windows Server 2003 Std x86				
	BD	SQL Server 2005				
	Rol del servidor	Sistema contable Abacont Información de empresas no activas en el holding				
		El servicio	de Abacont no e	s usado actualme	nte, la data de las	
	Conclusión	empresas desactivadas debe de ser trasladada a la solución de				
			ción histórica.	D) (D) (

Tabla 13: Análisis de servidor SRVPMP12

	Nombre	SRVPMP15
SRV08	Procesador	4
SKVU	% usado al mes	3.69
	RAM (GB)	6

% usado al mes	46.65					
DISCO	Total	C:	E:	F:	G:	I:
Tamaño	2490	80	900	360	150	1000
% de uso de disco	89.78	60.75	99.49	96.79	92.88	99
SO	Windows Server 2008 Std x64 R2					
Rol del servidor	File server activo					
Conclusión	Contiene la mayoría de la información activa del holding, la estructura de las carpetas no va acorde con el organigrama actual de la organización, contiene información desde el 2010, ya no hay espacio en los discos, es necesario la actualización del SO.					

Tabla 14: Análisis de servidor SRVPMP15

	Nombre		SRVPMP	16		
	Procesador	4				
	% usado al mes		13.08			
	RAM (GB)	6				
	% usado al mes	69.27				
	DISCO	Total	C:	F:		
SRV09	Tamaño	2260	80	2180		
	% de uso de disco	58.63	21.29	95.96		
	SO	W	indows Server 200	8 Ent x86 R2		
	Rol del servidor	File server	histórico Sigral			
	Conclusión	Contiene información historia de una de las empresas desde 2008, el costo de tenerla en los servidores activos es un gasto innecesario ya que el acceso a el es esporádico.				

Tabla 15: Análisis de servidor SRVPMP16

	Nombre	SRVI	PMP17		
	Procesador	4			
	% usado al mes	5.	.61		
	RAM (GB)		4		
	% usado al mes	ado al mes 74.12			
	DISCO	Total	C:		
CDV/10	Tamaño 80		80		
SRV10	% de uso de disco	39.5	39.5		
	SO	Windows Server 2012 Std xo			
	Rol del servidor	Administrador de dominio principal AD, DHCP, DNS, Agent F			
		Servicios primordi	•		
	Conclusión	funcionamiento de la			
	T 11 16 A (1' '	infraestructura informática.			

Tabla 16: Análisis de servidor SRVPMP17

	Nombre	SRVI	PMP18	
	Procesador	4		
	% usado al mes	1.	74	
	RAM (GB)		6	
	% usado al mes	41	.86	
	DISCO	Total	C:	
CDV/11	Tamaño	80	80	
SRV11	% de uso de disco	34.3	34.3	
	SO	Windows Server 2012 Std :		
	Rol del servidor	Administrador de dominio secundario.		
	Roi dei sei vidoi	AD, DHCP, DNS		
		Servicios primordiales para el		
	Conclusión	funcionamiento de la		
	T 11 17 4 (1)	infraestructura info		

Tabla 17: Análisis de servidor SRVPMP18

	Nombre		SRVPMP20			
Procesador 4						
	% usado al mes	usado al mes 0.83				
	RAM (GB)	6 39.56				
	% usado al mes					
SRV12	DISCO	Total C: D:				
	Tamaño	480	80	400		
	% de uso de disco	67.78	60.51	75.05		
	SO	Windows Server 2003 Std x86				
	Rol del servidor	File server EMSA				
	Conclusión	Servidor en d	esuso			

Tabla 18: Análisis de servidor SRVPMP20

	Nombre		SRVPMP2	22		
	Procesador	4				
	% usado al mes		3.33870967	77		
	RAM (GB)		8			
	% usado al mes	75.034375				
	DISCO	Total	C:	D:		
SRV13	Tamaño	310	63.73	93.83		
	% de uso de disco	70.655	45.31	96		
	SO	Windows Server 2008 Std x64 R2				
	BD	SQL Server 2008				
	Rol del servidor	Sharepoint F	Foundation 2010 –	Intranet		
	G 1 1/	El servicio sigue en uso, en algunas				
	Conclusión		as, pero esta desac actualización del S			
		necesario ia	detadifización del l	30.		

Tabla 19: Análisis de servidor SRVPMP22

	Nombre		SRVPMPQ	OV		
	Procesador	4				
	% usado al mes		5.61			
	RAM (GB)	12				
	% usado al mes	55.06				
	DISCO	Total C: D:				
SRV14	Tamaño		80	150		
	% de uso de disco	55.115	80.68	29.55		
	SO	Win	dows Server 2008	8 Std x64 R2		
	Rol del servidor	Qlikview (B	usiness Intelligend	ce)		
		Demanda diaria para las proyecciones del área				
	Conclusión	comercial y gerencia de Precor. Es necesar				
	T 11 20 4 /1	actualización	1 del SU			

Tabla 20: Análisis de servidor SRVPMPQV

	Nombre			SRVPN	IPSAPPR	O		
	Procesador		16					
	% usado al mes				7.04			
	RAM (GB)				24			
	% usado al mes				54.12			
	DISCO	Total	C:	D:	F:	G:	I:	
SRV15	Tamaño	998	100	50	700	50	90	
SKV15	% de uso de disco	66.926	76.05	43.16	95.54	22.13	97.75	
	SO	Windows Server 2008 Ent x64 R2						
	BD			Ora	Oracle 10g			
	Rol del servidor	Servidor SA	ervidor SAP R3 Productivo					
					Versión del SAP, BD y SO están desactualizadas, es necesario			
Conclusión actualizarlas para tener soporte del por parte de los fab								
				l la las área	is de Finan	zas, Contabi	lidad,	
		Ventas y Pro		TDI/DI/DO				

Tabla 21: Análisis de servidor SRVPMPSAPPRO

	Nombre			SRVPN	IPSAPDES	5		
	Procesador				2			
	% usado al mes		4.72					
RAM (GB)				6				
SRV16	% usado al mes	85.07						
SKV10	DISCO	Total	C:	D:	E:	F:	I:	
	Tamaño	407	100	50	25	200	30	
	% de uso de disco	77.166	72.03	71.1	94.43	80.26	68.01	
SO Windows Ser					erver 2008 Ent x64 R2			
	BD			Ora	cle 10g			

Rol del servidor	Sistema SAP Desarrollo
Conclusión	Utilizado por los desarrolladores de SAP para programar las nuevas necesidades en el sistema, es necesario una actualización de SAP, BD v SO.

Tabla 22: Análisis de servidor SRVPMPSAPDES

	Nombre			SRVPMI	PSAPQAS			
	Procesador	2						
	% usado al mes			7.	68			
	RAM (GB)			4				
	% usado al mes			.66	66			
	DISCO	Total	C:	D:	E:	I:	F:	
SRV17	Tamaño	850	100	50	50	40	600	
	% de uso de disco	73.95	62.07	32.31	91.47	90.7	93.2	
	SO		Win	ndows Server 2008 Ent x64 R2				
	BD	Oracle 10g						
Rol del servidor Sistema SAP Calidad						Sistema SAP Calidad		
	Conclusión	Servidor de BD y SO.	pruebas de S	SAP, es nece	sario una act	ualización o	le SAP,	

Tabla 23: Análisis de servidor SRVPMPQAS

	Nombre			SRVP	MPSAPSM			
Procesador 2								
% usado al mes 3.1					3.1			
	RAM (GB)	8 82.3						
	% usado al mes							
SRV18	DISCO	Total		D:	E:	F:	I:	
	Tamaño	332	100	50	40	30	100	
	% de uso de disco	73.436	39.11	81.57	85.36	88.23	72.91	
	SO	Windows Server 2008 Ent x64 R2						
	Rol del servidor	Sistema de SOLMAN SAP						
	Conclusión	Es necesario	una actua	lización de S	SAP, BD y S	SO.		

Tabla 24: Análisis de servidor SRVPMPPSM

	Nombre	srvpi	mpl3	
	Procesador	2		
	% usado al mes	3.31		
	RAM (GB)	8		
SRV19	% usado al mes	44.1		
SKV19	DISCO	Total	C:	
	Tamaño	80	80	
	% de uso de disco	50.3	50.3	
	SO	Windows Server 2008 Ent x64 R2		
	Rol del servidor	SMTP, Azure Connec		

	Conclusión	El SMTP es usado por el sistema de escáner de las impresoras y el SAP; el Azure Connect sincroniza el directorio activo con el Office365.
--	------------	---

Tabla 25: Análisis de servidor SRVPMP13

	Nombre	SRVPMPTI		
	Procesador	4		
	% usado al mes	3.3	31	
RAM (GB)		4	ļ	
	% usado al mes	44	.1	
SRV20	DISCO	Total	C:	
	Tamaño	80	80	
	% de uso de disco	40.25	40.25	
	SO	CentOS 6.7 x86_64		
	Rol del servidor			
	Conclusión			

Tabla 26: Análisis de servidor SRVPMPTI

	Nombre	SF	RVPMP19	
	Procesador	8		
	% usado al mes		3.54	
	RAM (GB)		6	
	% usado al mes		66.56	
	DISCO	Total	C:	
CDVA1	Tamaño	80	80	
SRV21	% de uso de disco	60.32	60.32	
	SO	Windows Server 2012 Std x64 R2		
	Rol del servidor	Veeam backup and replication		
		El servidor ya no debería ser		
	Conclusión	necesario, porque la nueva		
		solución traería consigo una estrategia de backup incluida.		

Tabla 27: Análisis de servidor SRVPMP19

	Nombre	SRVPMPVC		
	Procesador	2		
	% usado al mes	71.54		
CDV22	RAM (GB)	8		
SRV22	% usado al mes	45.65		
	DISCO	Total	C:	
	Tamaño	55	55	
	% de uso de disco	57.5	57.5	

- 4		
	SO	Windows Server 2008 Std x64 R2
	Rol del servidor	Vceter – controlador de las VM
	Conclusión	El servidor no sería necesario en una solución cloud.

Tabla 28: Análisis de servidor SRVPMPVC

4.2 ANÁLISIS TOTAL DE LA INFRAESTRUCTURA ACTUAL:

Luego de un análisis detallado de cada servidor, varios de estos no tienen una función en la actual estructura del holding; así mismo, hay algunos servidores que los servicios que prestan no justifica los recursos asignados, por tales motivos y siguiendo las buenas prácticas para una infraestructura en nube se ha decidido eliminar los siguientes servidores:

Ítems	Servidor	Servicio	Servidor Destino
CDM04	CDVDMDDEC06	Consola de antivirus	SRVPMPDEC03
SRV04	SRVPMPDEC06	WSUS	SRVPMPDEC18
SRV05	SRVPMPDEC07	Servidor SW Llaves digitales	No necesario
		FTP	No necesario
SRV06	SRVPMPDEC08	Abachep Emsa	SRVPMPDEC15
		BK información	SRVPMPHIST
CDMOZ	CDVDMDDEC12	BK DE BD	SRVPMPHIST
SRV07	SRVPMPDEC12	BK información	SRVPMPHIST
SRV09	SRVPMPDEC16	Transferencia de data	SRVPMPHIST
SK V09	SK V PMPDEC 10	Lic Autocad Netword	SRVPMPDEC03
CDM10	CDVDMDDECL 2	SMTP	SRVPMPDEC03
SRV19	SRVPMPDECL3	LDAP OFFCIE365	SRVPMPDEC03
SRV03	SRVPMPDEC05	Transferencia de data	SRVPMPDEC15
SRV21	SRVPMP19	Veeam backup	No necesario
SRV22	SRVPMPVC	Vcenter	No necesario

Tabla 29: Servidores a eliminar

Los servidores que quedan activos necesitan una urgente actualización ya que el sistema operativo con el que cuentan ya no tiene soporte ni actualizaciones de seguridad, lo cual genera un riesgo potencial. Así mismo, se aprovechará la ocasión para actualizar la versión del SAP y la base de datos Oracle, esta upgrade demandará más recursos de que tiene asignados dichos servidores actualmente; el sistema SAP es muy importante para la

organización ya que en él se lleva el control de las áreas de Contabilidad, Finanzas, Producción, Despacho, Logística, Comercial.

Las características de los servidores que se migrarán a la solución en cloud computing deberían de ser como mínimo las siguientes:

item	Nombre	Servicios	vCPU	vRAM	storage GB	Licenciamiento de Sistema Operativo	BD
CL01	SRVPMPDEC03	UniFlow (Contador impresión), smtp, ldap office365, consola Kasperky, Autocad Netword	3	8	240	Windows Server 2016 Datacenter	
CL02	SRVPMPDEC04	S10, OFISIS (BD Planillas)	4	6	160	Windows Server 2016 Datacenter	SQL Server 2016
CL03	SRVSISTEMAS	GLPI, OCS inventory	4	4	48	Linux	
CL04	SRVPMPDEC15	file server	4	6	4000	Windows Server 2016 Datacenter	
CL05	SRVPMPDEC17	Active Directory Domain Server, DNS Server, DHCP	4	4	80	Windows Server 2016 Datacenter	
CL06	SRVPMPDEC18	Active Directory Domain Server, DNS Server, DHCP, WSUS	4	6	280	Windows Server 2016 Datacenter	
CL07	SRVPMPDEC22	Sharepoint	2	8	310	Windows Server 2016 Datacenter	SQL Server 2016
CL08	SRVPMPSAPQV	Qlikview	4	12	230	Windows Server 2016 Datacenter	
CL09	SRVPMPSAPPRO	SAP PRODUCTIVO	20	30	1278	Windows Server 2016 Datacenter	Oracle 11

CL10	SRVPMPSAPDES	SAP DESASARROLO	3	16	503	Windows Server 2016 Datacenter	Oracle 11
CL11	SRVPMPSAPQAS	SAP CALIDAD	3	20	1230	Windows Server 2016 Datacenter	Oracle 11
CL12	SRVPMPSAPSM	SAP SOLMAN	4	32	708	Windows Server 2016 Datacenter	Oracle 11
CL13	SAPROUTER	SAP ROUTER	1	8	200	Windows Server 2016 Datacenter	Oracle 11
1			59	152	9267		

Tabla 30: Solución propuesta

Para la solución de la información histórica esta debe de tener una capacidad de almacenamiento de 22 TB.

No se debe dejar de lado que la solución propuesta debe de contar con un sistema de respaldo tanto granular como total de las máquinas virtuales.

4.3 SOLUCIONES EVALUADAS:

En el mercado existe alrededor de una docena de proveedores de soluciones cloud, para este caso evaluaremos la solución propuestas en Azure, AWS y un proveedor local llamado Optical Netword. Para lo cual usaremos, dentro de sus cátalos de servicios, el que más se adecue a las características mínimas en recursos necesarios para cada servidor según la evaluación previamente realizada; con un tiempo mínimo de contrato de 36 meses.

4.3.1 AZURE:

El esquema de conectividad a Azure es mediante una conexión VPN según la figura 13.

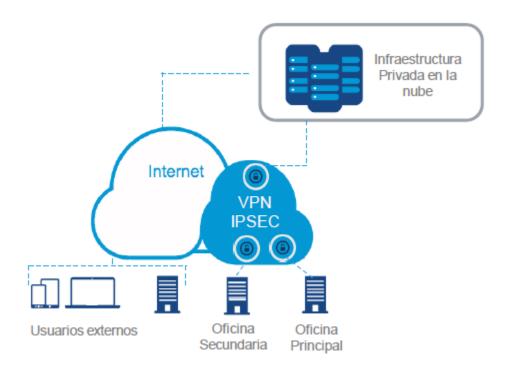


Figura 13: Diagrama de conectividad con Azure

Microsoft tiene varios data center alrededor del mundo que brindan el servicio de Azure, los cuales se muestra en la figura 14, siendo el más cercano geográficamente los que se encuentran en Brasil.

Figura 14: Data center Azure alrededor del mundo

Es muy importante la latencia que tenemos hacia los data center para decidir dónde estará montada nuestra solución, usando el medidor de latencia de Azure desde nuestra sede principal, que vemos en la tabla, los data center de Brasil son lo que tiene menor latencia y de los que están en Estados Unido el data center de la región East US es el que tiene menor latencia; como se ve en la figura 15.

atency Test						
Geography	Region	Physical Location	Average Latency (ms)			
South America	Brazil South	Sao Paulo State	97 ms			
South America	Brazil Southeast	Rio	114 ms			
US	Central US	Iowa	141 ms			
US	East US	Virginia	124 ms			
US	East US 2	Virginia	136 ms			
US	North Central US	Illinois	146 ms			
US	South Central US	Texas	155 ms			
US	West Central US	Wyoming	169 ms			
US	West US	California	158 ms			
US	West US 2	Washington	190 ms			

Figura 15: Latencia de data center Azure desde Perú

También debemos de evaluar los distintos tipos de instancias de Azure Virtual Machines y el costo de ellos, que están disponibles en cada uno de los data center; esta virtual machine pueden ser, como se ve en la figura 16, los siguientes:

Máquinas virtuales ampliables— B1S

Más económica

Nuestra máquina virtual de la serie Bs proporciona una solución económica y de bajo costo para cargas de trabajo que, en ocasiones, necesitan un aumento puntual del rendimiento y que cuenta con la tecnología de los procesadores Intel® Xeon®. Gratis durante 12 meses.

Proceso optimizado—Fsv2

Potencia de cálculo sin procesar

Fsv2 es nuestra familia de máquinas virtuales optimizadas para proceso que cuenta con la tecnología del procesador Intel® Xeon® Platinum 8168 (Skylake) para una potencia de cálculo sin procesar.

Uso general—Dv3

Memoria y CPU equilibradas

Nuestra familia Dv3 es la generación de máquinas virtuales de uso general que cuenta con la tecnología de los procesadores Intel® Xeon®. Es adecuada para cargas de trabajo variadas.

Memoria optimizada—Ev3

Proporción alta de memoria por núcleo

Ev3 es nuestra generación más reciente de máquinas virtuales optimizadas para memoria que cuentan con la tecnología de los procesadores Intel® Xeon®. Es excelente para servidores de bases de datos relacionales, memorias caché y análisis en memoria.

Figura 16: Tipos de servidores virtuales Azure

Hay que tener en cuenta que la PMP Holding cuenta con el ERP SAP R3 para lo cual Azure tiene certificada las siguientes instancias mostradas en la figura 17:

Tier	VM Type	VM Size	SAPS
	E4s_v3	4 vCPU, 32 GB	4,355
	E8s_v3	8 vCPU, 64 GB	8,710
Esv3 - series	Esv3 - series E4s_v3	16 vCPU, 128 GB	17,420
	E32s_v3	32 vCPU, 256 GB	32,840
	E64s_v3	64 vCPU, 432 GB	70,050
	E4as_v4	4 vCPU, 32 GB	6,044
	E8as_v4	8 vCPU, 64 GB	12,088
	E16as_v4	16 vCPU, 128 GB	24,175
Easv4-series	E20as_v4	20 vCPU, 160 GB	30,219
	E32as_v4	32 vCPU, 256 GB	48,350
	E48as_v4	48 vCPU, 384 GB	72,525
·	E64as_v4	4 vCPU, 32 GB 8 vCPU, 64 GB 16 vCPU, 128 GB 32 vCPU, 256 GB 64 vCPU, 432 GB 4 vCPU, 32 GB 8 vCPU, 64 GB 16 vCPU, 128 GB 20 vCPU, 160 GB 32 vCPU, 256 GB	96,700
	M32ls	32 vCPU, 256 GB	33,670
	M32ms	32vCPU, 875 GB	34,465
	M64ls	64 vCPU, 512 GB	66,600
M-series	M64s	64 vCPU, 1024 GB	67,315
	M64ms	64 vCPU, 1792 GB	68,930
	M128s	128 vCPU, 2048 GB	134,630
	M128ms	16 vCPU, 128 GB 32 vCPU, 256 GB 64 vCPU, 432 GB 4 vCPU, 32 GB 8 vCPU, 64 GB 16 vCPU, 128 GB 20 vCPU, 160 GB 32 vCPU, 256 GB 48 vCPU, 384 GB 64 vCPU, 512 GB 32 vCPU, 256 GB 32 vCPU, 512 GB 64 vCPU, 512 GB 64 vCPU, 512 GB 64 vCPU, 1024 GB 64 vCPU, 1024 GB	134,630

Figura 17: Tipo de servidores Azure recomendados para SAP R3

Luego de analizar las instancias ofrecidas y adecuándolo a nuestras necesidades, se ha decidido optar por lar siguientes:

Serie Bs: Las instancias de la serie Bs son máquinas virtuales económicas que ofrecen una opción de bajo costo para cargas de trabajo que, normalmente, se ejecutan con un rendimiento de CPU de línea base de bajo a moderado, pero que, a veces, necesitan un rendimiento de CPU mucho más alto cuando la demanda aumenta. Estas cargas de trabajo no necesitan usar toda la CPU siempre, sino que en algunas ocasiones tienen que aumentar el rendimiento para completar algunas tareas rápidamente. Muchas aplicaciones, como los servidores de desarrollo y pruebas, los servidores web con poco tráfico, las bases de datos pequeñas, los servidores para pruebas de concepto, los servidores de compilación y los repositorios de código, calzan con este modelo.

Serie Ea: Las máquinas virtuales de la serie Eas v4 se basan en el procesador AMD EPYCTM 7452 de 2,35 Ghz, que puede alcanzar hasta 3,35 GHz. Las máquinas virtuales de la serie Ea v4 son ideales para aplicaciones empresariales que hacen un uso intensivo de la memoria. El almacenamiento en discos de datos se factura aparte de las máquinas virtuales. Para usar discos de Premium Storage, utilice los tamaños de la serie Eas v4.

Por último al evaluar los costos notamos que estos son hasta un 50% más caros en los data center de Brasil en comparación al data center East US ubicado en Estados Unidos, el cual es el tercero en la lista de menor latencia, para obtener el mejor costo se ha decidido usar el data center East US ya que la diferencia de latencia es mínima entre este y los ubicados en Brasil. Luego de todo lo evaluado el costo de la solución planteada es:

Instancia	NOMBRE	BD	vCPU	vRAM	storage GB	I	Precio
B4MS	SRVPMPDEC03		4	16	256	\$	76.80
E2as v4	SRVPMPDEC04	SQL	2	16	256	\$	414.86
B4MS	SRVSISTEMAS		4	16	256	\$	76.80
B4MS	SRVPMPDEC15		4	16	4096	\$	364.80
B2MS	SRVPMPDEC17		2	8	128	\$	38.50
B2MS	SRVPMPDEC18		2	8	256	\$	48.10
B4MS	SRVPMPDEC22	SQL	4	16	256	\$	349.40
E4as v4	SRVPMPSAPQV		4	32	512	\$	245.53

E4as v4	SAI KOUTEK	Oracle 11 TOTAL	54	32 352	512 10112	\$ \$	245.53 3.369.78
E44	SAPROUTER	O1- 11	4	22	510	ф	245 52
E4as v4	SRVPMPSAPSM	Oracle 11	4	32	1024	\$	283.93
E8as v4	SRVPMPSAPQAS	Oracle 11	8	64	1024	\$	490.00
E4as v4	SRVPMPSAPDES	Oracle 11	4	32	512	\$	245.53
E8as v4	SRVPMPSAPPRO	Oracle 11	8	64	1024	\$	490.00

Tabla 31: Costos de servidores en Azure

Para la solución de información historia esta estará compuesta por un servidor que almacene la información historia de acceso frecuente y un repositorio de archivos con acceso esporádico y programado.

Instancia	Nombre	vCPU	vRAM	storage GB	Precio
B2MS	SRVHISTACT	2	8	4096	\$ 336.10
	Almacenamiento de archivos			18000	\$ 689.32
				TOTAL	\$ 1,025.42

Tabla 32: Costo de solución de información histórica

Por un tema de cotos el data center seleccionado es el East US el cual tiene una latencia promedio de 124 ms, esta latencia es muy alta para los servicios que queremos montar en la infraestructura cloud, para este tipo de casos Azure cuenta con servicio ExpressRoute que permite crear conexiones privadas entre centros de datos de Microsoft y la infraestructura local o en una instalación de ubicación conjunta. Las conexiones ExpressRoute no se realizan sobre una conexión a Internet pública, ofrecen una mayor confiabilidad, seguridad y velocidad con una menor latencia que las conexiones a Internet típicas, figura 18.

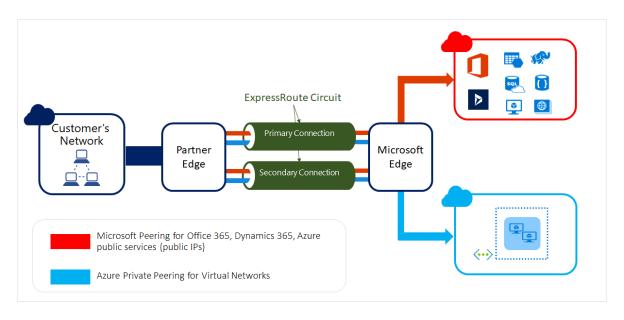


Figura 18: Diagrama de funcionamiento de ExpressRoute

Es precio por el servicio ExpressRouter es:

Servicio	Velocidad	Costo
ExpressRoute	200 Mbps	\$ 3,220.00

Tabla 33: Costo de ExpressRouter

La suma de todos los costos de la solución montada en Azure sería el siguiente:

Servicio	Costo
Infraestructura cloud	\$ 3,369.78
Información Histórica	\$ 1,025.42
ExpressRoute	\$ 3,220.00
TOTAL	\$ 7,615.20

Tabla 34: Costo total de solución en Azure

4.3.2 AWS:

Para implementar nuestra solución usaremos la instancia C4 la cual esta optimizada para informática son ideales para las aplicaciones que dependen de los recursos informáticos y se benefician de los procesadores de alto rendimiento. Las instancias que forman parte de esta familia funcionan bien con las cargas de trabajo de procesamiento por lotes, la transcodificación de archivos multimedia, los servidores web de alto rendimiento, la informática de alto rendimiento (HPC), la creación de modelos científicos, los servidores de videojuegos y los motores de servidor de publicidad dedicados, la inferencia del aprendizaje automático, entre otras aplicaciones con uso intensivo de informática.

Las instancias C4 están optimizadas para cargas de trabajo de uso informático intensivo y ofrecen rendimiento alto y rentable con una buena relación rendimiento informático/precio.

Características:

- Procesadores Intel Xeon E5-2666 v3 (Haswell) de alta frecuencia optimizados específicamente para EC2.
- Optimización para EBS predeterminada para un mayor rendimiento de almacenamiento sin costo adicional

- Rendimiento de red superior con redes mejoradas que soportan Intel 82599 VF
- Requiere Amazon VPC, Amazon EBS y AMI HVM de 64 bits

Usando la calculadora de AWS podemos recrear una cotización, figura 19, lo más acercada a nuestra solución propuesta, viendo en la figura 20 el costo de la misma:

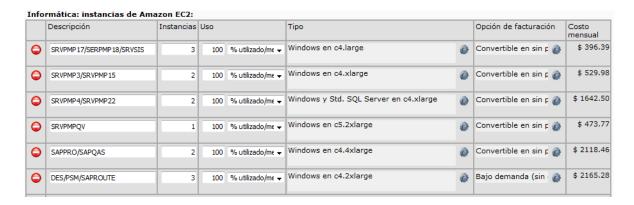


Figura 19: Costo de servidores en AWS

Θ	Servicio Amazon EC2 (América del Sur (São Paulo))			\$ 9825.07
	Computación:	\$	7326.38	
	Transferencia de datos dentro de una región:	\$	0.01	
	Volúmenes de EBS:	\$	1868.08	
	IOPS de EBS:	\$	0.00	
	Instantáneas de EBS:	\$	625.60	
	Instancias reservadas (pago por única vez):	\$	0.00	
	Direcciones IP elásticas:	\$	0.00	
	Transferencia de datos entre interconexiones de VPC:	\$	5.00	
±	Transferencia de datos de AWS de entrada			\$ 0.00
±	Transferencia de datos de AWS de salida			\$ 1.35
±	AWS Support (Business)			\$ 981.93
Descue	Descuento de nivel gratuito:			-7.12
Pago m	ensual total:		\$	10801.23

Figura 20: Detalle de costo de solución en AWS

Para nuestra solución de data histórica se usara Amanzon S3 Glacier es una clase de almacenamiento seguro, duradero y de bajo costo para el archivado de datos. Puede almacenar el volumen de datos que desee de manera fiable a precios competitivos o más

económicos que las soluciones locales. Para mantener los costos bajos pero seguir siendo apto para diversas necesidades, S3 Glacier proporciona tres opciones de recuperación, que van desde unos pocos minutos a unas horas.

Recordando que la información histórica es de 22TB de poco acceso y se planifica una recuperación de datos máxima de 200GB al mes en calidad de urgente, que podemos ver el detalle en la figura 21, con un costo de \$195.40 según se ve en la figura 22.

Figura 21: Características de solución para información histórica

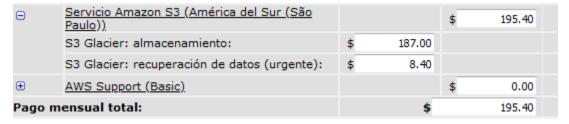


Figura 22: Costo de solución para información histórica

El costo total de la solución en AWS es de \$10996.63 al mes con una permanencia mínima de 3 años en el proveedor.

4.3.3 OPTICAL NETWORKS:

Optical Networks es un proveedor local de servicio de comunicaciones, data center y soluciones cloud, con el cual realizamos una cotización para evaluar sus costos y características en una solución cloud; se propuso la siguiente arquitectura de solución:

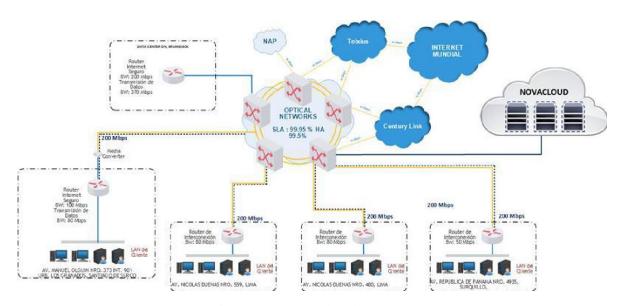


Figura 23: Esquema de red propuesto

Donde se tiene un enlace dedicado desde cada una de las sedes del holding hacia el data center donde se aloja su infraestructura de servicio de cloud, el cual tiene un ancho de banda de 200 Mbps, según se puede apreciar en la figura 24 del diagrama referencial; con la conectividad directa hacia la arquitectura cloud el proveedor garantiza una latencia menor de 10ms.

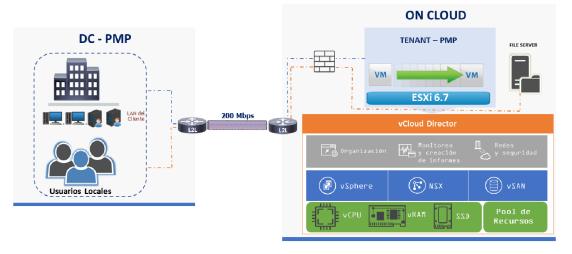


Figura 24: Esquema de conectividad directa hacia data center cloud

A comparación de los grandes proveedores que tienen un catálogo de máquinas virtuales del cual los clientes tienen que elegir cual se adapta a sus necesidades, Optical ofrece una

solución inversa a Azure y AWS, adaptándose a las necesidades del cliente, por lo cual se solicitó los siguientes recursos:

VM	vCPU	MEMORIA (GB)	DISCO (GB)
13	60	156	10000

Tabla 35: Total de recursos

Estos recursos fueron distribuidos de la siguiente manera:

Ítem	Nombre	BD	vCPU	vRAM	storage GB
CL01	SRVPMPDEC03		4	12	280
CL02	SRVPMPDEC04	SQL Server 2016	4	6	160
CL03	SRVSISTEMAS		4	4	48
CL04	SRVPMPDEC15		4	6	4000
CL05	SRVPMPDEC17		4	4	80
CL06	SRVPMPDEC18		4	6	280
CL07	SRVPMPDEC22	SQL Server 2016	2	8	310
CL08	SRVPMPSAPQV		4	12	230
CL09	SRVPMPSAPPRO	Oracle 11	20	30	1278
CL10	SRVPMPSAPDES	Oracle 11	3	16	503
CL11	SRVPMPSAPQAS	Oracle 11	3	20	1230
CL12	SRVPMPSAPSM	Oracle 11	3	32	708
CL13	SAPROUTER	Oracle 11	1	8	200
		TOTAL	60	156	9307

Tabla 36: Características de servidores cloud

La solución debe incluir el licenciamiento de los sistemas operativos Windows y de las base de datos SQL indicados en la solución propuesta, tabla; para el almacenamiento de la información histórica propusieron un servidor físico con las siguientes especificaciones:

Nombre	CPU	RAM	storage GB
SRVHIST	2	8	22000

Tabla 37: Características de solución para información histórica

Para el backup de la solución propuesta, acorde a nuestra política de respaldo, se calculó que este sería de 100 TB, según la tabla.

Solución	Espacio de Disco (TB)	Espacio en backup (TB)
Máquinas virtuales	8.2	52.5
Servidor SAP Productivo	1.2	17.5
Servidor Histórico	22	30
	TOTAL	100

Tabla 38: Calculo de espacio de backup

El costo por la solución propuesta es la siguiente:

Servicios	Costo
Arquitectura cloud	\$ 5,020.00
Solución a información histórica	\$ 300.00
Solución de backup	\$ 530.00
TOTAL	\$ 5,850.00

Tabla 39: Costo de solución en Optical Netword

4.4 COMPARACIÓN ENTRE PROVEEDORES

La comparación de los proveedores se realizará en base a los requerimientos planteados por la organización, con la siguiente métrica:

- 00 = no cumple con el requerimientos
- 05 = cumple el requerimiento al 50%
- 10 = cumple al requerimiento al 100%

Los resultados los podemos apreciar en la tabla 40:

Ítem	Requerimiento	Azure		AWS		Optical	
Item	Requerimento	Comentario	Calificación	Comentario	Calificación	Comentario	Calificación
RQ01	La solución propuesta debe de significar un ahorro mensual mayor al 20% del gasto actual.	El coso fijo tiene una reducción de 13% a comparación al pago actual, pero hay costos variables que pueden reducir este porcentaje	00	El costo es mayor al costo de la solución actual	00	El costo genera un ahorro mayor al 30%	10
RQ02	El tiempo de migración de plataforma no puede exceder los 4 días.	Cumplir el tiempo indicado es muy complicado por la cantidad de información a transferir	00	Cumplir el tiempo indicado es muy complicado por la cantidad de información a transferir	00	Al ser un proveedor local las coordinaciones de migración son más manejables	05
RQ04	Evitar costos ocultos en el servicio contratado, de ser posible que el costo mensual sea fijo.	Si bien los recursos tienen un costo fijo, el tráfico de información tiene un costo variable según el uso mensual	00	Si bien los recursos tienen un costo fijo, el tráfico de información tiene un costo variable según el uso mensual	00	Tanto los recursos como el tráfico de información están incluidos en el precio final	10
RQ05	El contrato por el servicio no debe de ser mayor de 2 años.	Los costos tomados son a 3 años de contrato, no hay la opción de 2 años; a un año el costo se eleva en un 60%	00	Los costos tomados son a 3 años de contrato, no hay la opción de 2 años; a un año el costo se eleva en un 40%	00	El contrato de los recursos es a 2 años	10
RQ08	La solución propuesta debe de incluir las licencias de los sistemas operativos y base de datos a actualizar.	Si incluye las licencias	10	Si incluye las licencias	10	Si incluye las licencias	10

RQ09	La solución propuesta debe de contar con un sistema de backup que cumpla con la política de respaldo de la organización, el cual debe de incluir la información histórica.	Se realiza el respaldo de la información bajo los parámetros del proveedor	05	Se realiza el respaldo de la información bajo los parámetros del proveedor	05	El respaldo de la información se puede realizar a medida según los requerimientos del cliente	10
RQ10	La escalabilidad de cualquier recurso en la solución propuesta debe de estar garantizado en un máximo de 24 horas.	El proveedor garantiza el incremento de recursos en menos de 24 horas	10	El proveedor garantiza el incremento de recursos en menos de 24 horas	10	El proveedor garantiza el incremento de recursos en menos de 24 horas	10
RQ11	La disponibilidad de la solución tiene que ser de 99.95% o mayor.	El proveedor asegura la disponibilidad de 99.95%	10	El proveedor asegura la disponibilidad de 99.95%	10	El proveedor asegura la disponibilidad de 99.95%	10
RQ12	La latencia en la conectividad con la plataforma a elegir debe de ser la menor posible.	La latencia puede ser reducida de 50 ms	05	La latencia es mayor a los 100ms	00	Se garantiza una latencia menor a 10 ms	10
	TOTAL		40		35		85

Tabla 40: Evaluación de proveedores según los requerimientos

Viendo los resultados de cada proveedor versus los requerimiento, se llega a la conclusión que la mejor opción para implementar la solución cloud es en Optical Network.

5 CAPÍTULO 5: VALIDACIÓN DE RESULTADOS.

5.1 OBJETIVO ESPECÍFICO 1:

Realizar un análisis de las funciones que cumplen los servidores e identificar cuales participaran en el diseño de la solución de cloud computing.

Indicador de logro OE1

Reducir en un 30% los recursos usados actualmente versus los considerados para el diseño de cloud computing.

Resultado

Para validar este objetivo se realizará una comparativa de recursos entra la situación actual y la solución propuesta:

	VM	Procesadores	RAM	storage GB
Hosting	22	89	152	11017
Solución propuesta	13	60	156	9307
Porcentaje de reducción	59%	67%	103%	84%

Tabla 41: Infraestructura actual versus infraestructura propuesta

El cual nos arrojó que a nivel de las VM y procesadores se logró el objetivo de reducir al 30%, pero a nivel de RAM y almacenamiento no se lograron cumplir por los recursos solicitados para la actualización del SAP R3.

5.2 OBJETIVO ESPECÍFICO 2:

Diseñar una plataforma de servidores en cloud la cual soporte los aplicativos y servicios actuales, optimizando los recursos a usar como número de servidores, procesadores, memoria y espacio de disco.

Indicador del logro OE2

Identificar en la nueva plataforma los recursos que se adapten a la solución propuesta, estos recursos no deben de pasar de 15 servidores virtuales, 60 procesadores, 150 GB de RAM y 9 TB de almacenamiento.

Resultado

Luego del análisis de los servidores y la restructuración de los mismos, se planteó la siguiente estructura:

Ítem	NOMBRE	Servicios	BD	vCPU	vRAM	storage GB
CL01	SRVPMPDEC03	UniFlow (Contador impresión), smtp, ldap office365		4	12	280
CL02	SRVPMPDEC04	S10, OFISIS (BD Planillas)	SQL	4	6	160
CL03	SRVSISTEMAS	GLPI, OCS inventory		4	4	48
CL04	SRVPMPDEC15	File Server		4	6	4000
CL05	SRVPMPDEC17	Active Directory Domain Server, DNS Server, DHCP		4	4	80
CL06	SRVPMPDEC18	Active Directory Domain Server, DNS Server, DHCP, WSUS		4	6	280
CL07	SRVPMPDEC22	Sharepoint	SQL	2	۰	310
CL08	SRVPMPSAPQV	Qlikview		4	12	230
CL09	SRVPMPSAPPRO	SAP PRODUCTIVO	Oracle 11	20	30	1278
CL10	SRVPMPSAPDES	SAP DESASARROLO	Oracle 11	3	16	503
CL11	SRVPMPSAPQAS	SAP CALIDAD	Oracle 11	3	20	1230
CL12	SRVPMPSAPSM	SAP SOLMAN	Oracle 11	3	32	708
CL13	SAPROUTER	SAP ROUTER	Oracle 11	1	8	200
			TOTAL	60	156	9307

Tabla 42: Solución propuesta de servidores

En el cual se pudo validar que se cumplió con el objetivo de reducir las VM y los procesadores, en el caso de la RAM y almacenamiento no se llegó a la meta por la actualización del SAP R3 que demando más recurso que los asignados anteriormente.

5.3 OBJETIVO ESPECÍFICO 3:

Evaluar los distintos proveedores de cloud computing que se adecuan a la solución diseñada para la organización, acorde a los costos, seguridad, escalabilidad y alta disponibilidad.

• Indicador de logro OE3

Obtener más del 90% del puntaje en los criterios evaluados.

Resultado

Luego de evaluar cada proveedor el contra los requerimientos de la organización el resultado es el siguiente:

Proveedor	Azure	AWS	Optical
Puntaje	44%	39%	94%

Tabla 43: Porcentaje de cumplimiento de cada proveedor

En el cual el proveedor Optical Network, que es el proveedor elegido, obtiene más del 90% de puntaje.

5.4 OBJETIVO ESPECÍFICO 4:

Realizar pruebas del diseño planteado sobre la infraestructura del proveedor ganador.

• Indicador de logro OE4

Validar que el diseño propuesto no supera los 60% de uso de procesador y 80% de RAM y la disponibilidad al 99.95%

Resultado

Para validar el cumplimento del objetivo montaremos el servidor SRVPMPDEC03 y SRVPMPSAPPRO.

SRVPMPDEC03

En este servidor podremos validar si la restructuración de los servidores y la posterior repartición de los servicios cumple con los que buscamos, que es el máximo

aprovechamiento de los recursos asignados, en la Tabla 44 podemos ver el performance del servidor antes y después de la restructuración:

	ANTES	DESPUES	
Procesador	4	3	
Uso % de procesador	3.57	7	
RAM	8	8	
Uso % de RAM	43.32	71	
Almacenamiento	140	240	
Uso % de Almacenamiento	52	60	
Servicios	UniFlow (Contador impresión), server print	UniFlow (Contador impresión), server print, SMTP, Consola Kasperky, LDAP Offi365, Autocad Netword	

Tabla 44: Versus de aprovechamiento de recursos del servidor SRVPMPDEC03

En la imagen 25 podemos ver el detalle del servidor SRVPMPDEC03

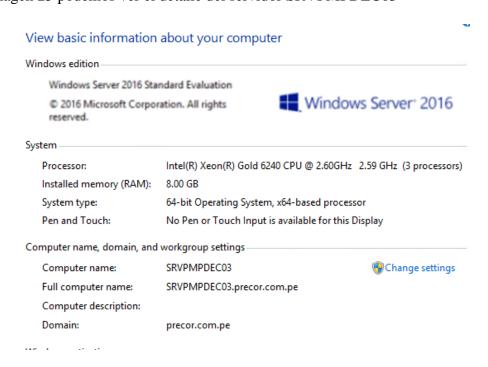


Figura 25: Características de servidor SRVPMPDEC03

En la imagen 26 podemos ver el aprovechamiento de la RAM la cual paso de 43.3% a 71% luego de la reestructuración de los servicios.

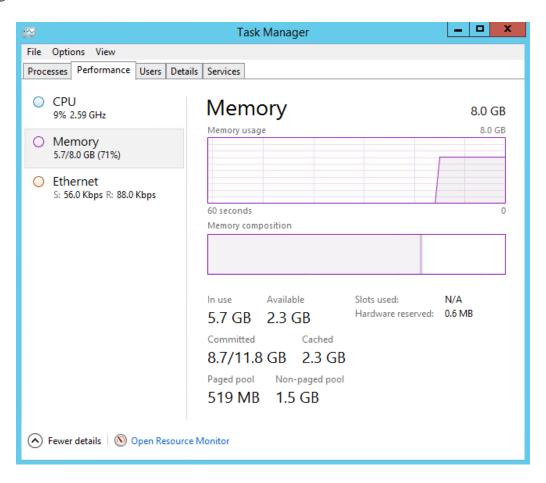


Figura 26: Consumo de RAM del servidor SRVPMPDEC03 luego de restructuración

SRVPMPSAPPRO

El servidor SRVPMPSAPPRO el cual es uno de los más críticos dentro de la infraestructura de servidores, a continuación veremos el detalle del mismo.

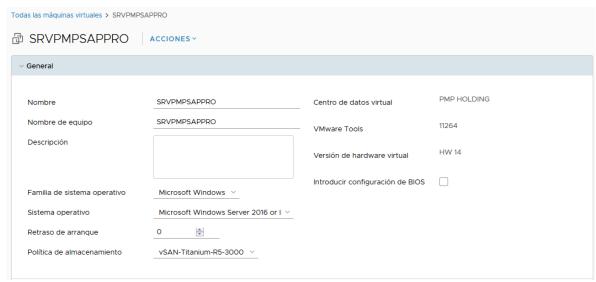


Figura 26: Características del servidor dentro de plataforma cloud Optical Network

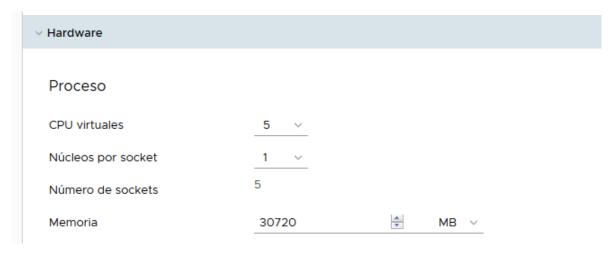


Figura 27: Características de Procesadores y RAM

Discos duros AGREGAR

Índice	Nombre	Tamaño			Política	Tipo de bus	Número de bus	Número de unidad
0	-	82944	<u>*</u>	MB	Política predetermii v	LSI Logic SAS ∨	0 ~	0 ~
1	-	31744	~	MB	Política predetermii V	Paravirtual (SC V	1 ~	0 ~
2	-	52224	<u>*</u>	МВ	Política predetermii V	Paravirtual (St V	1 ~	1 ~
3	-	1048576	<u>*</u>	МВ	Política predetermii ∨	Paravirtual (SC V	1 ~	2 ~
4	-	5120	<u>*</u>	МВ	Política predetermii V	Paravirtual (St ∨	2 ~	0 ~
5	-	5120	<u>*</u>	МВ	Política predetermii V	Paravirtual (St ∨	2 ~	1 ~
6	-	93184	<u>*</u>	МВ	Política predetermii V	Paravirtual (St ∨	2 ~	2 ~
7	-	21504	*	МВ	Política predetermii 🗸	Paravirtual (St ∨	2 ~	3 ~

Figura 28: Características de disco duros

Figura 29: Caracteriticas del servidor SRVPMPSAPPRO

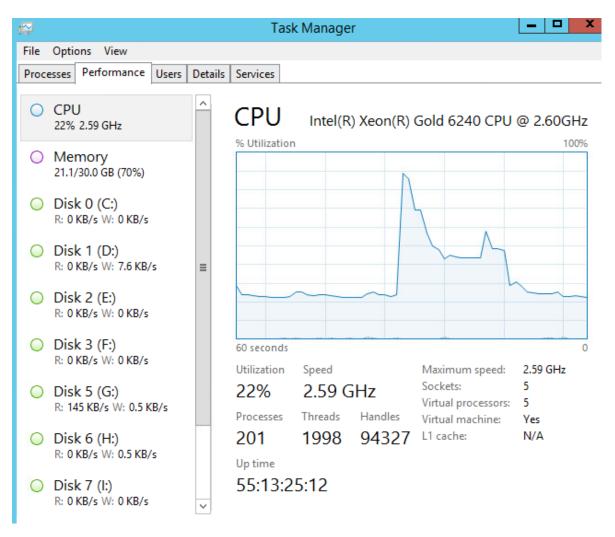


Figura 30: Consumo de procesador

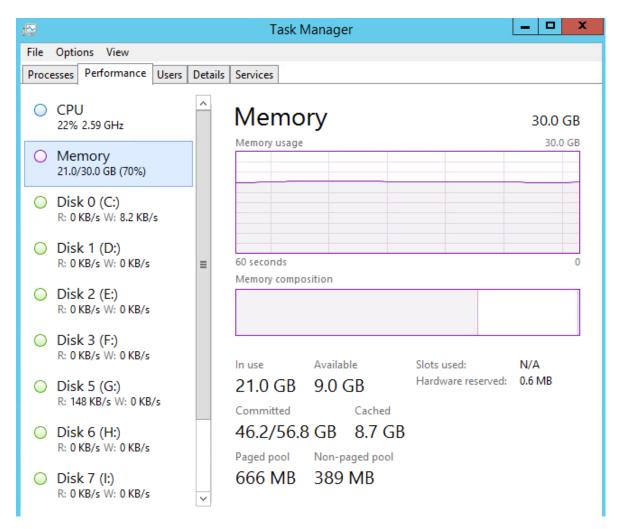


Figura 31: Consumo de RAM

Luego de ver las imágenes anteriores podemos observar que el consumo de procesador es de 25 % aproximadamente, el de RAM es 70%, cumpliendo con el objetivo planteado.

6 CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES

- Migrar la solución actual en hosting a una en cloud reducirá los gastos de infraestructura de servidores en más de 30%, generando un ahorro aproximado de \$35000 anuales
- Se diseñó una infraestructura acorde a las necesidades de la organización, sin desperdiciar recursos que generaban sobre costos.
- Si se necesitan más recursos la escalabilidad es muy sencilla gracias a las características del servicio cloud.
- Elegir un proveedor local permite una mayor interacción en caso tengamos solicitudes especiales.
- Si bien Azure y AWS son muy buenas soluciones, migrar toda la infraestructura de servidores a ellas nos demandaría mucho tiempo.

6.2 RECOMENDACIONES

- La organización debe de evaluar periódicamente sus servidores para determinar si sus funciones siguen siendo utilizadas y no desperdicias recursos.
- Se recomienda no hacer contratos a largo plazo ya que el cloud computing es una tecnología emergente en la zona, lo cual significa que los costos se reducirán en corto tiempo.

7 BIBLIOGRAFÍA

- Americatel. Cloud computing al servicio de la educación. Recuperado de https://www.americatel.com.pe/Archivos/PDF/esancasoexito.pdf [Consulta: 07 de julio 2020]
- Americatel. (10 de noviembre 2016). El efecto del cloud computing. Recuperado de https://www.americatel.com.pe/Archivos/PDF/GramecoGesti%C3%B3n2016.pdf [Consulta: 07 de julio 2020]
- Artaza, S. d. (31 de Octubre de 2016). MuyCloud. Obtenido de Trece buenas prácticas para una migración de éxito a la nube:

 http://muycloud.com/2016/10/31/buenaspracticas-migracion-nube/ [Consulta: 07 de julio 2020]
- Barr, J. (18 de julio de 2019). AWS Named as Leader in Gartner's Infraestructure as a Service(Iaas) Magic Quadrant for the 9th Consecutive Year. Recuperado de https://aws.amazon.com/es/blogs/aws/aws-named-as-a-leader-in-gartners-infrastructure-as-a-service-iaas-magic-quadrant-for-the-9th-consecutiveyear/ [Consulta: 05 de julio 2020]
- Cabacas, T. (3 de julio de 2018). ¿Quién invento el Cloud Computing? Recuperado de https://www.muycomputerpro.com/2018/07/03/historia-cloud-computing [Consulta: 30 de junio 2020]
- Cabacas, T. (3 de julio de 2018). ¿Qué es la nube hibrida y por qué no paras de oír hallar de ella? Recuperado de https://www.muycomputerpro.com/2018/07/12/que-es-nube-hibrida [Consulta: 05 de julio 2020]
- Carpenter C. (27 de marzo de 2019) Future of cloud computing: 5 insights from new global research. Recuperado de https://cloud.google.com/blog/topics/research/future-of-cloud-computing-5-insights-from-new-global-research [Consulta: 10 de julio 2020]
- IBM. (2019). IaaS. Recuperado de https://www.ibm.com/cloud/learn/iaas [Consulta: 05 de julio 2020]
- Microsoft Azure. ¿Qué es IaaS?. Recuperado de https://azure.microsoft.com/es-es/overview/what-is-iaas/ [Consulta: 30 de junio 2020]
- Microsoft Azure. ¿Qué es PaaS? Recuperado de https://azure.microsoft.com/es-es/overview/what-is-paas/ [Consulta: 30 de junio 2020]
- Microsoft Azure. ¿Qué es SaaS? Recuperado de https://azure.microsoft.com/es-es/overview/what-is-saas/ [Consulta: 30 de junio 2020]

- Microsoft Azure. ¿Cómo se elige un proveedor de servicios en la nube? Recuperado de https://azure.microsoft.com/es-es/overview/choosing-a-cloud-service-provider/ [Consulta: 07 de julio 2020]
- Optical Networks. (27 de mayo de 2017). Recuperado de https://www.optical.pe/casos-de-exito-blog/ [Consulta: 07 de julio 2020]
- Prieto M. (27 de febrero 2019). Ni Microsoft ni Google, nadie puede con Amazon en la nube. Recuperado de https://www.expansion.com/economia-digital/companias/2019/02/27/5c6ef3b2ca4741474b8b45c5.html [Consulta: 05 de julio 2020]
- Redacción Computing. (13 octubre de 2018) 2019 será el gran salto a la nube. Recuperado de https://www.computing.es/cloud/noticias/1108271046301/2019-sera-gran-salto-nube.1.html [Consulta: 05 de julio 2020]
- Reyes F. (26 de noviembre 2019) Cloud: Los líderes del mercado 2019. Recuperado de http://telecomunicaciones-peru.blogspot.com/2019/11/ [Consulta: 05 de julio 2020]
- Rodríguez T. (18 de junio 2019) La otra guerra entre Microsoft, Google y Amazon: la batalla por controlar los servicios en la nube para desarrolladores. Recuperado de https://www.xataka.com/servicios/otra-guerra-microsoft-google-amazon-batalla-controlar-servicios-nube-para-desarrolladores [Consulta: 05 de julio 2020]
- Rolle. (31 de mayo de 2018) *Magic Quadrant fot Cloud Infrastructure as a Service 2018*.

 Recuperado de https://therolle.com/magic-quadrant-for-cloud-2018/ [Consulta: 05 de julio 2020]